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Ehe New York Times

Scientists See Promise in Deep-Learning Programs

A voice recognition program translated a speech given by Richard F. Rashid, Microsoft's top scientist, into Mandarin
Chinese.

By JOHN MARKOFF
Published

Using an artificial intelligence technique inspired by theories about FACEBOOK
how the brain recognizes patterns, technology companies are ¥ TWITTER
reporting startling gains in fields as diverse as computer vision,
speech recognition and the identification of promising new molecules
for designing drugs.
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Google’s Artificial Brain Learns to Find Cat

Videos

BY WIRED UK 06.26.12  11:15AM
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Plait

By Liat Clark, Wired UK

When computer scientists at Google's mysterious X lab built a neural network of 16,000 computer
processors with one billion connections and let it browse YouTube, it did what many web users might

do — it began to look for cats

MIGEER.co.uk

The “brain” simulation was exposed to 10 million randomly
selected YouTube video thumbnails over the course of three days
and, after being presented with a list of 20,000 different items, it
began to recognize pictures of cats using a “deep learning”
algorithm. This was despite being fed no information on
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MIT Facebook Launches Advanced

Technology . . .
Review Al Effort to Find Meaning in

Your Posts

A technigue called deep learning could help Facebook understand
its users and their data better.

By Tom Simonite on September 20, 2013

Facebook is set to get an even better understanding
of the 700 million people who use the social
network to share details of their personal lives each
day.

A new research group within the company is
working on an emerging and powerful approach to
artificial intelligence known as deep learning, which
uses simulated networks of brain cells to process
data. Applying this method to data shared on
Facebook could allow for novel features and
perhaps boost the company's ad targeting.

Deep learning has shown potential as the basis for IT MATTERS

software that could work out the emotions or events  e.cepaok's piles of data

described in text even if they aren't explicitly referenced, recognize objects in on people's lives could
- " e allow it to push the

photos, and make sophisticated predictions about people’s likely future boundaries of what can

behavior. be done with the

emerging Al technique
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What is Deep Learning?

A family of methods that uses deep architectures to learn high-level
feature representations
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What is Deep Learning?

A family of methods that uses deep architectures to learn high-level
feature representations

STANDARD PROCESS
IN MACHINE LEARNING DEEP LEARNING
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Example of Trainable Features

Hierarchical object-parts features in Computer Vision [Lee et al., 2009]
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Course Outline

@ Goal:
To understand the foundations of neural networks and deep learning,
at a level sufficient for reading recent research papers
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Course Outline

@ Goal:
To understand the foundations of neural networks and deep learning,
at a level sufficient for reading recent research papers

@ Schedule:

Lecture 1 (Jan 14): Machine Learning background & Neural Networks
Lecture 2 (Jan 16): Deep Architectures (DBN, SAE)

Lecture 3 (Jan 21): Applications in Vision, Speech, Language

Lecture 4 (Jan 23): Advanced topics in optimization

v
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Course Outline

@ Goal:
To understand the foundations of neural networks and deep learning,
at a level sufficient for reading recent research papers

@ Schedule:

Lecture 1 (Jan 14): Machine Learning background & Neural Networks
Lecture 2 (Jan 16): Deep Architectures (DBN, SAE)

Lecture 3 (Jan 21): Applications in Vision, Speech, Language

Lecture 4 (Jan 23): Advanced topics in optimization

v

v vy

@ Prerequisites:
» Basic calculus, probability, linear algebra
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Course Material

@ Course Website:
http://cl.naist.jp/~kevinduh/a/deep2014/

@ Useful References:

© Yoshua Bengio's [Bengio, 2009] short book: Learning Deep
Architectures for Al

@ Yann LeCun & Marc'Aurelio Ranzato's ICML2013 tutorial?

© Richard Socher et. al.’s NAACL2013 tutorial®

@ Geoff Hinton's Coursera course*

© Theano code samples®

@ Chris Bishop’s book Pattern Recognition and Machine Learning
(PRML)®

"http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
*http://techtalks.tv/talks/deep-learning/58122/
*http://www.socher.org/index . php/DeepLearningTutorial/
*https://wuw.coursera.org/course/neuralnets
*http://deeplearning.net/tutorial/

®http://research.microsoft.com/en-us/um/people/cmbishop/prml/
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Grading

@ The only criteria for grading:
Are you actively participating and asking questions in class?
If you ask (or answer) 3+ questions, grade = A
If you ask (or answer) 2 questions, grade = B
If you ask (or answer) 1 question, grade = C
If you don't ask (or answer) any questions, you get no credit.

v
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Best Advice | got while in Grad School

Always Ask Questions!

10/40



Best Advice | got while in Grad School

Always Ask Questions!

@ If you don’t understand, you must ask questions in order to
understand.

10/40



Best Advice | got while in Grad School

Always Ask Questions!

@ If you don’t understand, you must ask questions in order to
understand.

o If you understand, you will naturally have questions.

10/40



Best Advice | got while in Grad School

Always Ask Questions!

@ If you don’t understand, you must ask questions in order to
understand.

o If you understand, you will naturally have questions.

@ Having no questions is a sign that you are not thinking.
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Today's Topics

@ Machine Learning background
@ Why Machine Learning is needed?
@ Main Concepts: Generalization, Model Expressiveness, Overfitting
@ Formal Notation

© Neural Networks
@ 1-Layer Nets (Logistic Regression)
@ 2-Layer Nets and Model Expressiveness
@ Training by Backpropagation
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Today's Topics

@ Machine Learning background
@ Why Machine Learning is needed?
@ Main Concepts: Generalization, Model Expressiveness, Overfitting
@ Formal Notation
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Write a Program™® to Recognize the Digit 2

This is hard to do manually!
bool recognizeDigitAs2(int** imagePixels){...}

ocld@® i N\ (/44172
%23 2 23>|7
2672947477659
Lli7I2NT7T827
83784997

*example from Hinton's Coursera course
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Write a Program™® to Recognize the Digit 2

This is hard to do manually!
bool recognizeDigitAs2(int** imagePixels){...}

ool N\ (4AI72
%23 2 23>|7
2672947477659
Lli7I2NT7T827
5893780997

Machine Learning solution:

© Assume you have a database (training data) of 2's and non-2's.

@ Automatically "learn” this function from data

*example from Hinton's Coursera course
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A Machine Learning Solution

Training data are represented as pixel matrices:
Classifier is parameterized by weight matrix of same dimension.
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A Machine Learning Solution
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[T

Training data are represented as pixel matrices:

Classifier is parameterized by weight matrix of same dimension.

Training procedure:

@ When observe "2", add 1 to corresponding matrix elements

@ When observe "non-2", subtract 1 to corresponding matrix elements
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A Machine Learning Solution

Training data are represented as pixel matrices:

Classifier is parameterized by weight matrix of same dimension.

Training procedure:

@ When observe
@ When observe '

"2", add 1 to corresponding matrix elements
"non-2", subtract 1 to corresponding matrix elements
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Test procedure

: given new image, take

sum of element-wise product.

If positive, predict "2"; else predict "non-2".
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Today's Topics

@ Machine Learning background
@ Why Machine Learning is needed?
@ Main Concepts: Generalization, Model Expressiveness, Overfitting
@ Formal Notation
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Generalization £ Memorization

Key Issue in Machine Learning: Training data is limited

o If the classifier just memorizes the training data, it may perform
poorly on new data

@ "Generalization” is ability to extend accurate predictions to new data
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Generalization £ Memorization

Key Issue in Machine Learning: Training data is limited

o If the classifier just memorizes the training data, it may perform
poorly on new data

@ "Generalization” is ability to extend accurate predictions to new data

E.g. consider shifted image: Will this classifier generalize?
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Generalization £ Memorization

One potential way to increase generalization ability:

e Discretize weight matrix with larger grids (fewer weights to train)

E.g. consider shifted image:
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Model Expressiveness and Overfitting

@ A model with more weight parameters may fit training data better

@ But since training data is limited, expressive model stand the risk of
overfitting to peculiarities of the data.

Less Expressive Model <= More Expressive Model
(fewer weights) (more weights)

Underfit training data <= Overfit training data

18/40



Model Expressiveness and Overfitting

Fitting the training data (blue points: x,)

with a polynomial model: f(x) = wp + wix + wax? + ... 4+ wyxM
under squared error objective 1 3= (f(x) — ta)?

from PRML Chapter 1 [Bishop. 2006] 19/40



Today's Topics

@ Machine Learning background
@ Why Machine Learning is needed?
@ Main Concepts: Generalization, Model Expressiveness, Overfitting
@ Formal Notation
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Basic Problem Setup in Machine Learning

@ Training Data: a set of (x(’"),y(’"))m:{Lz,”M} pairs, where input
x(m € RY and output y(™ = {0,1}
> e.g. x=vectorized image pixels, y=2 or non-2
@ Goal: Learn function f : x — y to predicts correctly on new inputs x.

21/40



Basic Problem Setup in Machine Learning

@ Training Data: a set of (x(’"),y(’"))m:{m,_M} pairs, where input
x(m € RY and output y(™ = {0,1}
> e.g. x=vectorized image pixels, y=2 or non-2
@ Goal: Learn function f : x — y to predicts correctly on new inputs x.

» Step 1: Choose a function model family:
* e.g. logistic regression, support vector machines, neural networks

21/40



Basic Problem Setup in Machine Learning

@ Training Data: a set of (x(’"),y(’"))m:{m,_M} pairs, where input
x(m € RY and output y(™ = {0,1}
> e.g. x=vectorized image pixels, y=2 or non-2
@ Goal: Learn function f : x — y to predicts correctly on new inputs x.
» Step 1: Choose a function model family:
* e.g. logistic regression, support vector machines, neural networks
» Step 2: Optimize parameters w on the Training Data
* e.g. minimize loss function min,, Z,A:,’:l(fw(x(’")) — y(m)?
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Today's Topics

© Neural Networks
@ 1-Layer Nets (Logistic Regression)
@ 2-Layer Nets and Model Expressiveness
@ Training by Backpropagation
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1-Layer Nets (Logistic Regression)

o Function model: f(x) = o(w’ - x + b)
» Parameters: vector w € RY, b is scalar bias term
» o is a non-linearity, e.g. sigmoid: o(z) = 1/(1 + exp(—2z))
» For simplicity, sometimes write f(x) = o(w'x) where w = [w; b] and

x = [x;1]

1-
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1-Layer Nets (Logistic Regression)

o Function model: f(x) = o(w’ - x + b)
» Parameters: vector w € RY, b is scalar bias term
» o is a non-linearity, e.g. sigmoid: o(z) = 1/(1 + exp(—2z))
» For simplicity, sometimes write f(x) = o(w'x) where w = [w; b] and
x = [x;1]

@ Non-linearity will be important in expressiveness multi-layer nets.
Other non-linearities, e.g., tanh(z) = (e* — e %) /(e* + e %)
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Training 1-Layer Nets: Gradient

@ Assume Squared-Error* Loss(w) = %Zm(a(w-’—x(’")) — y(’"))2

*An alternative is Cross-Entropy loss:

S Y™ log(o(wx\™)) + (1 = y™) log(1 — a(w x™))
24/40
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@ Assume Squared-Error* Loss(w) = %Z (U(WTX(m)) — y(’"))2
o Gradient: VyLoss =3, [o(w x(M) — y(m]o(w T x(m)x(m)

» General form of gradient: >, Error(™ x o/ (in(m)) x x(m)

*An alternative is Cross-Entropy loss:
S V™ log(o(wx™)) + (1 = y™) log(1 — o(w'x(™))

24/40



Training 1-Layer Nets: Gradient

o Assume Squared-Error* Loss(w) =13 (a(w” x(m)) — y(m))2
o Gradient: VyLoss =3, [o(wTx(m) — y(m]g ( T x(m)) x(m)
» General form of gradient: >, Error(™ x o/ (in(m)) x x(m)

*
@ Derivative of sigmoid o(z) = 1/(1 + exp(—2)):

o(2) = - (1+exp( z>

)
- (1+exp >2jzl+exp 7)) 1
5)

2

(1 + exp(— exp(=

N (1+exp<— ))(ﬁxzx(p())) e
= o(2)(1-0(2))

*An alternative is Cross-Entropy loss:
S Y™ log(o(wx™)) + (1 = y™) log(1 — a(w'x(™))

24/40



Training 1-Layer Nets: Gradient Descent Algorithm

o General form of gradient: 3, Error™) x o’ (in(m) % x(m)
o Gradient descent algorithm:

Q Initialize w

@ Compute V,, Loss =3, Error™ s o/ (in(m) % x(m)
Q@ w <+ w—~(VyLoss)

© Repeat steps 2-3 until some condition satisfied
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o Gradient descent algorithm:

Q Initialize w

@ Compute V,, Loss =3, Error™ s o/ (in(m) % x(m)
Q@ w <+ w—~(VyLoss)

© Repeat steps 2-3 until some condition satisfied

@ Stochastic gradient descent (SGD) algorithm:

Q Initialize w

@ for each sample (x(™, y(™) in training set:

(3] w < w — y(Error(™ x o' (in(m) x x(m))
© Repeat loop 2-3 until some condition satisfied
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Training 1-Layer Nets: Gradient Descent Algorithm

General form of gradient: S Error(™) x o/ (in(m)) x x(m)
Gradient descent algorithm:

Q Initialize w

@ Compute V,, Loss =3, Error™ s o/ (in(m) % x(m)
Q@ w <+ w—~(VyLoss)

© Repeat steps 2-3 until some condition satisfied

Stochastic gradient descent (SGD) algorithm:

Q Initialize w

@ for each sample (x(™, y(™) in training set:

(3] w < w — y(Error(™ x o' (in(m) x x(m))
© Repeat loop 2-3 until some condition satisfied

Learning rate v > 0 & stopping condition are important in practice
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Intuition of SGD update

o for some sample (x(™) y(m)):
w < w —y((o(wx(M) = y(mM) s o' (wTx(M) 5 x(m))

’ a(wTx(m) ‘ y(m) ‘ Error ‘

new w ‘ new prediction ‘
0 0 0 no change 0
1 1 0 no change 1
0 1 -1 | w0/ (intm)x(m) >0
1 0 | +1 [ w—qd(intm)x(m <1
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Intuition of SGD update

o for some sample (x(™) y(m)):
w < w —y((o(wx(M) = y(mM) s o' (wTx(M) 5 x(m))

’ a(wTx(m) ‘ y(m) ‘ Error ‘ new w ‘ new prediction ‘
0 0 0 no change 0
1 1 0 no change 1
0 1 -1 | w0/ (intm)x(m) >
1 0 | +1 [ w—qd(intm)x(m <1

[w 50 (in™)x(M] T x (™) = w T (™) oy (i) [ [2 > w T x(m)

o'(wTx(m) is near 0 when confident, near 0.25 when uncertain.

large v = more aggressive updates; small v = more conservative

SGD improves classification for current sample, but no guarantee
about others
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Geometric view of SGD update

o Loss objective contour plot: 3= (o(wTx(M) — y(mM)2 4 ||w||
» Gradient descent goes in steepest descent direction, but slower to

compute per iteration for large datasets
» SGD can be viewed as noisy descent, but faster per iteration

> In practice, a good tradeoff is mini-batch SGD
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Effect of Learning Rate v on Convergence Speed

o SGD update: w < w — y(Error(™ x o/ (in(m)) x x(m))
> Ideally, «v should be as large as possible without causing divergence.
» Common heuristic: v(t) = 72 = O(1/t)

@ Analysis by [Schaul et al., 2013] (in plot, n = 7):

SGD =0.2

10° +— SGD =02/t |1
) — SGD =1.0
10 &
+— SGD y=1.0/t
10° -- oracle
P — VSGD
§ -1
10
107
w0 T T T T T

L 1 1 .
0 50 100 150 200

learning rate 7
[
o 9
r T =
[

0 50 100 150 200
#eamnlac 28/40



Generalization issues: Regularization and Early-stopping

o Optimizing Loss(w) = 2 3" (o(wTx(M) — y(m)2 on training data
not necessarily leads to generalization.

Figures from Chapter 5, [Bishop, 2006]
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Generalization issues: Regularization and Early-stopping

o Optimizing Loss(w) = 2 3" (o(wTx(M) — y(m)2 on training data
not necessarily leads to generalization.
@ Adding regularization: Loss(w) =13~ (o(wTx(mM) — y(mM)2 4+ ||w||
reduces sensitivity to training input and decreases risk of overfitting
© Early Stopping:
* Prepare separate training and validation (development) data
* Optimize Loss(w) on training but stop when Loss(w) on validation
stops improving

0.45

0.25

0.4

0.2

0.15 ‘ 0.35 ‘
0

Figures from Chapter 5, [Bishop, 2006]
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Summary

@ Given Training Data: (x(m),y(’"))m:{lg,“,\/,}

@ Optimize a model f(x) = o(w' - x + b) under
Loss(w) = 5 32 (o (wTx(M) — y(m))2
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Summary

@ Given Training Data: (x(m),y(’"))m:{l’z,“,\/,}
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Summary

@ Given Training Data: (x(m),y(’"))m:{lg,“,\/,}
@ Optimize a model f(x) = o(w' - x + b) under
Loss(w) = 5 32 (o (wTx(M) — y(m))2
@ General form of gradient: S Error(™ x o/ (in(m))  x(m)

@ SGD algorithm: for each sample (x(™), y(M) in training set,
w < w — y(Error(™ s o/ (in{m) x x(m)
© Important issues:

» Optimization speed/convergence: batch vs. mini-batch, learning rate ~
» Generalization ability: regularization, early-stopping
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Today's Topics

© Neural Networks
@ 1-Layer Nets (Logistic Regression)
@ 2-Layer Nets and Model Expressiveness
@ Training by Backpropagation
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2-Layer Neural Networks

Called Multilayer Perceptron (MLP), but more like multilayer logistic regression
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2-Layer Neural Networks

F(x) = o (32w - ) = (52 w; - o (3 wipxi)

Hidden units h;'s can be viewed as new "features” from combining x;'s

Called Multilayer Perceptron (MLP), but more like multilayer logistic regression
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Modeling complex non-linearities

e Given same number of units (with non-linear activation), a deeper
architecture is more expressive than a shallow one [Bishop, 1995]
» 1-layer nets only model linear hyperplanes
» 2-layer nets are universal function approximators: given infinite hidden
nodes, it can express any continuous function
» >3-layer nets can do so with fewer nodes/weights
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Today's Topics

© Neural Networks
@ 1-Layer Nets (Logistic Regression)
@ 2-Layer Nets and Model Expressiveness
@ Training by Backpropagation
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Training a 2-Layer Net with Backpropagation

Adjust weights
Predict f(x(™)

1. For each sample, compute f(x(™) = o(Xwi-o(>; W,'in(m)))
2. If £(x(m) # y(m) back-propagate error and adjust weights {w;;, w;}.
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Derivatives of the weights

Assume two outputs (y1, y2) per input x,
and loss per sample: Loss = 3", 3 [o(ink) — vi?

G ONJ O

jk
K <7

PN

Q

36/40
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Derivatives of the weights

Assume two outputs (y1, y2) per input x,
and loss per sample: Loss = 3", 3 [o(ink) — vi?

OLoss __ OLloss Oiny __

owjy — OJing Owye —
dloss __ OLoss 9inj __
owy — Qinj Owy
. 2 . ;
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Derivatives of the weights

Assume two outputs (y1, y2) per input x,
and loss per sample: Loss = 3", 3 [o(ink) — vi?

OLoss OLoss Oing —

8ij - (3/”;( 6WJ;<
dloss __ OLoss 9inj __
ow;; — dinj dw;

5 = g (Xk 3 [oline) = wel?) = loink) = il o' imi)
0 = Sy G o = 32 ok - o (30 wno(ing) ) = [ Sk o' (i)

diny 0in;
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Backpropagation Algorithm

All updates involve some scaled error from output * input feature:

) %LTO;S = 5khj where 5k = [a(ink) — yk] o’(ink)

o %Liv?/;s = (5J'X,' where (5j = [Zk 5kVij] a’(inj)
After forward pass, compute d, from final layer, then o; for previous layer.
For deeper nets, iterate backwards further.
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Summary

@ By extending from 1-layer to 2-layer net, we get dramatic increase

model expressiveness:

)
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© Backpropagation is an efficient way to train 2-layer nets:
» Similar to SGD for 1-layer net, just more chaining in gradient
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Summary

© By extending from 1-layer to 2-layer net, we get dramatic increase in

model expressiveness:

X X X

Xy Xy Xy

© Backpropagation is an efficient way to train 2-layer nets:
» Similar to SGD for 1-layer net, just more chaining in gradient
» General form: update w;; by d;x;, and 0; is scaled/weighted sum of
errors from outgoing layers
© Ideally, we want even deeper architectures
» But Backpropagation becomes ineffective due to vanishing gradients
» Deep Learning comes to the rescue! (next lecture)
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