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What is Deep Learning?

A family of methods that uses deep architectures to learn high-level
feature representations

5/40



What is Deep Learning?

A family of methods that uses deep architectures to learn high-level
feature representations

5/40



Example of Trainable Features

Hierarchical object-parts features in Computer Vision [Lee et al., 2009]
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Course Outline

Goal:
To understand the foundations of neural networks and deep learning,
at a level sufficient for reading recent research papers

Schedule:
I Lecture 1 (Jan 14): Machine Learning background & Neural Networks
I Lecture 2 (Jan 16): Deep Architectures (DBN, SAE)
I Lecture 3 (Jan 21): Applications in Vision, Speech, Language
I Lecture 4 (Jan 23): Advanced topics in optimization

Prerequisites:
I Basic calculus, probability, linear algebra
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Course Material

Course Website:
http://cl.naist.jp/~kevinduh/a/deep2014/

Useful References:
1 Yoshua Bengio’s [Bengio, 2009] short book: Learning Deep

Architectures for AI1

2 Yann LeCun & Marc’Aurelio Ranzato’s ICML2013 tutorial2

3 Richard Socher et. al.’s NAACL2013 tutorial3

4 Geoff Hinton’s Coursera course4

5 Theano code samples5

6 Chris Bishop’s book Pattern Recognition and Machine Learning
(PRML)6

1http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
2http://techtalks.tv/talks/deep-learning/58122/
3http://www.socher.org/index.php/DeepLearningTutorial/
4https://www.coursera.org/course/neuralnets
5http://deeplearning.net/tutorial/
6http://research.microsoft.com/en-us/um/people/cmbishop/prml/
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Grading

The only criteria for grading:
Are you actively participating and asking questions in class?

I If you ask (or answer) 3+ questions, grade = A
I If you ask (or answer) 2 questions, grade = B
I If you ask (or answer) 1 question, grade = C
I If you don’t ask (or answer) any questions, you get no credit.
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Best Advice I got while in Grad School

Always Ask Questions!

If you don’t understand, you must ask questions in order to
understand.

If you understand, you will naturally have questions.

Having no questions is a sign that you are not thinking.
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Today’s Topics

1 Machine Learning background
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation

2 Neural Networks
1-Layer Nets (Logistic Regression)
2-Layer Nets and Model Expressiveness
Training by Backpropagation
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Write a Program∗ to Recognize the Digit 2

This is hard to do manually!
bool recognizeDigitAs2(int** imagePixels){...}

Machine Learning solution:

1 Assume you have a database (training data) of 2’s and non-2’s.

2 Automatically ”learn” this function from data

*example from Hinton’s Coursera course
13/40
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A Machine Learning Solution

Training data are represented as pixel matrices:
Classifier is parameterized by weight matrix of same dimension.

Training procedure:
1 When observe ”2”, add 1 to corresponding matrix elements
2 When observe ”non-2”, subtract 1 to corresponding matrix elements

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 1 0 -1 0 0 0

0 0 0 1 0 0 -1 0 0 0

0 0 1 0 0 0 -1 0 0 0

0 1 1 1 1 1 -1 1 1 0

0 0 0 0 0 0 0 0 0 0

Test procedure: given new image, take sum of element-wise product.
If positive, predict ”2”; else predict ”non-2”.
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Today’s Topics

1 Machine Learning background
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation

2 Neural Networks
1-Layer Nets (Logistic Regression)
2-Layer Nets and Model Expressiveness
Training by Backpropagation
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Generalization 6= Memorization

Key Issue in Machine Learning: Training data is limited

If the classifier just memorizes the training data, it may perform
poorly on new data

”Generalization” is ability to extend accurate predictions to new data

E.g. consider shifted image: Will this classifier generalize?

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 1 0 -1 0 0 0

0 0 0 1 0 0 -1 0 0 0

0 0 1 0 0 0 -1 0 0 0

0 1 1 1 1 1 -1 1 1 0

0 0 0 0 0 0 0 0 0 0
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Generalization 6= Memorization

One potential way to increase generalization ability:

Discretize weight matrix with larger grids (fewer weights to train)

E.g. consider shifted image:

Now will this classifier generalize?
0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 1 0 -1 0 0 0

0 0 0 1 0 0 -1 0 0 0

0 0 1 0 0 0 -1 0 0 0

0 1 1 1 1 1 -1 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 1 0 -1 0 0 0

0 0 0 1 0 0 -1 0 0 0

0 0 1 0 0 0 -1 0 0 0

0 1 1 1 1 1 -1 1 1 0

0 0 0 0 0 0 0 0 0 0

1 1 1 0 0

0 0 0 0 0

0 0 1 -1 0

0 1 0 -1 0

1 1 1 0 1
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Model Expressiveness and Overfitting

A model with more weight parameters may fit training data better

But since training data is limited, expressive model stand the risk of
overfitting to peculiarities of the data.

Less Expressive Model ⇐⇒ More Expressive Model
(fewer weights) (more weights)

Underfit training data ⇐⇒ Overfit training data

18/40



Model Expressiveness and Overfitting

Fitting the training data (blue points: xn)
with a polynomial model: f (x) = w0 + w1x + w2x

2 + . . .+ wMxM

under squared error objective 1
2

∑
n(f (xn)− tn)2

x

t
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0 1
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1

x
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from PRML Chapter 1 [Bishop, 2006] 19/40



Today’s Topics

1 Machine Learning background
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation

2 Neural Networks
1-Layer Nets (Logistic Regression)
2-Layer Nets and Model Expressiveness
Training by Backpropagation
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Basic Problem Setup in Machine Learning

Training Data: a set of (x (m), y (m))m={1,2,..M} pairs, where input

x (m) ∈ Rd and output y (m) = {0, 1}
I e.g. x=vectorized image pixels, y=2 or non-2

Goal: Learn function f : x → y to predicts correctly on new inputs x .

I Step 1: Choose a function model family:
F e.g. logistic regression, support vector machines, neural networks

I Step 2: Optimize parameters w on the Training Data
F e.g. minimize loss function minw

∑M
m=1(fw (x

(m))− y (m))2
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1-Layer Nets (Logistic Regression)

Function model: f (x) = σ(wT · x + b)
I Parameters: vector w ∈ Rd , b is scalar bias term
I σ is a non-linearity, e.g. sigmoid: σ(z) = 1/(1 + exp(−z))
I For simplicity, sometimes write f (x) = σ(wT x) where w = [w ; b] and

x = [x ; 1]

Non-linearity will be important in expressiveness multi-layer nets.
Other non-linearities, e.g., tanh(z) = (ez − e−z)/(ez + e−z)

23/40
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Training 1-Layer Nets: Gradient

Assume Squared-Error∗ Loss(w) = 1
2

∑
m(σ(wT x (m))− y (m))2

Gradient: ∇wLoss =
∑

m

[
σ(wT x (m))− y (m)

]
σ′(wT x (m))x (m)

I General form of gradient:
∑

m Error (m) ∗ σ′(in(m)) ∗ x (m)

Derivative of sigmoid σ(z) = 1/(1 + exp(−z)):

σ′(z) =
d

dz

(
1

1 + exp(−z)

)
= −

(
1

1 + exp(−z)

)2
d

dz
(1 + exp(−z))

= −
(

1

1 + exp(−z)

)2

exp(−z)(−1)

=

(
1

1 + exp(−z)

)(
exp(−z)

1 + exp(−z)

)
= σ(z)(1− σ(z))

*An alternative is Cross-Entropy loss:∑
m y (m) log(σ(wT x (m))) + (1− y (m)) log(1− σ(wT x (m)))
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Training 1-Layer Nets: Gradient Descent Algorithm

General form of gradient:
∑

m Error (m) ∗ σ′(in(m)) ∗ x (m)

Gradient descent algorithm:
1 Initialize w
2 Compute ∇wLoss =

∑
m Error (m) ∗ σ′(in(m)) ∗ x (m)

3 w ← w − γ(∇wLoss)
4 Repeat steps 2-3 until some condition satisfied

Stochastic gradient descent (SGD) algorithm:
1 Initialize w
2 for each sample (x (m), y (m)) in training set:
3 w ← w − γ(Error (m) ∗ σ′(in(m)) ∗ x (m))
4 Repeat loop 2-3 until some condition satisfied

Learning rate γ > 0 & stopping condition are important in practice
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Intuition of SGD update

for some sample (x (m), y (m)):
w ← w − γ((σ(wT x (m))− y (m)) ∗ σ′(wT x (m)) ∗ x (m))

σ(wT x (m)) y (m) Error new w new prediction

0 0 0 no change 0

1 1 0 no change 1

0 1 -1 w + γσ′(in(m))x (m) ≥ 0

1 0 +1 w − γσ′(in(m))x (m) ≤ 1

[
w + γσ′(in(m))x (m)

]T
x (m) = wT x (m) + γσ′(in(m))||x (m)||2 ≥ wT x (m)

σ′(wT x (m)) is near 0 when confident, near 0.25 when uncertain.

large γ = more aggressive updates; small γ = more conservative

SGD improves classification for current sample, but no guarantee
about others
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Geometric view of SGD update

Loss objective contour plot: 1
2

∑
m(σ(wT x (m))− y (m))2 + ||w ||

I Gradient descent goes in steepest descent direction, but slower to
compute per iteration for large datasets

I SGD can be viewed as noisy descent, but faster per iteration
I In practice, a good tradeoff is mini-batch SGD
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Effect of Learning Rate γ on Convergence Speed

SGD update: w ← w − γ(Error (m) ∗ σ′(in(m)) ∗ x (m))
I Ideally, γ should be as large as possible without causing divergence.
I Common heuristic: γ(t) = γ0

1+νt = O(1/t)

Analysis by [Schaul et al., 2013] (in plot, η ≡ γ):
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Generalization issues: Regularization and Early-stopping

Optimizing Loss(w) = 1
2

∑
m(σ(wT x (m))− y (m))2 on training data

not necessarily leads to generalization.

1 Adding regularization: Loss(w) = 1
2

∑
m(σ(wT x (m))− y (m))2 + ||w ||

reduces sensitivity to training input and decreases risk of overfitting
2 Early Stopping:

F Prepare separate training and validation (development) data
F Optimize Loss(w) on training but stop when Loss(w) on validation

stops improving

0 10 20 30 40 50
0.15

0.2

0.25

0 10 20 30 40 50
0.35

0.4

0.45

Figures from Chapter 5, [Bishop, 2006]
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Summary

1 Given Training Data: (x (m), y (m))m={1,2,..M}

2 Optimize a model f (x) = σ(wT · x + b) under
Loss(w) = 1

2

∑
m(σ(wT x (m))− y (m))2

3 General form of gradient:
∑

m Error (m) ∗ σ′(in(m)) ∗ x (m)

4 SGD algorithm: for each sample (x (m), y (m)) in training set,
w ← w − γ(Error (m) ∗ σ′(in(m)) ∗ x (m))

5 Important issues:
I Optimization speed/convergence: batch vs. mini-batch, learning rate γ
I Generalization ability: regularization, early-stopping
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Today’s Topics

1 Machine Learning background
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation

2 Neural Networks
1-Layer Nets (Logistic Regression)
2-Layer Nets and Model Expressiveness
Training by Backpropagation
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2-Layer Neural Networks

x1 x2 x3 x4

h1 h2 h3

y

xi

wij

hj

wj

w11 w12

w1 w2 w3

f (x) = σ(
∑

j wj · hj) = σ(
∑

j wj · σ(
∑

i wijxi ))

Hidden units hj ’s can be viewed as new ”features” from combining xi ’s

Called Multilayer Perceptron (MLP), but more like multilayer logistic regression
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Modeling complex non-linearities

Given same number of units (with non-linear activation), a deeper
architecture is more expressive than a shallow one [Bishop, 1995]

I 1-layer nets only model linear hyperplanes
I 2-layer nets are universal function approximators: given infinite hidden

nodes, it can express any continuous function
I >3-layer nets can do so with fewer nodes/weights
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Training a 2-Layer Net with Backpropagation

x1 x2 x3 x4

h1 h2 h3

y

xi

wij

hj

wj

Predict f (x (m))

Adjust weights

w11 w12

w1 w2 w3

1. For each sample, compute f (x (m)) = σ(
∑

j wj · σ(
∑

i wijx
(m)
i ))

2. If f (x (m)) 6= y (m), back-propagate error and adjust weights {wij ,wj}.
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Derivatives of the weights

Assume two outputs (y1, y2) per input x ,
and loss per sample: Loss =

∑
k

1
2 [σ(ink)− yk ]2

x1 x2 x3 x4

h1 h2 h3

y1 y2

xi

wij

hj

wjk

yk

∂Loss
∂wjk

= ∂Loss
∂ink

∂ink
∂wjk

= δk
∂(

∑
j wjkhj )

∂wjk
= δkhj

∂Loss
∂wij

= ∂Loss
∂inj

∂inj
∂wij

= δj
∂(

∑
j wijxi )

∂wij
= δjxi

δk = ∂
∂ink

(∑
k

1
2 [σ(ink)− yk ]2

)
= [σ(ink)− yk ]σ′(ink)

δj =
∑

k
∂Loss
∂ink

∂ink
∂inj

=
∑

k δk ·
∂

∂inj

(∑
j wjkσ(inj)

)
= [
∑

k δkwjk ]σ′(inj)
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Backpropagation Algorithm

All updates involve some scaled error from output ∗ input feature:

∂Loss
∂wjk

= δkhj where δk = [σ(ink)− yk ]σ′(ink)

∂Loss
∂wij

= δjxi where δj = [
∑

k δkwjk ]σ′(inj)

After forward pass, compute δk from final layer, then δj for previous layer.
For deeper nets, iterate backwards further.

x1 x2 x3 x4

h1 h2 h3

y1 y2

xi

wij

hj

wjk

yk
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Summary

1 By extending from 1-layer to 2-layer net, we get dramatic increase in
model expressiveness:

2 Backpropagation is an efficient way to train 2-layer nets:
I Similar to SGD for 1-layer net, just more chaining in gradient
I General form: update wij by δjxi , and δj is scaled/weighted sum of

errors from outgoing layers
3 Ideally, we want even deeper architectures

I But Backpropagation becomes ineffective due to vanishing gradients
I Deep Learning comes to the rescue! (next lecture)
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