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Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture
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The Promise of Deep Architectures

Understanding in AI requires
high-level abstractions, modeled
by highly non-linear functions

These abstractions must
disentangle factors of variation
in data (e.g. 3D pose, lighting)

Deep Architecture is one way to
achieve this: each intermediate
layer is a successively higher
level abstraction

(*Example from [Bengio, 2009])
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The Promise of Deep Architectures
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Why are Deep Architectures hard to train?

Vanishing gradient problem in
Backpropagation

∂Loss
∂wij

= ∂Loss
∂inj

∂inj
∂wij

= δjxi

δj =
[∑

j+1 δj+1wj(j+1)

]
σ′(inj)

δj may vanish after repeated
multiplication

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

wij

wj(j+1)
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Empirical Results: Poor performance of Backpropagation
on Deep Neural Nets [Erhan et al., 2009]

MNIST digit classification task; 400 trials (random seed)
Each layer: initialize wij by uniform[−1/

√
(FanIn), 1/

√
(FanIn)]

Although L + 1 layers is more expressive, worse error than L layers
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Local Optimum Issue in Neural Nets

For 2-Layer Net and more, the training objective is not convex, so
different local optima may be achieved depending on initial point

For Deep Architectures, Backpropagation is apparently getting a local
optimum that does not generalize well

w1

w2

E(w)

wA wB wC

∇E

*Figure from Chapter 5, [Bishop, 2006]
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Layer-wise Pre-training [Hinton et al., 2006]

First, train one layer at a time, optimizing data-likelihood objective P(x)

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer1
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h1 h2 h3

h′1 h′2 h′3

y

Train Layer2
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Layer-wise Pre-training [Hinton et al., 2006]

Finally, fine-tune labeled objective P(y |x) by Backpropagation

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Predict f(x)

Adjust weights
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Layer-wise Pre-training [Hinton et al., 2006]

Key Idea:
Focus on modeling the input P(X ) better with each successive layer.
Worry about optimizing the task P(Y |X ) later.

”If you want to do computer vision, first learn computer
graphics.” – Geoff Hinton

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer2

Train Layer1

Extra advantage:
Can exploit large
amounts of unlabeled
data!
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General Approach for Deep Learning

Recall the problem setup: Learn function f : x → y

But rather doing this directly, we first learn hidden features h that
model input x , i.e. x → h→ y

How do we discover useful latent features h from data x?
I Different Deep Learning methods differ by this basic component
I e.g. Deep Belief Nets use Restricted Boltzmann Machines (RBMs)
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Restricted Boltzmann Machine (RBM)

RBM is a simple energy-based model: p(x , h) = 1
Zθ

exp (−Eθ(x , h))

I with only h-x interactions: Eθ(x , h) = −xTWh − bT x − dTh
I here, we assume hj and xi are binary variables
I normalizer: Zθ =

∑
(x,h) exp(−Eθ(x , h)) is called partition function

x1 x2 x3

h1 h2 h3

Example:
I Let weights (h1, x1), (h1, x3) be positive, others be zero, b = d = 0.
I Then this RBM defines a distribution over [x1, x2, x3, h1, h2, h3] where

p(x1 = 1, x2 = 0, x3 = 1, h1 = 1, h2 = 0, h3 = 0) has high probability
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Computing Posteriors in RBMs

Computing p(h|x) is easy due to factorization:

p(h|x) =
p(x , h)∑
h p(x , h)

=
1/Zθ exp(−E(x, h))∑
h 1/Zθ exp(−E(x, h))

=
exp(xTWh + bT x + dTh)∑
h exp(xTWh + bT x + dTh)

=

∏
j exp(xTWjhj + djhj) · exp(bT x)∑

h1∈{0,1}
∑

h2∈{0,1} · · ·
∑

hj

∏
j exp(xTWjhj + djhj) · exp(bT x)

=

∏
j exp(xTWjhj + djhj)∏

j

∑
hj∈{0,1} exp(xTWjhj + djhj)

=
∏
j

exp(xTWjhj + djhj)∑
hj∈{0,1} exp(xTWjhj + djhj)

=
∏
j

p(hj |x)

Note p(hj = 1|x) = exp(xTWj + dj)/Z = σ(xTWj + dj)

Similarly, computing p(x |h) =
∏

i p(xi |h) is easy
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Training RBMs to optimize P(X )

Derivative of the Log-Likelihood: ∂wij log Pw (x = x (m))

= ∂wij log
∑
h

Pw (x = x (m), h) (1)

= ∂wij log
∑
h

1

Zw
exp (−Ew(x(m), h)) (2)

= − ∂wij log Zw + ∂wij log
∑
h

exp (−Ew(x(m), h)) (3)

=
1

Zw

∑
h,x

e(− Ew(x,h)) ∂wij Ew(x, h)− 1∑
h e(− Ew(x(m),h))

∑
h

e(− Ew(x
(m),h)) ∂wij Ew(x(m), h)

=
∑
h,x

Pw (x , h)[∂wij Ew(x, h)]−
∑
h

Pw (x (m), h)[∂wij Ew(x(m), h)] (4)

= −Ep(x,h)[xi · hj ] + Ep(h|x=x (m))[x
(m)
i · hj ] (5)

Second term (positive phase) increases probability of x (m); First term
(negative phase) decreases probability of samples generated by the model
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Contrastive Divergence Algorithm

The negative phase term (Ep(x ,h)[xi · hj ]) is expensive because it
requires sampling (x,h) from the model

Gibbs Sampling (sample x then h iteratively) works, but waiting for
convergence at each gradient step is slow.

Contrastive Divergence is a faster but biased method: initialize with
training point and wait only a few (usu. 1) sampling steps

1 Let x (m) be training point, W = [wij ] be current model weights

2 Sample ĥj ∈ {0, 1} from p(hj |x = x (m)) = σ(
∑

i wijx
(m)
i + dj) ∀j .

3 Sample x̃i ∈ {0, 1} from p(xi |h = ĥ) = σ(
∑

j wij ĥj + bi ) ∀i .

4 Sample h̃j ∈ {0, 1} from p(hj |x = x̃) = σ(
∑

i wij x̃i + dj) ∀j .

5 wij ← wij + γ(x
(m)
i · ĥj − x̃i · h̃j)
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2 Sample ĥj ∈ {0, 1} from p(hj |x = x (m)) = σ(
∑

i wijx
(m)
i + dj) ∀j .

3 Sample x̃i ∈ {0, 1} from p(xi |h = ĥ) = σ(
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i · ĥj − x̃i · h̃j)

20/45



Pictorial View of Contrastive Divergence

Goal: Make RBM p(x , h) have high probability on training samples
To do so, we’ll ”steal” probability mass from nearby samples that
incorrectly preferred by the model
For detailed analysis, see [Carreira-Perpinan and Hinton, 2005]
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Deep Belief Nets (DBN) = Stacked RBM

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

h′′1 h′′2 h′′3

Layer1 RBM

Layer2 RBM

Layer3 RBM
DBN defines a probabilistic
generative model p(x) =∑

h,h′,h′′ p(x |h)p(h|h′)p(h′, h′′)
(top 2 layers is interpreted as a
RBM; lower layers are directed
sigmoids)

Stacked RBMs can also be used
to initialize a Deep Neural
Network (DNN)
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Generating Data from a Deep Generative Model

After training on 20k images, the generative model of
[Salakhutdinov and Hinton, 2009]* can generate random images
(dimension=8976) that are amazingly realistic!

This model is a Deep Boltzmann Machine (DBM), different from Deep
Belief Nets (DBN) but also built by stacking RBMs.
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Summary: Things to remember about DBNs

1 Layer-wise pre-training is the innovation that rekindled interest in
deep architectures.

2 Pre-training focuses on optimizing likelihood on the data, not the
target label. First model p(x) to do better p(y |x).

3 Why RBM? p(h|x) is tractable, so it’s easy to stack.

4 RBM training can be expensive. Solution: contrastive divergence

5 DBN formed by stacking RBMs is a probabilistic generative model
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Auto-Encoders: simpler alternatives to RBMs

x1 x2 x3

h1 h2

x ′1 x ′2 x ′3

Encoder: h = σ(Wx + b)

Decoder: x ′ = σ(W ′h + d)

Encourage h to give small reconstruction error:

e.g. Loss =
∑

m ||x (m) − DECODER(ENCODER(x (m)))||2
Reconstruction: x ′ = σ(W ′σ(Wx + b) + d)

This can be trained with the same Backpropagation algorithm for
2-layer nets, with x (m) as both input and output
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Stacked Auto-Encoders (SAE)

The encoder/decoder gives same form p(h|x), p(x |h) as RBMs, so
can be stacked in the same way to form Deep Architectures

x1 x2 x3 x4

h1 h2 h3

h′1 h′2

y

Layer1 Encoder

Layer2 Encoder

Layer3 Encoder

Unlike RBMs, Auto-encoders are deterministic.
I h = σ(Wx + b), not p(h = {0, 1}) = σ(Wx + b)
I Disadvantage: Can’t form deep generative model
I Advantage: Fast to train, and useful still for Deep Neural Nets
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Many Variants of Auto-Encoders

Enforce compression to get latent factors (lower dimensional h)

Linear encoder/decoder with squared reconstruction error learns same
subspace of PCA [Bourlard and Kamp, 1988]

Enforce sparsity and over-complete representations (high dimensional
h) [Ranzato et al., 2006]

Enforce binary hidden layers to build hash codes
[Salakhutdinov and Hinton, 2007]

Incorporate domain knowledge, e.g. denoising auto-encoders
[Vincent et al., 2010]
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Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture
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Denoising Auto-Encoders

x̃1 x̃2 x̃3

h1 h2

x ′1 x ′2 x ′3

x̃ = x+ noise

Encoder: h = σ(W x̃ + b)

Decoder: x ′ = σ(W ′h + d)

1 Perturb input data x to x̃ using invariance from domain knowledge.

2 Train weights to reduce reconstruction error with respect to original
input: ||x − x ′||
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Denoising Auto-Encoders

Example: Randomly shift, rotate, and scale input image; add
Gaussian or salt-and-pepper noise.

A ”2” is a ”2” no matter how you add noise, so the auto-encoder will
be forced to cancel the variations that are not important.

32/45



Summary: things to remember about SAE

1 Auto-Encoders are cheaper alternatives to RBMs.
I Not probabilistic, but fast to train using Backpropagation or SGD

2 Auto-Encoders learn to ”compress” and ”re-construct” input data.
Again, the focus is on modeling p(x) first.

3 Many variants, some provide ways to incorporate domain knowledge.
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Why does Layer-wise Pre-Training work?

One Hypothesis [Bengio, 2009, Erhan et al., 2010]:
A deep net can fit the training data in many ways (non-convex):

1 By optimizing upper-layers really hard
2 By optimizing lower-layers really hard

Top-down vs. Bottom-up information
1 Even if lower-layers are random weights, upper-layer may still fit well.

But this might not generalize to new data
2 Pre-training with objective on P(x) learns more generalizable features

Pre-training seems to help put weights at a better local optimum
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Is Layer-wise Pre-Training always necessary?

Answer in 2006: Yes!
Answer in 2014: No!

1 If initialization is done well by design (e.g. sparse connections and
convolutional nets), maybe won’t have vanishing gradient problem

2 If you have an extremely large datasets, maybe won’t overfit. (But
maybe that also means you want an ever deeper net)

3 New architectures are emerging:
I Stacked SVM’s with random projections [Vinyals et al., 2012]
I Sum-Product Networks [Poon and Domingos, 2011]
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Connections with other Machine Learning concepts

A RBM is like a product-of-expert model and forms a distributed
representation of the data

I Compared with clustering (which compresses data but loses
information), distributed representations (multi-clustering) are richer
representations

I Like a mixture model with 2n hidden components
p(x) =

∑
h p(h)p(x |h), but much more compact

Neural Net as kernel for SVM [Li et al., 2005] and SVM training for
Neural Nets [Collobert and Bengio, 2004]

Decision trees are deep (but no distributed representation). Random
forests are both deep and distributed. They do well in practice too!

Philosophical connections to:
I Semi-supervised Learning: exploit both labeled and unlabeled data
I Curriculum Learning: start on easy task, gradually level-up
I Multi-task Learning: learn and share sub-tasks
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History

Early days of AI. Invention of artificial neuron
[McCulloch and Pitts, 1943] & perceptron [Rosenblatt, 1958]

AI Winter. [Minsky and Papert, 1969] showed perceptron only learns
linearly separable concepts

Revival in 1980s: Multi-layer Perceptrons (MLP) and
Back-propagation [Rumelhart et al., 1986]

Other directions (1990s - present): SVMs, Bayesian Networks

Revival in 2006: Deep learning [Hinton et al., 2006]

Successes in applications: Speech at IBM/Toronto
[Sainath et al., 2011], Microsoft [Dahl et al., 2012]. Vision at
Google/Stanford [Le et al., 2012]
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