
Deep Learning & Neural Networks
Lecture 2

Kevin Duh

Graduate School of Information Science
Nara Institute of Science and Technology

Jan 16, 2014

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

2/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

3/45

The Promise of Deep Architectures

Understanding in AI requires
high-level abstractions, modeled
by highly non-linear functions

These abstractions must
disentangle factors of variation
in data (e.g. 3D pose, lighting)

Deep Architecture is one way to
achieve this: each intermediate
layer is a successively higher
level abstraction

(*Example from [Bengio, 2009])

4/45

The Promise of Deep Architectures

Understanding in AI requires
high-level abstractions, modeled
by highly non-linear functions

These abstractions must
disentangle factors of variation
in data (e.g. 3D pose, lighting)

Deep Architecture is one way to
achieve this: each intermediate
layer is a successively higher
level abstraction

(*Example from [Bengio, 2009])

4/45

The Promise of Deep Architectures

Understanding in AI requires
high-level abstractions, modeled
by highly non-linear functions

These abstractions must
disentangle factors of variation
in data (e.g. 3D pose, lighting)

Deep Architecture is one way to
achieve this: each intermediate
layer is a successively higher
level abstraction

(*Example from [Bengio, 2009])

4/45

The Promise of Deep Architectures

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

5/45

Why are Deep Architectures hard to train?

Vanishing gradient problem in
Backpropagation

∂Loss
∂wij

= ∂Loss
∂inj

∂inj
∂wij

= δjxi

δj =
[∑

j+1 δj+1wj(j+1)

]
σ′(inj)

δj may vanish after repeated
multiplication

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

wij

wj(j+1)

6/45

Empirical Results: Poor performance of Backpropagation
on Deep Neural Nets [Erhan et al., 2009]

MNIST digit classification task; 400 trials (random seed)
Each layer: initialize wij by uniform[−1/

√
(FanIn), 1/

√
(FanIn)]

Although L + 1 layers is more expressive, worse error than L layers

7/45

Local Optimum Issue in Neural Nets

For 2-Layer Net and more, the training objective is not convex, so
different local optima may be achieved depending on initial point

For Deep Architectures, Backpropagation is apparently getting a local
optimum that does not generalize well

w1

w2

E(w)

wA wB wC

∇E

*Figure from Chapter 5, [Bishop, 2006]
8/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

9/45

Layer-wise Pre-training [Hinton et al., 2006]

First, train one layer at a time, optimizing data-likelihood objective P(x)

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer1

10/45

Layer-wise Pre-training [Hinton et al., 2006]

First, train one layer at a time, optimizing data-likelihood objective P(x)

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer2

Keep Layer1 fixed

11/45

Layer-wise Pre-training [Hinton et al., 2006]

Finally, fine-tune labeled objective P(y |x) by Backpropagation

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Predict f(x)

Adjust weights

12/45

Layer-wise Pre-training [Hinton et al., 2006]

Key Idea:
Focus on modeling the input P(X) better with each successive layer.
Worry about optimizing the task P(Y |X) later.

”If you want to do computer vision, first learn computer
graphics.” – Geoff Hinton

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer2

Train Layer1

Extra advantage:
Can exploit large
amounts of unlabeled
data!

13/45

Layer-wise Pre-training [Hinton et al., 2006]

Key Idea:
Focus on modeling the input P(X) better with each successive layer.
Worry about optimizing the task P(Y |X) later.

”If you want to do computer vision, first learn computer
graphics.” – Geoff Hinton

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y

Train Layer2

Train Layer1

Extra advantage:
Can exploit large
amounts of unlabeled
data!

13/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

14/45

General Approach for Deep Learning

Recall the problem setup: Learn function f : x → y

But rather doing this directly, we first learn hidden features h that
model input x , i.e. x → h→ y

How do we discover useful latent features h from data x?
I Different Deep Learning methods differ by this basic component
I e.g. Deep Belief Nets use Restricted Boltzmann Machines (RBMs)

15/45

General Approach for Deep Learning

Recall the problem setup: Learn function f : x → y

But rather doing this directly, we first learn hidden features h that
model input x , i.e. x → h→ y

How do we discover useful latent features h from data x?
I Different Deep Learning methods differ by this basic component
I e.g. Deep Belief Nets use Restricted Boltzmann Machines (RBMs)

15/45

General Approach for Deep Learning

Recall the problem setup: Learn function f : x → y

But rather doing this directly, we first learn hidden features h that
model input x , i.e. x → h→ y

How do we discover useful latent features h from data x?
I Different Deep Learning methods differ by this basic component
I e.g. Deep Belief Nets use Restricted Boltzmann Machines (RBMs)

15/45

Restricted Boltzmann Machine (RBM)

RBM is a simple energy-based model: p(x , h) = 1
Zθ

exp (−Eθ(x , h))

I with only h-x interactions: Eθ(x , h) = −xTWh − bT x − dTh
I here, we assume hj and xi are binary variables
I normalizer: Zθ =

∑
(x,h) exp(−Eθ(x , h)) is called partition function

x1 x2 x3

h1 h2 h3

Example:
I Let weights (h1, x1), (h1, x3) be positive, others be zero, b = d = 0.
I Then this RBM defines a distribution over [x1, x2, x3, h1, h2, h3] where

p(x1 = 1, x2 = 0, x3 = 1, h1 = 1, h2 = 0, h3 = 0) has high probability

16/45

Restricted Boltzmann Machine (RBM)

RBM is a simple energy-based model: p(x , h) = 1
Zθ

exp (−Eθ(x , h))

I with only h-x interactions: Eθ(x , h) = −xTWh − bT x − dTh
I here, we assume hj and xi are binary variables
I normalizer: Zθ =

∑
(x,h) exp(−Eθ(x , h)) is called partition function

x1 x2 x3

h1 h2 h3

Example:
I Let weights (h1, x1), (h1, x3) be positive, others be zero, b = d = 0.

I Then this RBM defines a distribution over [x1, x2, x3, h1, h2, h3] where
p(x1 = 1, x2 = 0, x3 = 1, h1 = 1, h2 = 0, h3 = 0) has high probability

16/45

Restricted Boltzmann Machine (RBM)

RBM is a simple energy-based model: p(x , h) = 1
Zθ

exp (−Eθ(x , h))

I with only h-x interactions: Eθ(x , h) = −xTWh − bT x − dTh
I here, we assume hj and xi are binary variables
I normalizer: Zθ =

∑
(x,h) exp(−Eθ(x , h)) is called partition function

x1 x2 x3

h1 h2 h3

Example:
I Let weights (h1, x1), (h1, x3) be positive, others be zero, b = d = 0.
I Then this RBM defines a distribution over [x1, x2, x3, h1, h2, h3] where

p(x1 = 1, x2 = 0, x3 = 1, h1 = 1, h2 = 0, h3 = 0) has high probability

16/45

Computing Posteriors in RBMs

Computing p(h|x) is easy due to factorization:

p(h|x) =
p(x , h)∑
h p(x , h)

=
1/Zθ exp(−E(x, h))∑
h 1/Zθ exp(−E(x, h))

=
exp(xTWh + bT x + dTh)∑
h exp(xTWh + bT x + dTh)

=

∏
j exp(xTWjhj + djhj) · exp(bT x)∑

h1∈{0,1}
∑

h2∈{0,1} · · ·
∑

hj

∏
j exp(xTWjhj + djhj) · exp(bT x)

=

∏
j exp(xTWjhj + djhj)∏

j

∑
hj∈{0,1} exp(xTWjhj + djhj)

=
∏
j

exp(xTWjhj + djhj)∑
hj∈{0,1} exp(xTWjhj + djhj)

=
∏
j

p(hj |x)

Note p(hj = 1|x) = exp(xTWj + dj)/Z = σ(xTWj + dj)

Similarly, computing p(x |h) =
∏

i p(xi |h) is easy

17/45

Computing Posteriors in RBMs

Computing p(h|x) is easy due to factorization:

p(h|x) =
p(x , h)∑
h p(x , h)

=
1/Zθ exp(−E(x, h))∑
h 1/Zθ exp(−E(x, h))

=
exp(xTWh + bT x + dTh)∑
h exp(xTWh + bT x + dTh)

=

∏
j exp(xTWjhj + djhj) · exp(bT x)∑

h1∈{0,1}
∑

h2∈{0,1} · · ·
∑

hj

∏
j exp(xTWjhj + djhj) · exp(bT x)

=

∏
j exp(xTWjhj + djhj)∏

j

∑
hj∈{0,1} exp(xTWjhj + djhj)

=
∏
j

exp(xTWjhj + djhj)∑
hj∈{0,1} exp(xTWjhj + djhj)

=
∏
j

p(hj |x)

Note p(hj = 1|x) = exp(xTWj + dj)/Z = σ(xTWj + dj)
Similarly, computing p(x |h) =

∏
i p(xi |h) is easy

17/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

18/45

Training RBMs to optimize P(X)

Derivative of the Log-Likelihood: ∂wij log Pw (x = x (m))

= ∂wij log
∑
h

Pw (x = x (m), h) (1)

= ∂wij log
∑
h

1

Zw
exp (−Ew(x(m), h)) (2)

= − ∂wij log Zw + ∂wij log
∑
h

exp (−Ew(x(m), h)) (3)

=
1

Zw

∑
h,x

e(− Ew(x,h)) ∂wij Ew(x, h)− 1∑
h e(− Ew(x(m),h))

∑
h

e(− Ew(x
(m),h)) ∂wij Ew(x(m), h)

=
∑
h,x

Pw (x , h)[∂wij Ew(x, h)]−
∑
h

Pw (x (m), h)[∂wij Ew(x(m), h)] (4)

= −Ep(x,h)[xi · hj] + Ep(h|x=x (m))[x
(m)
i · hj] (5)

Second term (positive phase) increases probability of x (m); First term
(negative phase) decreases probability of samples generated by the model

19/45

Training RBMs to optimize P(X)

Derivative of the Log-Likelihood: ∂wij log Pw (x = x (m))

= ∂wij log
∑
h

Pw (x = x (m), h) (1)

= ∂wij log
∑
h

1

Zw
exp (−Ew(x(m), h)) (2)

= − ∂wij log Zw + ∂wij log
∑
h

exp (−Ew(x(m), h)) (3)

=
1

Zw

∑
h,x

e(− Ew(x,h)) ∂wij Ew(x, h)− 1∑
h e(− Ew(x(m),h))

∑
h

e(− Ew(x
(m),h)) ∂wij Ew(x(m), h)

=
∑
h,x

Pw (x , h)[∂wij Ew(x, h)]−
∑
h

Pw (x (m), h)[∂wij Ew(x(m), h)] (4)

= −Ep(x,h)[xi · hj] + Ep(h|x=x (m))[x
(m)
i · hj] (5)

Second term (positive phase) increases probability of x (m); First term
(negative phase) decreases probability of samples generated by the model

19/45

Contrastive Divergence Algorithm

The negative phase term (Ep(x ,h)[xi · hj]) is expensive because it
requires sampling (x,h) from the model

Gibbs Sampling (sample x then h iteratively) works, but waiting for
convergence at each gradient step is slow.

Contrastive Divergence is a faster but biased method: initialize with
training point and wait only a few (usu. 1) sampling steps

1 Let x (m) be training point, W = [wij] be current model weights

2 Sample ĥj ∈ {0, 1} from p(hj |x = x (m)) = σ(
∑

i wijx
(m)
i + dj) ∀j .

3 Sample x̃i ∈ {0, 1} from p(xi |h = ĥ) = σ(
∑

j wij ĥj + bi) ∀i .

4 Sample h̃j ∈ {0, 1} from p(hj |x = x̃) = σ(
∑

i wij x̃i + dj) ∀j .

5 wij ← wij + γ(x
(m)
i · ĥj − x̃i · h̃j)

20/45

Contrastive Divergence Algorithm

The negative phase term (Ep(x ,h)[xi · hj]) is expensive because it
requires sampling (x,h) from the model

Gibbs Sampling (sample x then h iteratively) works, but waiting for
convergence at each gradient step is slow.

Contrastive Divergence is a faster but biased method: initialize with
training point and wait only a few (usu. 1) sampling steps

1 Let x (m) be training point, W = [wij] be current model weights

2 Sample ĥj ∈ {0, 1} from p(hj |x = x (m)) = σ(
∑

i wijx
(m)
i + dj) ∀j .

3 Sample x̃i ∈ {0, 1} from p(xi |h = ĥ) = σ(
∑

j wij ĥj + bi) ∀i .

4 Sample h̃j ∈ {0, 1} from p(hj |x = x̃) = σ(
∑

i wij x̃i + dj) ∀j .

5 wij ← wij + γ(x
(m)
i · ĥj − x̃i · h̃j)

20/45

Contrastive Divergence Algorithm

The negative phase term (Ep(x ,h)[xi · hj]) is expensive because it
requires sampling (x,h) from the model

Gibbs Sampling (sample x then h iteratively) works, but waiting for
convergence at each gradient step is slow.

Contrastive Divergence is a faster but biased method: initialize with
training point and wait only a few (usu. 1) sampling steps

1 Let x (m) be training point, W = [wij] be current model weights

2 Sample ĥj ∈ {0, 1} from p(hj |x = x (m)) = σ(
∑

i wijx
(m)
i + dj) ∀j .

3 Sample x̃i ∈ {0, 1} from p(xi |h = ĥ) = σ(
∑

j wij ĥj + bi) ∀i .

4 Sample h̃j ∈ {0, 1} from p(hj |x = x̃) = σ(
∑

i wij x̃i + dj) ∀j .

5 wij ← wij + γ(x
(m)
i · ĥj − x̃i · h̃j)

20/45

Contrastive Divergence Algorithm

The negative phase term (Ep(x ,h)[xi · hj]) is expensive because it
requires sampling (x,h) from the model

Gibbs Sampling (sample x then h iteratively) works, but waiting for
convergence at each gradient step is slow.

Contrastive Divergence is a faster but biased method: initialize with
training point and wait only a few (usu. 1) sampling steps

1 Let x (m) be training point, W = [wij] be current model weights

2 Sample ĥj ∈ {0, 1} from p(hj |x = x (m)) = σ(
∑

i wijx
(m)
i + dj) ∀j .

3 Sample x̃i ∈ {0, 1} from p(xi |h = ĥ) = σ(
∑

j wij ĥj + bi) ∀i .

4 Sample h̃j ∈ {0, 1} from p(hj |x = x̃) = σ(
∑

i wij x̃i + dj) ∀j .

5 wij ← wij + γ(x
(m)
i · ĥj − x̃i · h̃j)

20/45

Pictorial View of Contrastive Divergence

Goal: Make RBM p(x , h) have high probability on training samples
To do so, we’ll ”steal” probability mass from nearby samples that
incorrectly preferred by the model
For detailed analysis, see [Carreira-Perpinan and Hinton, 2005]

21/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

22/45

Deep Belief Nets (DBN) = Stacked RBM

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

h′′1 h′′2 h′′3

Layer1 RBM

Layer2 RBM

Layer3 RBM
DBN defines a probabilistic
generative model p(x) =∑

h,h′,h′′ p(x |h)p(h|h′)p(h′, h′′)
(top 2 layers is interpreted as a
RBM; lower layers are directed
sigmoids)

Stacked RBMs can also be used
to initialize a Deep Neural
Network (DNN)

23/45

Deep Belief Nets (DBN) = Stacked RBM

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

h′′1 h′′2 h′′3

Layer1 RBM

Layer2 RBM

Layer3 RBM
DBN defines a probabilistic
generative model p(x) =∑

h,h′,h′′ p(x |h)p(h|h′)p(h′, h′′)
(top 2 layers is interpreted as a
RBM; lower layers are directed
sigmoids)

Stacked RBMs can also be used
to initialize a Deep Neural
Network (DNN)

23/45

Generating Data from a Deep Generative Model

After training on 20k images, the generative model of
[Salakhutdinov and Hinton, 2009]* can generate random images
(dimension=8976) that are amazingly realistic!

This model is a Deep Boltzmann Machine (DBM), different from Deep
Belief Nets (DBN) but also built by stacking RBMs.

24/45

Summary: Things to remember about DBNs

1 Layer-wise pre-training is the innovation that rekindled interest in
deep architectures.

2 Pre-training focuses on optimizing likelihood on the data, not the
target label. First model p(x) to do better p(y |x).

3 Why RBM? p(h|x) is tractable, so it’s easy to stack.

4 RBM training can be expensive. Solution: contrastive divergence

5 DBN formed by stacking RBMs is a probabilistic generative model

25/45

Summary: Things to remember about DBNs

1 Layer-wise pre-training is the innovation that rekindled interest in
deep architectures.

2 Pre-training focuses on optimizing likelihood on the data, not the
target label. First model p(x) to do better p(y |x).

3 Why RBM? p(h|x) is tractable, so it’s easy to stack.

4 RBM training can be expensive. Solution: contrastive divergence

5 DBN formed by stacking RBMs is a probabilistic generative model

25/45

Summary: Things to remember about DBNs

1 Layer-wise pre-training is the innovation that rekindled interest in
deep architectures.

2 Pre-training focuses on optimizing likelihood on the data, not the
target label. First model p(x) to do better p(y |x).

3 Why RBM? p(h|x) is tractable, so it’s easy to stack.

4 RBM training can be expensive. Solution: contrastive divergence

5 DBN formed by stacking RBMs is a probabilistic generative model

25/45

Summary: Things to remember about DBNs

1 Layer-wise pre-training is the innovation that rekindled interest in
deep architectures.

2 Pre-training focuses on optimizing likelihood on the data, not the
target label. First model p(x) to do better p(y |x).

3 Why RBM? p(h|x) is tractable, so it’s easy to stack.

4 RBM training can be expensive. Solution: contrastive divergence

5 DBN formed by stacking RBMs is a probabilistic generative model

25/45

Summary: Things to remember about DBNs

1 Layer-wise pre-training is the innovation that rekindled interest in
deep architectures.

2 Pre-training focuses on optimizing likelihood on the data, not the
target label. First model p(x) to do better p(y |x).

3 Why RBM? p(h|x) is tractable, so it’s easy to stack.

4 RBM training can be expensive. Solution: contrastive divergence

5 DBN formed by stacking RBMs is a probabilistic generative model

25/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

26/45

Auto-Encoders: simpler alternatives to RBMs

x1 x2 x3

h1 h2

x ′1 x ′2 x ′3

Encoder: h = σ(Wx + b)

Decoder: x ′ = σ(W ′h + d)

Encourage h to give small reconstruction error:

e.g. Loss =
∑

m ||x (m) − DECODER(ENCODER(x (m)))||2
Reconstruction: x ′ = σ(W ′σ(Wx + b) + d)

This can be trained with the same Backpropagation algorithm for
2-layer nets, with x (m) as both input and output

27/45

Auto-Encoders: simpler alternatives to RBMs

x1 x2 x3

h1 h2

x ′1 x ′2 x ′3

Encoder: h = σ(Wx + b)

Decoder: x ′ = σ(W ′h + d)

Encourage h to give small reconstruction error:

e.g. Loss =
∑

m ||x (m) − DECODER(ENCODER(x (m)))||2

Reconstruction: x ′ = σ(W ′σ(Wx + b) + d)

This can be trained with the same Backpropagation algorithm for
2-layer nets, with x (m) as both input and output

27/45

Auto-Encoders: simpler alternatives to RBMs

x1 x2 x3

h1 h2

x ′1 x ′2 x ′3

Encoder: h = σ(Wx + b)

Decoder: x ′ = σ(W ′h + d)

Encourage h to give small reconstruction error:

e.g. Loss =
∑

m ||x (m) − DECODER(ENCODER(x (m)))||2
Reconstruction: x ′ = σ(W ′σ(Wx + b) + d)

This can be trained with the same Backpropagation algorithm for
2-layer nets, with x (m) as both input and output

27/45

Auto-Encoders: simpler alternatives to RBMs

x1 x2 x3

h1 h2

x ′1 x ′2 x ′3

Encoder: h = σ(Wx + b)

Decoder: x ′ = σ(W ′h + d)

Encourage h to give small reconstruction error:

e.g. Loss =
∑

m ||x (m) − DECODER(ENCODER(x (m)))||2
Reconstruction: x ′ = σ(W ′σ(Wx + b) + d)

This can be trained with the same Backpropagation algorithm for
2-layer nets, with x (m) as both input and output

27/45

Stacked Auto-Encoders (SAE)

The encoder/decoder gives same form p(h|x), p(x |h) as RBMs, so
can be stacked in the same way to form Deep Architectures

x1 x2 x3 x4

h1 h2 h3

h′1 h′2

y

Layer1 Encoder

Layer2 Encoder

Layer3 Encoder

Unlike RBMs, Auto-encoders are deterministic.
I h = σ(Wx + b), not p(h = {0, 1}) = σ(Wx + b)
I Disadvantage: Can’t form deep generative model
I Advantage: Fast to train, and useful still for Deep Neural Nets

28/45

Stacked Auto-Encoders (SAE)

The encoder/decoder gives same form p(h|x), p(x |h) as RBMs, so
can be stacked in the same way to form Deep Architectures

x1 x2 x3 x4

h1 h2 h3

h′1 h′2

y

Layer1 Encoder

Layer2 Encoder

Layer3 Encoder

Unlike RBMs, Auto-encoders are deterministic.
I h = σ(Wx + b), not p(h = {0, 1}) = σ(Wx + b)
I Disadvantage: Can’t form deep generative model
I Advantage: Fast to train, and useful still for Deep Neural Nets

28/45

Stacked Auto-Encoders (SAE)

The encoder/decoder gives same form p(h|x), p(x |h) as RBMs, so
can be stacked in the same way to form Deep Architectures

x1 x2 x3 x4

h1 h2 h3

h′1 h′2

y

Layer1 Encoder

Layer2 Encoder

Layer3 Encoder

Unlike RBMs, Auto-encoders are deterministic.
I h = σ(Wx + b), not p(h = {0, 1}) = σ(Wx + b)

I Disadvantage: Can’t form deep generative model
I Advantage: Fast to train, and useful still for Deep Neural Nets

28/45

Stacked Auto-Encoders (SAE)

The encoder/decoder gives same form p(h|x), p(x |h) as RBMs, so
can be stacked in the same way to form Deep Architectures

x1 x2 x3 x4

h1 h2 h3

h′1 h′2

y

Layer1 Encoder

Layer2 Encoder

Layer3 Encoder

Unlike RBMs, Auto-encoders are deterministic.
I h = σ(Wx + b), not p(h = {0, 1}) = σ(Wx + b)
I Disadvantage: Can’t form deep generative model
I Advantage: Fast to train, and useful still for Deep Neural Nets

28/45

Many Variants of Auto-Encoders

Enforce compression to get latent factors (lower dimensional h)

Linear encoder/decoder with squared reconstruction error learns same
subspace of PCA [Bourlard and Kamp, 1988]

Enforce sparsity and over-complete representations (high dimensional
h) [Ranzato et al., 2006]

Enforce binary hidden layers to build hash codes
[Salakhutdinov and Hinton, 2007]

Incorporate domain knowledge, e.g. denoising auto-encoders
[Vincent et al., 2010]

29/45

Many Variants of Auto-Encoders

Enforce compression to get latent factors (lower dimensional h)

Linear encoder/decoder with squared reconstruction error learns same
subspace of PCA [Bourlard and Kamp, 1988]

Enforce sparsity and over-complete representations (high dimensional
h) [Ranzato et al., 2006]

Enforce binary hidden layers to build hash codes
[Salakhutdinov and Hinton, 2007]

Incorporate domain knowledge, e.g. denoising auto-encoders
[Vincent et al., 2010]

29/45

Many Variants of Auto-Encoders

Enforce compression to get latent factors (lower dimensional h)

Linear encoder/decoder with squared reconstruction error learns same
subspace of PCA [Bourlard and Kamp, 1988]

Enforce sparsity and over-complete representations (high dimensional
h) [Ranzato et al., 2006]

Enforce binary hidden layers to build hash codes
[Salakhutdinov and Hinton, 2007]

Incorporate domain knowledge, e.g. denoising auto-encoders
[Vincent et al., 2010]

29/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

30/45

Denoising Auto-Encoders

x̃1 x̃2 x̃3

h1 h2

x ′1 x ′2 x ′3

x̃ = x+ noise

Encoder: h = σ(W x̃ + b)

Decoder: x ′ = σ(W ′h + d)

1 Perturb input data x to x̃ using invariance from domain knowledge.

2 Train weights to reduce reconstruction error with respect to original
input: ||x − x ′||

31/45

Denoising Auto-Encoders

Example: Randomly shift, rotate, and scale input image; add
Gaussian or salt-and-pepper noise.

A ”2” is a ”2” no matter how you add noise, so the auto-encoder will
be forced to cancel the variations that are not important.

32/45

Summary: things to remember about SAE

1 Auto-Encoders are cheaper alternatives to RBMs.
I Not probabilistic, but fast to train using Backpropagation or SGD

2 Auto-Encoders learn to ”compress” and ”re-construct” input data.
Again, the focus is on modeling p(x) first.

3 Many variants, some provide ways to incorporate domain knowledge.

33/45

Summary: things to remember about SAE

1 Auto-Encoders are cheaper alternatives to RBMs.
I Not probabilistic, but fast to train using Backpropagation or SGD

2 Auto-Encoders learn to ”compress” and ”re-construct” input data.
Again, the focus is on modeling p(x) first.

3 Many variants, some provide ways to incorporate domain knowledge.

33/45

Summary: things to remember about SAE

1 Auto-Encoders are cheaper alternatives to RBMs.
I Not probabilistic, but fast to train using Backpropagation or SGD

2 Auto-Encoders learn to ”compress” and ”re-construct” input data.
Again, the focus is on modeling p(x) first.

3 Many variants, some provide ways to incorporate domain knowledge.

33/45

Today’s Topics

1 General Ideas in Deep Learning
Motivation for Deep Architectures and why is it hard?
Main Breakthrough in 2006: Layer-wise Pre-Training

2 Approach 1: Deep Belief Nets [Hinton et al., 2006]
Restricted Boltzmann Machines (RBM)
Training RBMs with Contrastive Divergence
Stacking RBMs to form Deep Belief Nets

3 Approach 2: Stacked Auto-Encoders [Bengio et al., 2006]
Auto-Encoders
Denoising Auto-Encoders

4 Discussions
Why it works, when it works, and the bigger picture

34/45

Why does Layer-wise Pre-Training work?

One Hypothesis [Bengio, 2009, Erhan et al., 2010]:
A deep net can fit the training data in many ways (non-convex):

1 By optimizing upper-layers really hard
2 By optimizing lower-layers really hard

Top-down vs. Bottom-up information
1 Even if lower-layers are random weights, upper-layer may still fit well.

But this might not generalize to new data
2 Pre-training with objective on P(x) learns more generalizable features

Pre-training seems to help put weights at a better local optimum

35/45

Why does Layer-wise Pre-Training work?

One Hypothesis [Bengio, 2009, Erhan et al., 2010]:
A deep net can fit the training data in many ways (non-convex):

1 By optimizing upper-layers really hard
2 By optimizing lower-layers really hard

Top-down vs. Bottom-up information
1 Even if lower-layers are random weights, upper-layer may still fit well.

But this might not generalize to new data
2 Pre-training with objective on P(x) learns more generalizable features

Pre-training seems to help put weights at a better local optimum

35/45

Why does Layer-wise Pre-Training work?

One Hypothesis [Bengio, 2009, Erhan et al., 2010]:
A deep net can fit the training data in many ways (non-convex):

1 By optimizing upper-layers really hard
2 By optimizing lower-layers really hard

Top-down vs. Bottom-up information
1 Even if lower-layers are random weights, upper-layer may still fit well.

But this might not generalize to new data
2 Pre-training with objective on P(x) learns more generalizable features

Pre-training seems to help put weights at a better local optimum

35/45

Is Layer-wise Pre-Training always necessary?

Answer in 2006: Yes!
Answer in 2014: No!

1 If initialization is done well by design (e.g. sparse connections and
convolutional nets), maybe won’t have vanishing gradient problem

2 If you have an extremely large datasets, maybe won’t overfit. (But
maybe that also means you want an ever deeper net)

3 New architectures are emerging:
I Stacked SVM’s with random projections [Vinyals et al., 2012]
I Sum-Product Networks [Poon and Domingos, 2011]

36/45

Is Layer-wise Pre-Training always necessary?

Answer in 2006: Yes!

Answer in 2014: No!

1 If initialization is done well by design (e.g. sparse connections and
convolutional nets), maybe won’t have vanishing gradient problem

2 If you have an extremely large datasets, maybe won’t overfit. (But
maybe that also means you want an ever deeper net)

3 New architectures are emerging:
I Stacked SVM’s with random projections [Vinyals et al., 2012]
I Sum-Product Networks [Poon and Domingos, 2011]

36/45

Is Layer-wise Pre-Training always necessary?

Answer in 2006: Yes!
Answer in 2014: No!

1 If initialization is done well by design (e.g. sparse connections and
convolutional nets), maybe won’t have vanishing gradient problem

2 If you have an extremely large datasets, maybe won’t overfit. (But
maybe that also means you want an ever deeper net)

3 New architectures are emerging:
I Stacked SVM’s with random projections [Vinyals et al., 2012]
I Sum-Product Networks [Poon and Domingos, 2011]

36/45

Is Layer-wise Pre-Training always necessary?

Answer in 2006: Yes!
Answer in 2014: No!

1 If initialization is done well by design (e.g. sparse connections and
convolutional nets), maybe won’t have vanishing gradient problem

2 If you have an extremely large datasets, maybe won’t overfit. (But
maybe that also means you want an ever deeper net)

3 New architectures are emerging:
I Stacked SVM’s with random projections [Vinyals et al., 2012]
I Sum-Product Networks [Poon and Domingos, 2011]

36/45

Is Layer-wise Pre-Training always necessary?

Answer in 2006: Yes!
Answer in 2014: No!

1 If initialization is done well by design (e.g. sparse connections and
convolutional nets), maybe won’t have vanishing gradient problem

2 If you have an extremely large datasets, maybe won’t overfit. (But
maybe that also means you want an ever deeper net)

3 New architectures are emerging:
I Stacked SVM’s with random projections [Vinyals et al., 2012]
I Sum-Product Networks [Poon and Domingos, 2011]

36/45

Connections with other Machine Learning concepts

A RBM is like a product-of-expert model and forms a distributed
representation of the data

I Compared with clustering (which compresses data but loses
information), distributed representations (multi-clustering) are richer
representations

I Like a mixture model with 2n hidden components
p(x) =

∑
h p(h)p(x |h), but much more compact

Neural Net as kernel for SVM [Li et al., 2005] and SVM training for
Neural Nets [Collobert and Bengio, 2004]

Decision trees are deep (but no distributed representation). Random
forests are both deep and distributed. They do well in practice too!

Philosophical connections to:
I Semi-supervised Learning: exploit both labeled and unlabeled data
I Curriculum Learning: start on easy task, gradually level-up
I Multi-task Learning: learn and share sub-tasks

37/45

Connections with other Machine Learning concepts

A RBM is like a product-of-expert model and forms a distributed
representation of the data

I Compared with clustering (which compresses data but loses
information), distributed representations (multi-clustering) are richer
representations

I Like a mixture model with 2n hidden components
p(x) =

∑
h p(h)p(x |h), but much more compact

Neural Net as kernel for SVM [Li et al., 2005] and SVM training for
Neural Nets [Collobert and Bengio, 2004]

Decision trees are deep (but no distributed representation). Random
forests are both deep and distributed. They do well in practice too!

Philosophical connections to:
I Semi-supervised Learning: exploit both labeled and unlabeled data
I Curriculum Learning: start on easy task, gradually level-up
I Multi-task Learning: learn and share sub-tasks

37/45

Connections with other Machine Learning concepts

A RBM is like a product-of-expert model and forms a distributed
representation of the data

I Compared with clustering (which compresses data but loses
information), distributed representations (multi-clustering) are richer
representations

I Like a mixture model with 2n hidden components
p(x) =

∑
h p(h)p(x |h), but much more compact

Neural Net as kernel for SVM [Li et al., 2005] and SVM training for
Neural Nets [Collobert and Bengio, 2004]

Decision trees are deep (but no distributed representation). Random
forests are both deep and distributed. They do well in practice too!

Philosophical connections to:
I Semi-supervised Learning: exploit both labeled and unlabeled data
I Curriculum Learning: start on easy task, gradually level-up
I Multi-task Learning: learn and share sub-tasks

37/45

Connections with other Machine Learning concepts

A RBM is like a product-of-expert model and forms a distributed
representation of the data

I Compared with clustering (which compresses data but loses
information), distributed representations (multi-clustering) are richer
representations

I Like a mixture model with 2n hidden components
p(x) =

∑
h p(h)p(x |h), but much more compact

Neural Net as kernel for SVM [Li et al., 2005] and SVM training for
Neural Nets [Collobert and Bengio, 2004]

Decision trees are deep (but no distributed representation). Random
forests are both deep and distributed. They do well in practice too!

Philosophical connections to:
I Semi-supervised Learning: exploit both labeled and unlabeled data
I Curriculum Learning: start on easy task, gradually level-up
I Multi-task Learning: learn and share sub-tasks

37/45

History

Early days of AI. Invention of artificial neuron
[McCulloch and Pitts, 1943] & perceptron [Rosenblatt, 1958]

AI Winter. [Minsky and Papert, 1969] showed perceptron only learns
linearly separable concepts

Revival in 1980s: Multi-layer Perceptrons (MLP) and
Back-propagation [Rumelhart et al., 1986]

Other directions (1990s - present): SVMs, Bayesian Networks

Revival in 2006: Deep learning [Hinton et al., 2006]

Successes in applications: Speech at IBM/Toronto
[Sainath et al., 2011], Microsoft [Dahl et al., 2012]. Vision at
Google/Stanford [Le et al., 2012]

38/45

History

Early days of AI. Invention of artificial neuron
[McCulloch and Pitts, 1943] & perceptron [Rosenblatt, 1958]

AI Winter. [Minsky and Papert, 1969] showed perceptron only learns
linearly separable concepts

Revival in 1980s: Multi-layer Perceptrons (MLP) and
Back-propagation [Rumelhart et al., 1986]

Other directions (1990s - present): SVMs, Bayesian Networks

Revival in 2006: Deep learning [Hinton et al., 2006]

Successes in applications: Speech at IBM/Toronto
[Sainath et al., 2011], Microsoft [Dahl et al., 2012]. Vision at
Google/Stanford [Le et al., 2012]

38/45

History

Early days of AI. Invention of artificial neuron
[McCulloch and Pitts, 1943] & perceptron [Rosenblatt, 1958]

AI Winter. [Minsky and Papert, 1969] showed perceptron only learns
linearly separable concepts

Revival in 1980s: Multi-layer Perceptrons (MLP) and
Back-propagation [Rumelhart et al., 1986]

Other directions (1990s - present): SVMs, Bayesian Networks

Revival in 2006: Deep learning [Hinton et al., 2006]

Successes in applications: Speech at IBM/Toronto
[Sainath et al., 2011], Microsoft [Dahl et al., 2012]. Vision at
Google/Stanford [Le et al., 2012]

38/45

History

Early days of AI. Invention of artificial neuron
[McCulloch and Pitts, 1943] & perceptron [Rosenblatt, 1958]

AI Winter. [Minsky and Papert, 1969] showed perceptron only learns
linearly separable concepts

Revival in 1980s: Multi-layer Perceptrons (MLP) and
Back-propagation [Rumelhart et al., 1986]

Other directions (1990s - present): SVMs, Bayesian Networks

Revival in 2006: Deep learning [Hinton et al., 2006]

Successes in applications: Speech at IBM/Toronto
[Sainath et al., 2011], Microsoft [Dahl et al., 2012]. Vision at
Google/Stanford [Le et al., 2012]

38/45

History

Early days of AI. Invention of artificial neuron
[McCulloch and Pitts, 1943] & perceptron [Rosenblatt, 1958]

AI Winter. [Minsky and Papert, 1969] showed perceptron only learns
linearly separable concepts

Revival in 1980s: Multi-layer Perceptrons (MLP) and
Back-propagation [Rumelhart et al., 1986]

Other directions (1990s - present): SVMs, Bayesian Networks

Revival in 2006: Deep learning [Hinton et al., 2006]

Successes in applications: Speech at IBM/Toronto
[Sainath et al., 2011], Microsoft [Dahl et al., 2012]. Vision at
Google/Stanford [Le et al., 2012]

38/45

History

Early days of AI. Invention of artificial neuron
[McCulloch and Pitts, 1943] & perceptron [Rosenblatt, 1958]

AI Winter. [Minsky and Papert, 1969] showed perceptron only learns
linearly separable concepts

Revival in 1980s: Multi-layer Perceptrons (MLP) and
Back-propagation [Rumelhart et al., 1986]

Other directions (1990s - present): SVMs, Bayesian Networks

Revival in 2006: Deep learning [Hinton et al., 2006]

Successes in applications: Speech at IBM/Toronto
[Sainath et al., 2011], Microsoft [Dahl et al., 2012]. Vision at
Google/Stanford [Le et al., 2012]

38/45

References I

Bengio, Y. (2009).
Learning Deep Architectures for AI, volume Foundations and Trends in
Machine Learning.
NOW Publishers.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006).
Greedy layer-wise training of deep networks.
In NIPS’06, pages 153–160.

Bishop, C. (2006).
Pattern Recognition and Machine Learning.
Springer.

Bourlard, H. and Kamp, Y. (1988).
Auto-association by multilayer perceptrons and singular value
decomposition.
Biological Cybernetics, 59:291–294.

39/45

References II

Carreira-Perpinan, M. A. and Hinton, G. E. (2005).
On contrastive divergence learning.
In AISTATS.

Collobert, R. and Bengio, S. (2004).
Links between perceptrons, MLPs and SVMs.
In ICML.

Dahl, G., Yu, D., Deng, L., and Acero, A. (2012).
Context-dependent pre-trained deep neural networks for large
vocabulary speech recognition.
IEEE Transactions on Audio, Speech, and Language Processing,
Special Issue on Deep Learning for Speech and Langauge Processing.

40/45

References III

Erhan, D., Bengio, Y., Courville, A., Manzagol, P., Vincent, P., and
Bengio, S. (2010).
Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research, 11:625–660.

Erhan, D., Manzagol, P., Bengio, Y., Bengio, S., and Vincent, P.
(2009).
The difficulty of training deep architectures and the effect of
unsupervised pre-training.
In AISTATS.

Hinton, G., Osindero, S., and Teh, Y.-W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527–1554.

41/45

References IV

Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado,
G. S., Dean, J., and Ng, A. Y. (2012).
Building high-level features using large scale unsupervised learning.
In ICML.

Li, X., Bilmes, J., and Malkin, J. (2005).
Maximum margin learning and adaptation of MLP classifiers.
In Interspeech.

McCulloch, W. S. and Pitts, W. H. (1943).
A logical calculus of the ideas immanent in nervous activity.
In Bulletin of Mathematical Biophysics, volume 5, pages 115–137.

Minsky, M. and Papert, S. (1969).
Perceptrons: an introduction to computational geometry.
MIT Press.

42/45

References V

Poon, H. and Domingos, P. (2011).
Sum-product networks.
In UAI.

Ranzato, M., Boureau, Y.-L., and LeCun, Y. (2006).
Sparse feature learning for deep belief networks.
In NIPS.

Rosenblatt, F. (1958).
The perceptron: A probabilistic model for information storage and
organization in the brain.
Psychological Review, 65:386–408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323:533–536.

43/45

References VI

Sainath, T. N., Kingsbury, B., Ramabhadran, B., Fousek, P., Novak,
P., and Mohamed, A. (2011).
Making deep belief networks effective for large vocabulary continuous
speech recognition.
In ASRU.

Salakhutdinov, R. and Hinton, G. (2007).
Semantic hashing.
In SIGIR.

Salakhutdinov, R. and Hinton, G. (2009).
Deep Boltzmann machines.
In Proceedings of the International Conference on Artificial
Intelligence and Statistics, volume 5, pages 448–455.

44/45

References VII

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A.
(2010).
Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion.
Journal of Machine Learning Research, 11:3371–3408.

Vinyals, O., Jia, Y., Deng, L., and Darrell, T. (2012).
Learning with recursive perceptual representations.
In NIPS.

45/45

	General Ideas in Deep Learning
	Motivation for Deep Architectures and why is it hard?
	Main Breakthrough in 2006: Layer-wise Pre-Training

	Approach 1: Deep Belief Nets hinton06dbn
	Restricted Boltzmann Machines (RBM)
	Training RBMs with Contrastive Divergence
	Stacking RBMs to form Deep Belief Nets

	Approach 2: Stacked Auto-Encoders bengio06greedy
	Auto-Encoders
	Denoising Auto-Encoders

	Discussions
	Why it works, when it works, and the bigger picture

