
Deep Learning & Neural Networks
Lecture 3

Kevin Duh

Graduate School of Information Science
Nara Institute of Science and Technology

Jan 21, 2014



Applications of Deep Learning

Goal: To give a taste of how deep learning is used in practice, and
how varied it is, e.g.:

1 Speech Recognition: hybrid DNN-HMM system
2 Computer Vision: local receptive field / pooling architecture
3 Language Modeling: recurrent structure
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Today’s Topic

1 Deep Neural Networks for Acoustic Modeling in Speech Recognition
[Hinton et al., 2012]

2 Building High-Level Features using Large Scale Unsupervised Learning
[Le et al., 2012]

3 Recurrent Neural Network Language Models [Mikolov et al., 2010]
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Background: Simplified View of Speech Recognition

Task: Given input acoustic signal, predict word/phone sequence

arg maxphone sequence p(acoustics|phone)p(phone|previous phones)
I p(acoustics|phone) modeled by Gaussian Mixture Model (GMM)
I p(phone|previous phones) by transitions in Hidden Markov Model

(HMM)

Acoustic features:
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DNN-HMM Hybrid Architecture

1 Train Deep Belief Nets on speech features: typically 3-8 layers, 2000
units/layer, 15 frames of input, 6000 output

2 Fine-tune with frame-per-frame phone labels obtained from
traditional Gaussian models

3 Further discriminative training in conjunction with higher-level Hidden
Markov Model
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Gaussian-Bernoulli RBM for Continuous Data

x1 x2 x3

h1 h2 h3

hj are binary, xi are continuous variables

p(x , h) = 1
Zθ

exp (−Eθ(x , h)) = 1
Zθ

exp
(∑

i
−(xi−bi )2

2vi
+
∑

ij
xiwijhj√

vi
+ dTh

)
p(hj = 1|x) = σ(

∑
i
wijxi√

vi
+ dj)

p(xi |h) ∼ Gaussian with mean bi +
√
vi
∑

j wijhj and variance vi

Usually, x is normalized to zero mean, unit variance beforehand
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GMM vs. DNN in modeling speech

Speech is produced by modulating a small number of parameters in a
dynamical system (e.g vocal tract)

I True structure should be in low-dimensional space

GMM’s: p(x) =
∑

j p(hj)p(x |hj) with p(x |hj) as Gaussian
I High model expressiveness: can model any non-linear data
I But may require large full-covariance Gaussians or many

diagonal-covariance Gaussians → statistically inefficient

RBM & DNN’s distributed factor representation is more efficient
I Also: no need to worry about feature correlation → exploit larger

temporal window as input
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Results

DNN-HMM outperforms GMM-HMM on various datasets
Already commercialized!

Word Error Rate Results:

Why it works: Larger context and less hand-engineered preprocessing
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More details on Switchboard result [Seide et al., 2011]

Basic Setup:

Input: 39-dim derived from PLP, HLDA transform

Output: 9304 cross-word triphone states (tied)

Baseline GMM-HMM:

GMM with 40 Gaussians.

Training: (1) max-likelihood (EM), (2) discriminative BMMI

DNN-HMM:

7 stacked RBM’s with 2048 units per layer

Pre-training on 2 passes over training data (300 hours of speech)

Mini-batch size:100-300 (pre-training), 1000 (backpropagation)
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Motivating Question: Is it possible to learn high-level
features (e.g. face detectors) using only unlabeled images?

Answer: yes.
I Using a deep network of 1 billion parameters
I 10 million images (sampled from Youtube)
I 1000 machines (16,000 cores) x 1 week.

11/33



Motivating Question: Is it possible to learn high-level
features (e.g. face detectors) using only unlabeled images?

Answer: yes.

I Using a deep network of 1 billion parameters
I 10 million images (sampled from Youtube)
I 1000 machines (16,000 cores) x 1 week.

11/33



Motivating Question: Is it possible to learn high-level
features (e.g. face detectors) using only unlabeled images?

Answer: yes.
I Using a deep network of 1 billion parameters
I 10 million images (sampled from Youtube)
I 1000 machines (16,000 cores) x 1 week.

11/33



”Grandmother Cell” Hypothesis

Grandmother cell: A neuron that lights up when you see or hear your
grandmother

I Lots of interesting (controversial) discussions in the neuroscience
literature

For our purposes: is it possible to learn such high-level concepts from
raw pixels?
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Previous work: Convolutional Nets [LeCun et al., 1998]

x1 x2 x3 x4 x5

h1 h2 h3

p1 p2

Receptive Field (RF): each hj only
connects to small input region.
Tied weights → convolution
Pooling: e.g. p1 = max(h1, h2) or

p1 =
√

h21 + h22

Advantages:

1 Fewer weights

2 Shift invariance

(Figure from http://deeplearning.net/tutorial/lenet.html)
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Architecture

min
Wd ,We

∑
m

||WdWex
(m) − x (m)|| (1)

+
∑
m,k

√
ε+ Pk(Wex (m))2 (2)

(1): auto-encoder
(2): pooling

Repeated 3 times to form Deep Architecture
x (m) = image of 200x200 pixels x3 channels
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Feature learning by Topographic ICA
[Hyvärinen et al., 2001]

Learns shift/scale/rotation-invariant features

Reconstruction version
[Le et al., 2011] can be trained faster

min
Wd ,We

∑
m

||WdWex
(m) − x (m)||

+
∑
m,k

√
ε+ Pk(Wex (m))2
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Training Setup

3-layer network, 1 billion parameters (trained jointly)

10 million 200x200 pixel images from 10 million Youtube videos

1000 machines (16,000 cores) x 1 week

Lots of tricks for data/model parallelization (next lecture)
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Face neuron

*Graphics from [Le et al., 2012]
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Face neuron

*Graphics from [Le et al., 2012]
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Cat neuron

*Graphics from [Le et al., 2012]
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More examples

*Graphics from [Le et al., 2012]
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More examples

*Graphics from [Le et al., 2012]
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More examples

*Graphics from [Le et al., 2012]
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ImageNet Classification Results

Add logistic regression on top of final layer

Supervised learning on ImageNet dataset

Test Accuracy (22K categories):
Method Accuracy

Random 0.005%
Previous State-of-the-art 9.3%
[Le et al., 2012] without pre-training on Youtube data 13.6%
[Le et al., 2012] with pre-training on Youtube data 15.8%
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Goal of Language Modeling

Give probabilities to word sequences (e.g. sentences)
I Likely sentences in the world (e.g. ”let’s recognize speech”) → high

probability
I Unlikely sentences in the world (e.g. ”let’s wreck a nice beach”) → low

probability

Useful for various applications involving natural language

N-gram model decomposes sentence probability, e.g.
p(w (1),w (2),w (3),w (4)) =

I p(w (4)|w (3))p(w (3)|w (2))p(w (2)|w (1))p(w (1)) (2-gram)
I p(w (4)|w (3),w (2))p(w (3)|w (2),w (1))p(w (2)|w (1))p(w (1)) (3-gram)

Estimate from text data:
p(w (2)|w (1)) = count(w (1),w (2))/count(w (1)), plus smoothing to
account for unknown words and word sequences
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Recurrent Neural Net Architecture for Language Modeling

Model p(current word |previous words) with a recurrent hidden layer

x1 x2 x3 x4 x5

h1 h2

y1 y2 y3

Previous Word Previous h

Current Word (assume 3-word vocabulary)

wij

wjk

Probability of word k:

yk =
exp(WT

jk h)∑
k′ exp(W

T
jk′h)

[x1, x2, x3] is binary
vector with 1 at current
vocabulary & 0 otherwise

[x4, x5] is a copy of
[h1, h2] from the
previous time-step

hj = σ(W T
ij xi ) is hidden

”state” of the system
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Training: Backpropagation through Time

Unroll the hidden states for certain time-steps.
Given error at y , update weights by backpropagation
Example: he loves | her

x1 x2 x3 h′1 h′2

h1 h2

y1 y2 y3

x1 x2 x3 h′′1 h′′2
”he” [x1, x2, x3] = [0, 1, 0]

”loves” [x1, x2, x3] = [1, 0, 0] Previous h

Initial h

wij

wjk

wij
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Advantages of Recurrent Nets

Hidden nodes h form a distributed representation of partial sentence
I h is a succinct conditioning factor for predicting current word
I Arbitrarily-long history is (theoretically) kept through recurrence

In practice:
I Backpropatation through Time forms a deep network; may be hard to

train. Fixed to < 10 previous time-steps/words

I yk =
exp(W T

jk h)∑
k′ exp(W

T
jk′h)

requires summation k over vocabulary size, which is

large. There are shortcuts to reduce computation.

By-product: [wij ]i can be used as ”word embeddings”. Useful for
various natural language processing tasks
[Zhila et al., 2013, Turian et al., 2010]
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Results [Mikolov et al., 2010]

Trained on 6 million words (300K sentences) of New York Times data.

Evaluation on held-out data:
perplexity = 2entropy = 2

− 1
|data|

∑
data log pmodel (data)

Model Perplexity

N-gram (N=5) 221

Recurrent Net |h| = 60 229
Recurrent Net |h| = 90 202

Recurrent Net |h| = 250 173
Recurrent Net |h| = 400 171

Combining 3 Recurrent Nets 151
Combining 3 Recurrent Nets, dynamic update on held-out 128
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