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Advanced Topics in Optimization

@ Today we'll briefly survey an assortment of exciting new tricks for
optimizing deep architectures

@ Although there are many exciting new things out of NIPS/ICML every
year, I'll pick the four that | think is most helpful for practitioners:

SGD alternative

> Better regularization

» Scaling to large data

» Hyper-parameter search

v
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Today's Topics

@ Hessian-free optimization [Martens, 2010]
© Dropout regularization [Hinton et al., 2012]
© Large-scale distributed training [Dean et al., 2012]

@ Hyper-parameter search [Bergstra et al., 2011]
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Difficulty of optimizing highly non-convex loss functions

@ "Pathological curvature” is tough to navigate for SGD
@ 2nd-order (Newton) methods may be needed to avoid underfitting

Figure from [Martens, 2010]
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2nd-order (Newton) methods

o ldea: approximate the loss function locally with a quadratic
L(w+ z) = qu(z) = L(w) + VL(w) "z + 3zTHz

where H is the Hessian (curvature matrix) at w
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o ldea: approximate the loss function locally with a quadratic
L(w+ z) = qu(z) = L(w) + VL(w) "z + 3zTHz
where H is the Hessian (curvature matrix) at w

@ Minimizing this gives the search direction: z* = —H™1VL(w)
» Intuitively, H~! fixes any pathological curvature for VL(w)
> In practice, don’t want to store nor invert H

@ Quasi-Newton methods
» L-BFGS: uses low-rank approximation of H~!
» Hessian-free (i.e. truncated Newton): (1) minimize g, (z) with
conjugate gradient method; (2) computes Hz directly using

finite-difference: Hz = lim,_,o YHwte2)= VL)
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Hessian-free optimization applied to Deep Learning

@ [Martens, 2010] describes some important modifications/settings to
make Hessian-free methods work for Deep Learning

o Experiments:
(Random initialization + 2nd-order Hessian-free optimizer)
gives lower training error than

(Pre-training initialization + 1-order optimizer).

@ Nice results in Recurrent Nets too [Martens and Sutskever, 2011]
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Dropout [Hinton et al., 2012]

@ Each time we present x(m),
randomly delete each hidden
node with 0.5 probability

o This is like sampling from 2!/
different architectures

@ At test time, use all nodes but
halve the weights

o Effect: Reduce overfitting by
preventing " co-adaptation”;
ensemble model averaging
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Some Results: TIMIT phone recognition
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Model Parallelism
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@ Deep net is stored and processed on multiple cores (multi-thread) or
machines (message passing)

@ Performance benefit depends on connectivity structure vs.
computational demand

Figure from [Dean et al., 2012]
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Data Parallelism
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» Training data is partitioned; different model per shard
» Each model pushes and pulls gradient/weight info from parameter
server asynchronously* — robust to machine failures
> Note gradient updates may be out-of-order and weights may be
out-of-date. But it works! (c.f. [Langford et al., 2009])
» AdaGrad learning rate is beneficial in practice

@ Right: Distributed L-BFGS

*More precisely, each machine within the model communicates with the
relevant parameter server. (Figure from [Dean et al., 2012])
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Performance Analysis

Time to 16% accuracy
15 . : . 80 . : :
—&— Speech: 42M parameters ° =©=Downpour SGD
= & = Images: 80M parameters 7001 -8- [s)OWd";l"“t' SfDBV;/é\gagfad
Images: 330M parameters ! andblaster L—
g— —6— Images: 1.7B parameters ': v GPU
< 10 Q
o} 7o
(6] )
Q v 1
& \
o \
g - ]
£ \
g ® 1 6-0 |
'_ \
\
\
! B-p ; o ‘ ]
0 L 1 L L
1 16 32 . 64 . 128 1o 1000 2000 3000 4000 5000 6000
Machines per model instance i

Machines

o Left: Exploiting model parallelism on a single data shard, up to 12x

measured for sparse nets (Images) but diminishing returns. For dense
nets (Speech), max at 8 machines.

o Right: Exploiting data parallelism also, how much time and how

many machines are needed to achieve 16% test accuracy (Speech)?
Figure from [Dean et al., 2012]
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Hyper-parameter search is important

@ Lots of hyper-parameters!

@ Number of layers

@ Number of nodes per layer

© SGD learning rate

© Regularization constant

@ Mini-batch size

@ Type of non-linearity

@ Type of distribution for random initialization
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Hyper-parameter search is important

@ Lots of hyper-parameters!

@ Number of layers

@ Number of nodes per layer

© SGD learning rate

© Regularization constant

@ Mini-batch size

Q@ Type of non-linearity

@ Type of distribution for random initialization

@ It's important to invest in finding good settings for your data
» could be the difference between a winning system vs. useless system

16/20



Approaches to hyper-parameter search

@ Grid search
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Approaches to hyper-parameter search

@ Grid search
@ Random search

© Manual search, a.k.a Graduate Student Descent (GSD)

@ Treat search itself as a meta machine learning problem
[Bergstra et al., 2011]

> Input x = space of hyper-parameters
» Output y = validation error after training with given hyper-parameters
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Hyper-parameter search as machine learning problem

@ Input x = space of hyper-parameters

@ Output y = validation error after training with given
hyper-parameters

© Computing y is expensive, so we learn a function f(x) that can predict
it based on past (x, y) pairs

> e.g. Linear regression
» e.g. Gaussian Process, Parzen Estimator [Bergstra et al., 2011]
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Hyper-parameter search as machine learning problem

@ Input x = space of hyper-parameters

@ Output y = validation error after training with given
hyper-parameters

© Computing y is expensive, so we learn a function f(x) that can predict
it based on past (x, y) pairs

> e.g. Linear regression
» e.g. Gaussian Process, Parzen Estimator [Bergstra et al., 2011]

@ Try the hyper-parameter setting x* = arg min, f(x), or some variant

© Repeat steps 1-2 until you solve Al!
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