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Advanced Topics in Optimization

Today we’ll briefly survey an assortment of exciting new tricks for
optimizing deep architectures

Although there are many exciting new things out of NIPS/ICML every
year, I’ll pick the four that I think is most helpful for practitioners:

I SGD alternative
I Better regularization
I Scaling to large data
I Hyper-parameter search
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Today’s Topics

1 Hessian-free optimization [Martens, 2010]

2 Dropout regularization [Hinton et al., 2012]

3 Large-scale distributed training [Dean et al., 2012]

4 Hyper-parameter search [Bergstra et al., 2011]
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Difficulty of optimizing highly non-convex loss functions

”Pathological curvature” is tough to navigate for SGD
2nd-order (Newton) methods may be needed to avoid underfitting

Figure from [Martens, 2010]
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2nd-order (Newton) methods

Idea: approximate the loss function locally with a quadratic

L(w + z) ≈ qw (z) ≡ L(w) +∇L(w)T z + 1
2z

THz

where H is the Hessian (curvature matrix) at w

Minimizing this gives the search direction: z∗ = −H−1∇L(w)
I Intuitively, H−1 fixes any pathological curvature for ∇L(w)
I In practice, don’t want to store nor invert H

Quasi-Newton methods
I L-BFGS: uses low-rank approximation of H−1

I Hessian-free (i.e. truncated Newton): (1) minimize qw (z) with
conjugate gradient method; (2) computes Hz directly using

finite-difference: Hz = limε→0
∇L(w+εz)−∇L(w)

ε
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Hessian-free optimization applied to Deep Learning

[Martens, 2010] describes some important modifications/settings to
make Hessian-free methods work for Deep Learning

Experiments:

(Random initialization + 2nd-order Hessian-free optimizer)

gives lower training error than

(Pre-training initialization + 1-order optimizer).

Nice results in Recurrent Nets too [Martens and Sutskever, 2011]
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Dropout [Hinton et al., 2012]

Each time we present x (m),
randomly delete each hidden
node with 0.5 probability

This is like sampling from 2|h|

different architectures

At test time, use all nodes but
halve the weights

Effect: Reduce overfitting by
preventing ”co-adaptation”;
ensemble model averaging

x1 x2 x3

h1 h2 h3

h′1 h′2 h′3

y
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Some Results: TIMIT phone recognition
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Model Parallelism

Deep net is stored and processed on multiple cores (multi-thread) or
machines (message passing)

Performance benefit depends on connectivity structure vs.
computational demand

Figure from [Dean et al., 2012]
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Data Parallelism

Left: Asynchronous SGD
I Training data is partitioned; different model per shard
I Each model pushes and pulls gradient/weight info from parameter

server asynchronously∗ → robust to machine failures
I Note gradient updates may be out-of-order and weights may be

out-of-date. But it works! (c.f. [Langford et al., 2009])
I AdaGrad learning rate is beneficial in practice

Right: Distributed L-BFGS
∗More precisely, each machine within the model communicates with the

relevant parameter server. (Figure from [Dean et al., 2012])
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Performance Analysis

Left: Exploiting model parallelism on a single data shard, up to 12x
measured for sparse nets (Images) but diminishing returns. For dense
nets (Speech), max at 8 machines.

Right: Exploiting data parallelism also, how much time and how
many machines are needed to achieve 16% test accuracy (Speech)?

Figure from [Dean et al., 2012]
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Hyper-parameter search is important

Lots of hyper-parameters!
1 Number of layers
2 Number of nodes per layer
3 SGD learning rate
4 Regularization constant
5 Mini-batch size
6 Type of non-linearity
7 Type of distribution for random initialization

It’s important to invest in finding good settings for your data
I could be the difference between a winning system vs. useless system
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Approaches to hyper-parameter search

1 Grid search

2 Random search

3 Manual search, a.k.a Graduate Student Descent (GSD)
4 Treat search itself as a meta machine learning problem

[Bergstra et al., 2011]
I Input x = space of hyper-parameters
I Output y = validation error after training with given hyper-parameters
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Hyper-parameter search as machine learning problem

Input x = space of hyper-parameters

Output y = validation error after training with given
hyper-parameters

1 Computing y is expensive, so we learn a function f(x) that can predict
it based on past (x , y) pairs

I e.g. Linear regression
I e.g. Gaussian Process, Parzen Estimator [Bergstra et al., 2011]

2 Try the hyper-parameter setting x∗ = arg minx f (x), or some variant

3 Repeat steps 1-2 until you solve AI!
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