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Machine Learning 
Abstractions

• Training data


• Input: x  / Output: y


• Lots of {(xi,yi)} i=1,2,…,N

• Goal: Build model F(x) on training data, generalize to test 
data: yprediction = F(xtest) , yprediction vs ytruth

• What is the structure of x and y?
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Standard classification 
problem

• x is a vector in RD


• y is a label from {class1, class2, class3, … classK}


• A neural net for F(x):


• x=[x1; x2; x3; x4]


• h=nonlinear(W*x)


• y=softmax(M*h)
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Image feature: 

x = 960x720 256 RGB vector

From: https://commons.wikimedia.org/wiki/File:This_is_a_very_cute_dog.jpg

Image classification 
example

y = {dog, cat, squirrel, alligator, dinosaur}

https://commons.wikimedia.org/wiki/File:This_is_a_very_cute_dog.jpg
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More complex problems
• Complex Input:


• x is a sequence of L vectors/words:  RDxL 


• y is a label from {class1, class2, class3, … classK}


• Example: mention span to NE type classification

• Complex Input and Output:


• x is a sequence of L vectors/words


• y is a sequence of J vectors/words
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Sequence Output Example: 
Image Captioning
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Caption text generation output space: 
{ all possible English sentences } 

a cute dog 
a very cute dog 

super cute puppy 
adorable puppy looking at me 

….
Image feature: 


x = 960x720 256 RGB vector



Sequence-to-Sequence Example:  
Machine Translation
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Sequence-to-Sequence Example:  
Named Entity Recognition
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Albert lives in Baltimore PER NONE NONE LOC
NER  

Tagger



Handling sequences



Handling sequences
• For sequence input:


• We need an “encoder” to convert arbitrary length input to 
some fixed-length hidden representation


• Without this, may be hard to apply matrix operations 



Handling sequences
• For sequence input:


• We need an “encoder” to convert arbitrary length input to 
some fixed-length hidden representation


• Without this, may be hard to apply matrix operations 

• For sequence output:


• We need a “decoder” to generate arbitrary length output


• One method: generate one word at a time, until special 
<stop> token
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Example:  
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the
step 2: house
step 3: is
step 4: big
step 5: <stop>

Each step applies a 
softmax over all vocab
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Sequence modeling with a 
recurrent network
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the house is big .
The following animations courtesy of Philipp Koehn: 

http://mt-class.org/jhu
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Sequence modeling with a 
recurrent network
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the house is big .



Recurrent models for sequence-
to-sequence problems

• We can use these models for both input and output


• For output, there is the constraint of left-to-right 
generation


• For input, we are provided the whole sentence at once, 
we can do both left-to-right and right-to-left modeling


• The recurrent units may be based on LSTM, GRU, etc.



Bidirectional Encoder for 
Input Sequence

Word embedding: word meaning in isolation 
Hidden state of each Recurrent Neural Net (RNN): word meaning in this sentence



Left-to-Right Decoder

• Input context comes from encoder


• Each output is informed by current hidden state and previous output word


• Hidden state is updated at every step



In detail: each step

!22

Context contains information  
from encoder/input

(simplified view)



What connects the encoder 
and decoder}Input context is a fixed-dim vector: 

weighted average of all L vectors in RNN 

How to compute weighting?  
Attention mechanism: 

Note this changes at each step i 
What’s paid attention has more  
influence on next prediction

si-1

ci

hj

⍺0 ⍺1 ⍺2 ⍺3 ⍺4 ⍺5 ⍺6



To wrap up: Recurrent 
models with attention}1. Encoder takes in  

arbitrary length input

2. Decoder generates 
output one word at a time, 
using current hidden state, 
input context (from attention), 
and previous output

Note: we can add layers to make this model “deeper”
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Motivation of Transformer  
Model

• RNNs are great, but have two demerits:

• Sequential structure is hard to parallelize, may slow 
down GPU computation

• Still has to model some kinds of long-term dependency 
(though addressed by LSTM/GRU)

• Transformers solve the sequence-to-sequence problem 
using only attention mechanisms, no RNN



Long-term dependency
• Dependencies between:


• Input-output words


• Two input words


• Two output words

}
Attention mechanism  

“shortens” path between  
input and output words. 

What about others?



Attention, more abstractly}Previous attention formulation: 

Abstract formulation:  
Scaled dot-product for queries Q, keys K, values V 

si-1

ci

hj

⍺0 ⍺1 ⍺2 ⍺3 ⍺4 ⍺5 ⍺6

query

key & values

(relevance)



Multi-head Attention

• For expressiveness, do at scaled 
dot-product attention multiple times


• Add different linear transform for 
each key, query, value 



Putting it 
together

• Multiple (N) layers


• For encoder-decoder attention, Q: 
previous decoder layer, K and V: 
output of encoder


• For encoder self-attention, Q/K/V 
all come from previous encoder 
layer


• For decoder self-attention, allow 
each position to attend to all 
positions up to that position


• Positional encoding for word order



From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



Summary
1. Problem Definition:


• Sequence-to-sequence problems are more complex, but can be 
solved by (a) encoding input to fixed representations and (b) decoding 
output one at a time


2. Recurrent Model with Attention


• Bidirectional RNN encoder, RNN decoder, attention-based context 
vector tying it together


3. Transformer Model


• Another way to solve sequence problems, without using sequential 
models



Research directions

• Lots!!


