
Sequence-to-Sequence
Models

Kevin Duh

Johns Hopkins University

May 2019

Outline

1. Problem Definition

2. Recurrent Model with Attention

3. Transformer Model

Machine Learning
Abstractions

!3

Machine Learning
Abstractions

• Training data

• Input: x / Output: y

• Lots of {(xi,yi)} i=1,2,…,N

!3

Machine Learning
Abstractions

• Training data

• Input: x / Output: y

• Lots of {(xi,yi)} i=1,2,…,N

• Goal: Build model F(x) on training data, generalize to test
data: yprediction = F(xtest) , yprediction vs ytruth

!3

Machine Learning
Abstractions

• Training data

• Input: x / Output: y

• Lots of {(xi,yi)} i=1,2,…,N

• Goal: Build model F(x) on training data, generalize to test
data: yprediction = F(xtest) , yprediction vs ytruth

• What is the structure of x and y?

!3

Standard classification
problem

• x is a vector in RD

• y is a label from {class1, class2, class3, … classK}

• A neural net for F(x):

• x=[x1; x2; x3; x4]

• h=nonlinear(W*x)

• y=softmax(M*h)

!4

Image feature:

x = 960x720 256 RGB vector

From: https://commons.wikimedia.org/wiki/File:This_is_a_very_cute_dog.jpg

Image classification
example

y = {dog, cat, squirrel, alligator, dinosaur}

https://commons.wikimedia.org/wiki/File:This_is_a_very_cute_dog.jpg

More complex problems

!6

More complex problems
• Complex Input:

• x is a sequence of L vectors/words: RDxL

• y is a label from {class1, class2, class3, … classK}

• Example: mention span to NE type classification

!6

More complex problems
• Complex Input:

• x is a sequence of L vectors/words: RDxL

• y is a label from {class1, class2, class3, … classK}

• Example: mention span to NE type classification

• Complex Input and Output:

• x is a sequence of L vectors/words

• y is a sequence of J vectors/words

!6

Sequence Output Example:
Image Captioning

!7

Caption text generation output space:
{ all possible English sentences }

a cute dog
a very cute dog

super cute puppy
adorable puppy looking at me

….
Image feature:

x = 960x720 256 RGB vector

Sequence-to-Sequence Example:
Machine Translation

!8

das Haus ist gross the house is big

Sequence-to-Sequence Example:
Named Entity Recognition

!9

Albert lives in Baltimore PER NONE NONE LOC
NER

Tagger

Handling sequences

Handling sequences
• For sequence input:

• We need an “encoder” to convert arbitrary length input to
some fixed-length hidden representation

• Without this, may be hard to apply matrix operations

Handling sequences
• For sequence input:

• We need an “encoder” to convert arbitrary length input to
some fixed-length hidden representation

• Without this, may be hard to apply matrix operations

• For sequence output:

• We need a “decoder” to generate arbitrary length output

• One method: generate one word at a time, until special
<stop> token

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the
step 2: house

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the
step 2: house
step 3: is

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the
step 2: house
step 3: is
step 4: big

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the
step 2: house
step 3: is
step 4: big
step 5: <stop>

Example:
Machine Translation

!11

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the
step 2: house
step 3: is
step 4: big
step 5: <stop>

Each step applies a
softmax over all vocab

Outline

1. Problem Definition

2. Recurrent Model with Attention

3. Transformer Model

Sequence modeling with a
recurrent network

!13

the house is big .
The following animations courtesy of Philipp Koehn:

http://mt-class.org/jhu

Sequence modeling with a
recurrent network

!14

the house is big .

Sequence modeling with a
recurrent network

!15

the house is big .

Sequence modeling with a
recurrent network

!16

the house is big .

Sequence modeling with a
recurrent network

!17

the house is big .

Sequence modeling with a
recurrent network

!18

the house is big .

Recurrent models for sequence-
to-sequence problems

• We can use these models for both input and output

• For output, there is the constraint of left-to-right
generation

• For input, we are provided the whole sentence at once,
we can do both left-to-right and right-to-left modeling

• The recurrent units may be based on LSTM, GRU, etc.

Bidirectional Encoder for
Input Sequence

Word embedding: word meaning in isolation
Hidden state of each Recurrent Neural Net (RNN): word meaning in this sentence

Left-to-Right Decoder

• Input context comes from encoder

• Each output is informed by current hidden state and previous output word

• Hidden state is updated at every step

In detail: each step

!22

Context contains information
from encoder/input

(simplified view)

What connects the encoder
and decoder}Input context is a fixed-dim vector:

weighted average of all L vectors in RNN

How to compute weighting?
Attention mechanism:

Note this changes at each step i
What’s paid attention has more
influence on next prediction

si-1

ci

hj

⍺0 ⍺1 ⍺2 ⍺3 ⍺4 ⍺5 ⍺6

To wrap up: Recurrent
models with attention}1. Encoder takes in

arbitrary length input

2. Decoder generates
output one word at a time,
using current hidden state,
input context (from attention),
and previous output

Note: we can add layers to make this model “deeper”

Outline

1. Problem Definition

2. Recurrent Model with Attention

3. Transformer Model

Motivation of Transformer
Model

Motivation of Transformer
Model

• RNNs are great, but have two demerits:

Motivation of Transformer
Model

• RNNs are great, but have two demerits:

• Sequential structure is hard to parallelize, may slow
down GPU computation

Motivation of Transformer
Model

• RNNs are great, but have two demerits:

• Sequential structure is hard to parallelize, may slow
down GPU computation

• Still has to model some kinds of long-term dependency
(though addressed by LSTM/GRU)

Motivation of Transformer
Model

• RNNs are great, but have two demerits:

• Sequential structure is hard to parallelize, may slow
down GPU computation

• Still has to model some kinds of long-term dependency
(though addressed by LSTM/GRU)

• Transformers solve the sequence-to-sequence problem
using only attention mechanisms, no RNN

Long-term dependency
• Dependencies between:

• Input-output words

• Two input words

• Two output words

}
Attention mechanism

“shortens” path between
input and output words.

What about others?

Attention, more abstractly}Previous attention formulation:

Abstract formulation:
Scaled dot-product for queries Q, keys K, values V

si-1

ci

hj

⍺0 ⍺1 ⍺2 ⍺3 ⍺4 ⍺5 ⍺6

query

key & values

(relevance)

Multi-head Attention

• For expressiveness, do at scaled
dot-product attention multiple times

• Add different linear transform for
each key, query, value

Putting it
together

• Multiple (N) layers

• For encoder-decoder attention, Q:
previous decoder layer, K and V:
output of encoder

• For encoder self-attention, Q/K/V
all come from previous encoder
layer

• For decoder self-attention, allow
each position to attend to all
positions up to that position

• Positional encoding for word order

From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Summary
1. Problem Definition:

• Sequence-to-sequence problems are more complex, but can be
solved by (a) encoding input to fixed representations and (b) decoding
output one at a time

2. Recurrent Model with Attention

• Bidirectional RNN encoder, RNN decoder, attention-based context
vector tying it together

3. Transformer Model

• Another way to solve sequence problems, without using sequential
models

Research directions

• Lots!!

