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Success stories in Deep Learning



Computing
Facebook Creates Software That

Matches Faces Almost as Well as
You Do

Facebook’s new Al research group reports a major
improvement in face-processing software.

by Tom Simonite  March 17,2014

Advances in the relatively new artificial-
intelligence field known as deep learning
could fundamentally reshape what
computers can do.

Asked whether two unfamiliar photos of faces show the same person, a

human being will get it right 97.53 percent of the time. New software

p Learning
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Deep-learning software defeats human professional for first time.
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The computer that master

Microsoft’s new neural text-to-
speech service lets machines speak
like people

September 28, 2018 - 8:02 am

Microsoft has come out with a production system that performs text-to-speech (TTS)
synthesis using deep neural networks. This new production system makes it hard for

you to distinguish the voice of computers from human voice recordings.

The Neural text-to-speech synthesis has significantly reduced the ‘listening fatigue’
when talking about interaction with Al systems. It enables the system with human-
like, natural sounding voice, that makes the interaction with chatbots and virtual
assistants more engaging. This neural-network powered text-to-speech system was
demonstrated by the Microsoft team at the Microsoft Ignite conference in Orlando,
Florida, this week.



Behind each success, there are
numerous unsung heroes
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Motivation

We want an optimizer that:

1. Automates hyperparameter tuning process

1. Discovers hyperparameters that are good
along multiple objectives, e.g. accurate & fast




Outline

Motivation

Multi-objective evolutionary strategy
Experiment on speech recognition
Ongoing work



Problem Definition:
Black-box Optimization

—

Hyperparameter setting
encoded as vector in R
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- learning rate

e.g. Accuracy on Dev set



Problem Definition:
Black-box Optimization

Train Model(x)
X —— Jon data, and
run on Dev set

Hyperparameter setting
encoded as vector in R
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- SGD (vs. AdaGrad)
- learning rate

— f(x)

e.g. Accuracy on Dev set



Problem Definition:
Black-box Optimization

—
Goal:

Find x"=argmax, f(x) with few function evaluations



Problem Definition:
Black-box Optimization
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\f3(X)

Multi-objective extension, f(x) is:

- Accuracy on Dev set (%)

- Speed of inference on Dev set (ms)
- Model size on disk (MB)

\

/



Outline

1. Motivation

2. Problem Definition

4. Experiment on speech recognition
5. Related/future work



Evolutionary Strategy

1. Estimate a search distribution P(x) that is
concentrated on regions with high fitness f(x)

2. Sample new x’s based on search distribution P

Lnew ™ PH(x)
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Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES)

/ Search \

Distribution

Normal Distribution:

°* mean
* covariance
\_ J
Update
distribution

Sample
X
3
> Hax,
X
X, N
Iterate
Evaluate f(x) HH €

N. Hansen, S. D. Muller, and P. Koumoutsakos, “Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES),”
Evolutionary Computation, vol. 11, no. 1, pp. 1-18, 2003.



Intuition

Generation 0
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Generation 1

Intuition
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Generation 2

Intuition
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Intuition




Updating the search distribution

Population size  Difference from mean to x,

Mean: N K l

i = o1+ €0 > w(ye) (@ — fin1)
i kzl\ T

Mean at Fitness of x,, i.e. y,=f(x,)

previous

_ Weight function:
generation

More fit =2 higher weight

Similarly for Covariance
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Multi-objective extension

A ranking of individuals is sufficient to
determine weight w(y,)

How to rank under multiple objectives?

23



Obijective 2

How to define optimality
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A point p is weakly pareto-optimal iff there does not
exist another point g such that F, (q) > F,(p) for all k
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A point p is pareto-optimal iff there does not exist a g such that
F.(q) >=F.(p) for all k and F,(q) > F (p) for at least one k
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Obijective 2
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Given a set of points, the subset of pareto-
optimal points form the Pareto Frontier
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Points can be ranked by successively peeling off
the Pareto Frontier and recomputing
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Example Plot of 300 Neural Machine Translation Models
with different hyperparameters (TED Zh-En)
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Example with 4 objectives

GPU
Infer
Speed:
sent/sec

16.8
8.6
14.9
14.0
7.8
19.3
15.9
8.1

CPU
Infer
Speed:
sent/sec

0.7
0.8
1.1
1.6
0.9
2.4
3.3
1.5

158
77
291
104
77
85
79
46

Hyperparameters

(a) RNN-LSTM, 10k BPE, 1 layer, 512 embedding

(b) Transformer, 10k BPE, 4 layer, 8 head, 256 embed
(c) RNN-LSTM, 10k BPE, 2 layer, 1024 embedding

(d) RNN-LSTM, 10k BPE, 2 layer, 512 embedding

(e) Transformer like (b), different optimizer

(f) RNN like (a), different optimizer

(g) RNN-GRU, 10k BPE, 1 layer, 512 embedding

(h) Transformer, 10k BPE, 2 layer, 8 head, 256 embed

Example Table of Neural Machine Translation Models with different
hyperparameters (TED Ru-En) — All Pareto-optimal 31



Quick Summary:
Multi-objective CMA-ES

/ Search \ Sample X
Distribution X 3
> 4 xl
Normal Distribution: x XN
°* mean — | S
; terate
e covariance
\_ J

Rank x by Pareto Optimality |
Update distribution
Eval f,(x) f,(x) [} €
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Evolutionary Genetic Bayesian
Strategy Algorithm Optimization

1. Estimate Search Search Estimate f(x), and
Distribution distribution by  distribution = uncertainty
e.g. Normal population thereof
2. Choose x Sample from Sample from Sample x with e.g.
distribution population, with max expected
cross-over improvement*

. objective fn (f(-))
observation (x)

V¥ acquisition max

T~ " acquisition function (u())

*Snoek, Larochelle, Adams. “Practical Bayesian Optimization of ML Algo”, NIPS2012
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Aside: Alternative to Pareto Optimality

* Combine multiple objectives into one

max[£,(x), £,(x),.w fy (0]

m m

M
Scalarization: max[z o [ (x)] o = O,Ea =1

m=1



Obijective 2
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Outline

1. Motivation
2. Problem Definition
3. Multi-objective evolution strategy

5. Ongoing work



Setup 1: Speech Recognition N-best re-scoring

Decoder
Speech input g-? R i
S N-gram LM e-scoring
= Text
— ® | —> Neural LM t

< DNN Acoustic o
g Model

2 Objectives Vocabulary size

- Word error rate . . ‘

- Training time [QQ QQ---JOutputiy(t)

/7 N T

37 Hyperparameter Types [Delay [ OO QJ Hidden : h(t)
Population: 30 \\_// f
=1 I E J Input - w(t)

Trained on CSJ data

=

Vocabulary size




Category Hyper-parameters ( x ) Initial value
Structure # hidden layers (1-10) 2
# units in each hidden layer 300
# units in word embedding 300
vocabulary size 10000
unit type in each hidden layer (LSTM, RNN, FF) LSTM
Training minibatch size 32
initial leaning rate 1
learning rate decay 0.5
decay start epoch 6
dropout ratio 0.5
momentum 1E10
gradient clip 5
initial forget gate bias 1
optimizer type (SGD, ADAM, ADADELTA, RMSprop) SGD
meta-parameters in optimizers -
Scoring NN-LM weight (interpolate with n-gram) 0.5
acoustic weight 14
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WER on evaluation set

Word Error Rate (WER)
improvement each generation

OSingle-obj ASingle-obj (Fixed vocab) ¢Multi-obj
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Training time differences between
single and multiple objective evolution

OSingle-obj ASingle-obj (Fixed vocab) ¢Multi-obj
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Setup 2: Speech Recognition acoustic modeling

Speech input

Chain TDNN: Peddinti, et. al. (2015)
A time delay neural net for efficient
modeling of long temporal contexts

Decoder
—
()
= N-gram LM
% Text
>
> N Acoustic out
g Model
2 Objectives:
- Word error rate
- Model Size

7 Hyperparameter Types
for Time-Delay Neural Net
e.g. #layer, #unit, learn-rate

Population: 30
Trained on CSJ data

t-13 t+9




Pareto points in each generation
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In a realistic use case: give human the Pareto frontier to decide what to deploy 4>
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1. Motivation

2. Problem Definition

3. Multi-objective evolutionary strategy
4. Experiment on speech recognition



1. Speeding-up the Black Box

/

Search
Distribution

\

\_

mean
covariance

Normal Distribution:

J

Rank x by Pareto Optimality
Update distribution

Sample

Iterate

| Eval f(x) f,(x)

SLOW by definition!

>
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Simple Idea (inspired by graduate student descent):
“Kill the training job when it looks hopeless”

LEARNING CURVES for NEURAL MACHINE TRANSLATION SYSTEMS
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2. Building Benchmark Datasets

e Currently difficult to compare hyperparameter optimization
methods due to computational resource bottlenecks

e Solution: create reusable benchmarks

If you have 500+ models on some dataset lying around, let me know!
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Summary

1.

Hyperparameter Optimization is needed for
scalable development of DNNs

X — - L f(x) Find x"=argmax, f(x)
with few evaluations

Multi-objective methods viable with Pareto
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Objective 1

Fast & Accurate is (sometimes) achievable!
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