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Behind	each	success,	there	are	
numerous	unsung	heroes
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Massive	amounts	of	data	&	compute
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Countless	days	of	trial-and-error	for	
hyperparameter tuning
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Motivation

We	want	an	optimizer	that:

1. Automates hyperparameter tuning	process

1. Discovers	hyperparameters that	are	good	
along	multiple	objectives,	e.g.	accurate	&	fast
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Outline

1. Motivation
2. Problem	Definition
3. Multi-objective	evolutionary	strategy
4. Experiment	on	speech	recognition
5. Ongoing	work
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Problem	Definition:	
Black-box	Optimization

x f(x)

Hyperparameter setting
encoded	as	vector	in	Rd

3					à #	layers
200		à #	units/layer
1					à SGD	(vs.	AdaGrad)
0.2				à learning	rate

e.g.	Accuracy	on	Dev set
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Problem	Definition:	
Black-box	Optimization

x f(x)

Hyperparameter setting
encoded	as	vector	in	Rd

3					à #	layers
200		à #	units/layer
1					à SGD	(vs.	AdaGrad)
0.2				à learning	rate

e.g.	Accuracy	on	Dev set

Train	Model(x)
on	data,	and
run	on	Dev set
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Problem	Definition:	
Black-box	Optimization

x

Goal:	
Find	x*=argmaxx f(x)	with	few	function	evaluations
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f(x)



Problem	Definition:	
Black-box	Optimization

x
f1(x)
f2(x)
f3(x)

Multi-objective	extension,	fi(x)	is:	
- Accuracy	on	Dev set	(%)
- Speed	of	inference	on	Dev set	(ms)
- Model	size	on	disk	(MB)
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Outline

1. Motivation
2. Problem	Definition
3. Multi-objective	evolution	strategy
4. Experiment	on	speech	recognition
5. Related/future	work
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Evolutionary	Strategy

1. Estimate a	search	distribution	P(x)	that	is	
concentrated	on	regions	with	high	fitness	f(x)

2. Sample new	x’s	based	on	search	distribution	P

16

xnew ⇠ P✓(x)



Covariance	Matrix	Adaptation	
Evolutionary	Strategy	(CMA-ES)

Update
distribution 評価結果評価結果評価結果評価結果Evaluate	f(x)

Search	
Distribution	

Normal	Distribution:
• mean
• covariance

x1
x2

x3x4xN

Sample

Iterate
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N.	Hansen,	S.	D.	Muller,	and	P.	Koumoutsakos,	“Reducing	the	time	complexity	of	the	
derandomized evolution	strategy	with	covariance	matrix	adaptation	(CMA-ES),”	
Evolutionary	Computation,	vol.	11,	no.	1,	pp.	1–18,	2003.



Intuition
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Intuition
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Intuition
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x1x2x4
x5

Generation	2

x6
x3



Intuition
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✓2

✓0 = (µ0,⌃0)

✓1

✓̂ = argmax
✓

Z
f(x)N (x|✓)dx

| {z }
,E[f(x)|✓]



Updating	the	search	distribution
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µ̂n = µ̂n�1 + ✏µ

KX

k=1

w(yk)(xk � µ̂n�1)

Weight	function:
More	fit	à higher	weight

Difference	from	mean	to	xk
Mean:

Similarly	for	Covariance

Mean	at
previous	
generation

Population	size

Fitness	of	xk,	i.e.	yk=f(xk)



Multi-objective	extension
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A	ranking	of	individuals	is	sufficient	to	
determine	weight	w(yk)

How	to	rank	under	multiple	objectives?



How	to	define	optimality
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A	point	p is	weakly	pareto-optimal iff there	does	not	
exist	another	point	q such	that	Fk(q)	>	Fk(p)	for	all	k
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A	point	p is	pareto-optimal iff there	does	not	exist	a	q such	that	
Fk(q)	>=	Fk(p)	for	all	k	and	Fk(q)	>	Fk(p)	for	at	least	one	k

Pareto	&	Weakly-Pareto	

Weakly-Pareto	



Exercise
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Given	a	set	of	points,	the	subset	of	pareto-
optimal	points	form	the	Pareto	Frontier
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Points	can	be	ranked	by	successively	peeling	off	
the	Pareto	Frontier	and	recomputing
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Best	Rank

2nd Best	Rank

3rd Best	Rank
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Example	Plot	of	300	Neural	Machine	Translation	Models
with	different	hyperparameters (TED	Zh-En)

BLEU	score	(validation	set)
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BLEU GPU	
Infer
Speed:
sent/sec

CPU	
Infer
Speed:	
sent/sec

Model
Size
(MB)

Hyperparameters

20.3 16.8 0.7 158 (a)	RNN-LSTM, 10k	BPE,	1	layer,	512	embedding

20.2 8.6 0.8 77 (b)	Transformer, 10k	BPE,	4	layer,	8	head,	256	embed

20.2 14.9 1.1 291 (c)	RNN-LSTM,	10k	BPE, 2	layer,	1024	embedding

20.2 14.0 1.6 104 (d)	RNN-LSTM, 10k	BPE,	2	layer,	512	embedding

20.1 7.8 0.9 77 (e)	Transformer like	(b),	different	optimizer

19.7 19.3 2.4 85 (f)	RNN like	(a),	different	optimizer

17.3 15.9 3.3 79 (g)	RNN-GRU, 10k	BPE,	1	layer,	512	embedding

19.4 8.1 1.5 46 (h)	Transformer, 10k	BPE,	2	layer,	8	head,	256	embed
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Example	Table	of	Neural	Machine	Translation	Models	with	different	
hyperparameters (TED	Ru-En)	– All	Pareto-optimal

Example	with	4	objectives



Quick	Summary:	
Multi-objective	CMA-ES

Rank	x	by	Pareto	Optimality
Update	distribution	 評価結果評価結果評価結果評価結果Eval f1(x)	f2(x)

Search	
Distribution	

Normal	Distribution:
• mean
• covariance

x1
x2

x3x4xN

Sample

Iterate
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Evolutionary	
Strategy

Genetic
Algorithm

Bayesian	
Optimization

1.	Estimate	
Distribution

Search	
distribution by	
e.g.	Normal

Search	
distribution	=
population

Estimate	f(x), and	
uncertainty	
thereof

2.	Choose	x Sample	from	
distribution

Sample	from	
population,	with	
cross-over

Sample	x with	e.g.	
max	expected	
improvement*

*Snoek,	Larochelle,	Adams.	“Practical	Bayesian	Optimization	of	ML	Algo”,	NIPS2012



Aside:	Alternative	to	Pareto	Optimality

• Combine	multiple	objectives	into	one
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max
x

[ f1(x), f2 (x),..., fM (x)]

Scalarization: max
x

[ αm fm (x)
m
∑ ]      αm ≥ 0, αm

m=1

M

∑ =1



Pareto	vs.	Scalarization
Pareto	points	not	on	Convex	Hull	are	missed
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0 ≤α1 ≤ 0.5

0.5≤α1 ≤1

α1 =1



Outline

1. Motivation
2. Problem	Definition
3. Multi-objective	evolution	strategy
4. Experiment	on	speech	recognition
5. Ongoing	work
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Setup	1:	Speech	Recognition	N-best	re-scoring

Neural	LM

Feature	Extract

Speech	input
N-gram	LM

Decoder

Re-scoring

DNN	Acoustic	
Model

2	Objectives
- Word	error	rate
- Training	time

37	Hyperparameter Types
Population:	30

Trained	on	CSJ data

Text	
out
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Category Hyper-parameters	(	x	) Initial	value

Structure # hidden	layers	(1-10) 2

#	units	in	each	hidden	layer 300

#	units	in	word	embedding 300

vocabulary	size 10000

unit	type	in	each	hidden	layer	(LSTM,	RNN,	FF) LSTM

Training minibatch size 32

initial	leaning	rate 1

learning	rate	decay 0.5

decay	start	epoch 6

dropout	ratio 0.5

momentum 1E10

gradient	clip 5

initial	forget	gate	bias 1

optimizer	type (SGD,	ADAM,	ADADELTA,	RMSprop) SGD

meta-parameters	in	optimizers -

Scoring NN-LM	weight	(interpolate with	n-gram) 0.5

acoustic	weight 14



Word	Error	Rate	(WER)	
improvement	each	generation
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Training	time	differences	between	
single	and	multiple	objective	evolution
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Setup	2:	Speech	Recognition	acoustic	modeling

Feature	Extract

Speech	input
N-gram	LM

Decoder

DNN	Acoustic	
Model

2	Objectives:
- Word	error	rate
- Model	Size

7	Hyperparameter Types	
for	Time-Delay	Neural	Net
e.g.	#layer,	#unit,	learn-rate
Population:	30
Trained	on	CSJ	data

Chain	TDNN:	Peddinti,	et.	al.	(2015)	
A	time	delay	neural	net	for	efficient	
modeling	of	long	temporal	contexts

Text	
out



Pareto	points	in	each	generation
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In	a	realistic	use	case:	give	human	the	Pareto	frontier	to	decide	what	to	deploy	



Outline

1. Motivation
2. Problem	Definition
3. Multi-objective	evolutionary	strategy
4. Experiment	on	speech	recognition
5. Ongoing	work
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1.	Speeding-up	the	Black	Box
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Rank	x	by	Pareto	Optimality
Update	distribution	 評価結果評価結果評価結果評価結果Eval f1(x)	f2(x)

Search	
Distribution	

Normal	Distribution:
• mean
• covariance

x1
x2

x3x4xN

Sample

Iterate

SLOW	by	definition!
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Simple	Idea	(inspired	by	graduate	student	descent):	
“Kill	the	training	job	when	it	looks	hopeless”

Kill	before	
convergence

be
tt
er

LEARNING	CURVES	for	NEURAL	MACHINE	TRANSLATION	SYSTEMS

This	can	be	posed	as	a	
K-Arm	Bandit	Problem!

e.g.	see:	
(1) Li	et.	al.	(2016).	Hyperband:	A	Novel	

Bandit-Based	Approach	to	
Hyperparameter Optimization

(2) https://github.com/kevinduh/hyperb
and-sim

#minibatches processed	during	training	(x10^3)



2.	Building	Benchmark	Datasets

• Currently	difficult	to	compare	hyperparameter optimization	
methods	due	to	computational	resource	bottlenecks

• Solution:	create	reusable benchmarks
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If	you	have	500+	models	on	some	dataset	lying	around,	let	me	know!

1. Train	MANY	models	on	some	dataset	beforehand
2. Publish	all	(x,y)	as	a	table
3. Benchmark	methods	on	a	finite universe



Summary

1. Hyperparameter Optimization	is	needed	for	
scalable	development	of	DNNs	

2. Multi-objective	methods	viable	with	Pareto

3. Fast	&	Accurate	is	(sometimes)	achievable!
47

Find	x*=argmaxx f(x)	
with	few	evaluations


