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Phrase-based
Statistical Machine Translation (SMT)

* Divide sentence into patterns, reorder, combine

Today | will give a lecture on machine translation .

Today | will give a lecture on machine translation :
SHIE.  ZEITLEXT DiERE T ERER :
Today machlne translation a lecture on | will give :
SHIE, A ENER DEE ZITLVEXT

SHIL, HHEHRROBRERZITLIET,

» Statistical translation models, reordering models,
language models learned from text
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This Talk

1) What are the steps required to build a phrase-based
machine translation translation system?

2) What tools implement these steps in Moses* (an
open-source statistical MT system)?

3) What are some research problems related to each of
these components?

* http://www.statmt.org/moses
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Steps in Training a
Phrase-based SMT System
Collecting Data

Tokenization

Language Modeling

Alignment
 Phrase Extraction/Scoring
* Reordering Models

» Decoding
» Evaluation
* Tuning
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Collecting Data

* Sentence parallel data

« Used in: Translation model/Reordering model

ZhIgRVTY, This is a pen.
RER IIAEEEBATC, | ate with my friend yesterday.
RIFTEHLEL), Elephants' trunks are long.

* Monolingual data (in the target language)

 Used in: Language model

This is a pen.
| ate with my friend yesterday.
Elephants' trunks are long.
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Good Data Is
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e Clean
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Collecting Data

* For academic workshops, data is prepared for us!

TED Lectures 1.76M
e_g_ News Commentary News 2.52M
IWSLT 2011 — EuroParl Pol?tfcal 45.7TM
UN Political 301M
Giga Web 576M

* |n real systems

« Data from government organizations, newspapers
e Crawl the web
 Merge several data sources
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Research

Finding bilingual pages [Resnik 03]
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Editorial: Aging society does not necessarily spell doom

Longevity is something to be celebrated, but when it comes to the aging of Japanese society, it is
often discussed in a pessimistic tone.

One reason for this is the continuing decline in people of working age. Learning that our society
is shifting from one in which four working people financially support one senior citizen, to
another in which each working person must support one senior citizen - a so-called "piggyback"
setup -- would make anyone anxious. And indeed, that is exactly what is happening.
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[Image: Mainichi Shimbun]
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Research

Finding bilingual pages [Resnik 03]

Sentence alignment [Moore 02]
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Editorial: Aging society does not necessarily spell doom
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often discussed in a pessimistic tone.
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Research

Finding bilingual pages [Resnik 03]

Sentence alignment [Moore 02]
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» Crowd-sourcing data creation [Ambatl 10]

 Mechanical Turk, duolingo, etc.
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Tokenization
- Example: Divide Japanese into words
AN EFZ&hE LT,
ABB D BF gi A Ufc .

 Example: Make English lowercase, split punctuation

Taro visited Hanako.

v

taro visited hanako .
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Tools for Tokenization

* Most European languages

tokenize.perl en < input.en > output.en
tokenize.perl fr < input.fr > output.fr

e Japanese

MeCab: mecab -0 wakati < input.ja > output.ja
KyTea: kytea -notags < input.ja > output.ja
JUMAN, eftc.

* Chinese
Stanford Segmenter, LDC, KyTea, etc...
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Research

 What Is good tokenization for machine translation?

* Accuracy? Consistency? [Chang 08]
« Matching target language words? [Sudoh 11]
ABB A %£F & #afE Ufc .
Taro <ARG1> visited <ARG2> Hanako .

 Morphology (Korean, Arabic, Russian) [Niessen 01]
CHO1EE O FAYR ?

v

o 2 0N FROY R 2
* Unsupervised learning [Chung 09, Neubig 12]
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Language Modeling
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Language Modeling

» Assign a probability to each sentence

E1: Taro visited Hanako P(E1)
E2: the Taro visited the Hanako P(E2)
E3: Taro visited the bibliography P(E3)

* More fluent sentences get higher probabillity

P(E1) > P(E2) P(E1) > P(E3)
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n-gram Models

 We want the probabillity of
P(W = “Taro visited Hanako”)

* n-gram model calculates one word at a time

e Condition on n-1 previous words
e.g. 2-gram model

p(le“Taro”) * P(WZ:”visited” | le"TaI‘O")
* P(w_="Hanako” | w_="visited")

* P(w,="</s>" [ w .="Hanako")

NOTE:
sentence ending symbol </s> 18
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Tools

 SRILM Toolkit:

Train:
ngram-count -order 5 -interpolate -kndiscount -unk
-text input.txt -1lm lm.arpa

Test:
ngram -lm lm.arpa -ppl test.txt

e Others: KenLM, RandLM, IRSTLM
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Research Problems

 |s there anything that can beat n-grams?
[Goodman 01]

 Fast to compute
e Easy to integrate into decoding
e Surprisingly strong

e Other methods

e Syntactic LMs [Charniak 03]
 Neural networks [Bengio 06]
 Model M [Chen 09]

e efc...
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Alignment

* Find which words correspond to each-other

ABB Y feF & ahfd Lic, ABR Y e+ = ahfd Lic,

4>

taro visited hanako . taro visited hanako .

* Done automatically with probabilistic methods

Ei.‘;% P( £+ |hanako) = 0.99
- B P( XER |taro) = 0.97
P(visited| £5f5 ) = 0.46
English P(visited| L7z ) = 0.04
English P( £ |taro) = 0.0001
- English 27
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IBM/HMM Models

* One-to-many alignment model

/_.l_\T)l/ D = the hotel front desk
4 ” A X X

the hotel front desk 7.|_\T)|/ O xﬁ

* |IBM Model 1: No structure (“bag of words”)
* |BM Models 2-5, HMM: Add more structure

23
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Combining One-to-Many Alignments

KTV D yS(H the ho;(el front desk

LV y S

the hotel front desk K7L O xﬁ
éombineA
Y

the hotel front desk

/T\T)l/ 0) yJ__r

e Several different heuristics 24
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Tools
* mkcls: Find bilingual classes
R~TIL O 2 35 49 12
>
the hotel front desk 23 35 12 19

 GIZA++: FInd alignments using IBM models (uses
classes from mkcls for smoothing)

"I D =4 35 49 12 "IV O =2+

the hotel frontdesk 23 35 12 19 the hot’el froAnt desk
« symal: Combine alignments in both directions

* (Included in train-model.perl of Moses)
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Research Problems

Does alignment actually matter? [Aryan 06]

Supervised alignment models [Fraser 06, Haghighi 09]

Alignment using syntactic structure [DeNero 07]

Phrase-based alignment models [Marcu 02, DeNero
08]
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Phrase Extraction
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Phrase Extraction

» Use alignments to find phrase pairs

the
hotel
front

desk

N
=

20,

_'T MK

T IV D - hotel

T )L @ - the hotel

Z{7 > front desk

RTIVDOZF > hotel front desk
RTILDZ{TF > the hotel front desk
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Phrase Scoring

 Calculate 5 standard features

 Phrase Translation Probabilities:
P(fle) = c(f,e)/c(e) P(elf) = c(f,e)/c(f)

e.g. c("TJL @D, the hotel) / c(the hotel)

* Lexical Translation Probabilities
- Use word-based translation probabilities (IBM Model 1)
- Helps with sparsity
P(fle) = Flf 1/|e] Ze P(fle)

e.g.
(P( "7 IV |the)+P( =T )L |hotel))/2 * (P( D |the)+P( D |hotel))/2

* Phrase penalty: 1 for each phrase
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Tools

o extract: Extract all the phrases
» phrase-extract/score: Score the phrases
* (Included in train-model.perl)
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Research

 Domain adaptation of translation models [Koehn 07,
Matsoukas 09]

* Reducing phrase table size [Johnson 07]

* Generalized phrase extraction (Geppetto toolkit) [Ling
10]

* Phrase sense disambiguation [Carpuat 07]
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Reordering Models
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Lexicalized Reordering

* Probability of monotone, swap, discontinuous

i XN &L
LB HBERE ST
the
thin mono
man disc.
visited
Taro swap
fLY — the thin XEE & — Taro

high monotone probability high swap probability
» Conditioning on input/output, left/right, or both
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Tools

o extract: Same as phrase extraction
* lexical-reordering/score: Scores lexical reordering
 (included in train-model.perl)
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Research

» Still a very open research area (especially en < |a)

* Change the translation model

« Hierarchical phrase-based [Chiang 07]
« Syntax-based translation [Yamada 01, Galley 06]

* Pre-ordering [Xia 04, Isozaki 10]

F ®m & /N = BN Ik
' Pl R

F' ® 1 Bax = Ry %
' ' !

E he ate rice
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Decoding

* Given the models, find the best answer (or n-best)

‘model
N Taro visited Hanako 4.5
?KEB MMef& . - _, the Taro visited the Hanako 3.2
shid UTe ecoder Taro met Hanako 2.4
Hanako visited Taro -2.9

» Exact search is NP-hard! [Knight 99]

 Decoding uses beam-search to find an approximate
solution [Koehn 03]
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Tools

 Moses!
moses -f moses.ini < input.txt > output.txt

* Also: moses chart, cdec (for Hiero, syntax-based
models)
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Research

Decoding for lattice input [Dyer 08]

Decoding for syntax models [Mi 08]

Minimum Bayes risk decoding [Kumar 04]

Exact decoding [Germann 01]
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Human Evaluation

* Adequacy: Is the meaning correct?
* Fluency: Is the sentence natural?
* Pairwise: Is X a better translation than Y?

NN fEF =R LT
‘W}
Taro visited Hanako the Taro visited the Hanako Hanako visited Taro
Adequate? o O X
Fluent? O X e

Better? B, C C
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Automatic Evaluation

 How well does the translation match a reference?
« (or multiple references: more than one correct translation)
 BLEU: n-gram precision, brevity penalty [Papineni 03]
Reference: Taro visited Hanako

System: the Taro visited the Hanako

1-gram: 3/5
2-gram: 1/4
Brevity: min(1, |System|/|Reference|) = min(1, 5/3)  brevity penalty = 1.0

BLEU-2 = (3/5*1/4)*2* 1.0
= 0.387

* Also METEOR (normalizes synonyms), TER (# of
changes), RIBES (reordering)
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Research

Metrics with focus on a particular thing

 Reordering [Isozaki 10]
e Accuracy of meaning [Lo 11]

Tunable metrics [Cer 10]
Metric aggregation [Albrecht 07]
Crowdsourcing human evaluation [Callison-Burch 11]
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Tuning
» Scores of translation, reordering, and language models

LM ™M RM

o Taro visited Hanako -4 -3 -1 -8

X the Taro visited the Hanako -5 -4 -1 -10

X Hanako visited Taro _2 -3 _2 -7v Best
Score X

* |If we add weights, we can get better answers:

Best
LM ™ RM » Sigre o
o Taro visited Hanako 0.2*4 0.3%*3 0.5*1 -2.2
X the Taro visited the Hanako (g 2+5 (g 3%x4 05*1 -2.7
X Hanako visited Taro 0.2%~2 0.3%*3 0.5%2 213

- Tuning finds these weights: w =0.2w_ =0.3 w_ =0.5
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Tuning Methods

 Minimum error rate training: MERT [Och 03]

source (dev)

ANBRA e F=zanfE Uic

/7 Taro visited Hanako

~— Decode @ »

n-best (dev)

the Taro visited the Hanako
Hanako visited Taro

N

Weights

\ / reference (dev)

Taro visited Hanako

~ Find better
- weights

* Others: MIRA [Watanabe 07] (online update), PRO
(ranking) [Hopkins 11]
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Research

Tuning with millions of features (e.g. MIRA, PRO)

Tuning with lattices [Macherey 08]

Speeding up tuning [Suzuki 11]

Tuning with multiple metrics [Duh 12]
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Last Words
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Last Words

« MT is fun! Join us.
* |[mproving very quickly, but still many problems.
* System is big, but you can focus on one problem.

HONESTSNEXT
Danke
Thank You *~ ZIE)
Gracias
ZArgtL o

Terima Kasih
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