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Transition-Based Dependency Parsing
Exploiting Supertags

Hiroki Ouchi, Kevin Duh, Hiroyuki Shindo, and Yuji Matsumoto

Abstract—Lexical information, including surface word form and
part-of-speech (POS) information, plays a crucial role when pre-
dicting ambiguous dependency relationships in dependency pars-
ing. However, for resolving dependency ambiguities, surface word
information may be too sparse, while POS information may be
too coarse. Supertags, which are lexical templates that represent
rich syntactic information, have been shown to provide effective
features at an intermediate level on the coarse-to-fine scale. In this
work, we present a supertag design framework that allows us to
instantiate various supertag sets based on the dependency struc-
tures. Using this framework, we instantiate various supertag sets
and utilize them as features in transition-based dependency pars-
ing systems. Performing experiments on the Penn Treebank and
Universal Dependencies data sets, we show that our supertags are
effective for transition-based parsers in multilingual parsing as
well as English parsing. The comparison of the results of the dif-
ferent supertag sets shows that it is crucial to incorporate the head
directionality, head labels, and dependent possession information
in supertags to improve the parser performance.

Index Terms—Dependency parsing, multilingual dependency
parsing, supertags, transition-based dependency parsing.

I. INTRODUCTION

DATA-DRIVEN dependency parsing approaches, which
make use of machine learning, have achieved great suc-

cess in the automatic syntactic analysis of natural language
[1]. In data-driven approaches, transition-based dependency
parsing, which utilizes a deterministic shift-reduce process for
structural prediction, has received considerable attention be-
cause of its low time complexity and the freedom to design
features based on a rich context [2]. In particular, the feature
definition is the key to the high performance of transition-based
dependency parsers.

As feature representations, lexical information, including sur-
face word form and part-of-speech (POS) information, plays a
crucial role when predicting ambiguous dependency relation-
ships. However, as features to resolve dependency ambiguities,
the surface information of words is sparse while POS informa-
tion is coarse. Therefore, it is worthwhile to investigate interme-
diate representations that exist at a coarser level than the words,
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Fig. 1. Illustrative example of supertags for the dependency struc-
ture. Supertags encode syntactic information, e.g., the head direction and
dependency label.

yet capture the information necessary to resolve dependency
ambiguities [3].

Recently, supertags have been utilized as features in depen-
dency parsing systems [4]. Supertags are tags extended from
the notion of POS tags and represent rich syntactic information
[5], such as the head direction and dependency label. Fig. 1
illustrates the dependency-based supertags proposed in [4]. In
this example, each supertag encodes the head direction with the
dependency label and dependent direction.

While supertags can arbitrarily be designed, it is important to
keep the adequate balance between the supertag granularity and
predictability to improve parsing performance. Increasing the
granularity of supertags in order to capture more fine-grained
syntactic information results in large tag sets, which tend to be
more difficult to predict automatically. In order to improve de-
pendency parsing performance by utilizing supertags, it is nec-
essary to design supertags with the easy automatic assignment
that are expressive enough to resolve dependency ambiguities.

In this work, we present a supertag design framework that
allows us to design various supertag sets. To investigate the
appropriate granularity or design of supertags needed to im-
prove parsing performance, we build various granularity-level
supertag sets based on the framework. For English depen-
dency parsing with the supertags, we perform experiments on
the Penn Treebank data set. In addition, the utility of the su-
pertags for multilingual dependency parsing is an open ques-
tion, so we also perform experiments on Universal Depen-
dencies data set (UD; release 1.3).1 The experimental results
show that appropriately designed supertags are effective for
dependency parsing.

This work is a substantial extension to the previous work [4].
Based on the supertag design proposed in [4], we formalize a
supertag design framework and instantiate various granularity-
level supertag sets to investigate which syntactic information
should be incorporated into supertags. Using the new supertag
sets as features, we perform experiments on multilingual de-
pendency parsing as well as English parsing. The experimental

1http://universaldependencies.org/
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results are better than those in [4] thanks to the use of a beam-
search perceptron supertagger and parser. To summarize, the
main contributions of this work are as follows.

1) We present a supertag design framework.
2) We develop transition-based dependency parsers exploit-

ing various supertag sets.
3) We demonstrate the utility of our supertags for English

and multilingual dependency parsing and suggest which
syntactic clues should be incorporated into supertags.

II. RELATED WORK

Supertags, which are lexical templates, encode linguistically
rich information that imposes complex constraints in a local con-
text [6]. While supertags have been used in frameworks based
on lexicalized grammars, e.g., Lexicalized Tree-Adjoining
Grammar (LTAG), Head-driven Phrase Structure Grammar
(HPSG), and Combinatory Categorial Grammar (CCG), they
have scarcely been utilized for dependency parsing so far. As
exceptions, Foth et al. [7] and Ambati et al. [8] have used
supertags for dependency parsing.

Foth et al. [7] designed supertags based on dependency struc-
ture information such as dependency labels and dependents with
different levels of granularity. They automatically assigned a
single supertag to each word, and the accuracy of automati-
cally assigning their designed supertag set is 67%–84% accu-
rate: the coarsest supertag set (35 tags) is 84.1% and the finest
one (12,947 tags) is 67.6%. They then utilized the predicted
supertags for dependency parsing and demonstrated that su-
pertags improve German dependency parsing under a Weighted
Constraint Dependency Grammar (WCDG), which is not data-
driven parsing. In particular, the finest supertag set achieved
the biggest improvement in parsing performance (+2.1 points).
While they design supertags for WCDG parsing, we explore
effective supertag design for data-driven and transition-based
dependency parsers.

Ambati et al. [8] utilized supertags of the Combinatory Cat-
egorial Grammar (CCG) as features for Hindi and English de-
pendency parsers. They reported an improvement of around 0.4
points in UAS using supetag features, and argued that CCG
supertags can especially improve long distance dependencies,
e.g., coordination and relative clause dependencies. In con-
trast to their work, we develop a supertag set based on de-
pendency structures because we believe that a supertag design
based on dependency structures is more suitable for depen-
dency parsing, rather than one based on another lexicalized
grammar formalism.

III. TRANSITION-BASED DEPENDENCY PARSING

Transition-based approaches are a class of data-driven ap-
proaches exploiting machine learning techniques. In this work,
we focus on supervised methods, which utilize sentences
with correct dependency structure annotation as the input for
machine learning.

In this framework, transition-based systems derive depen-
dency trees based on a parsing model parameterized over a

transition sequence from an initial to some terminal configura-
tion. Given a training set (sentences with dependency structure
annotation), a parsing model is induced for parsing a new sen-
tence. Based on the induced model, a transition system, which
is an abstract machine consisting of a set of configurations and
transitions between configurations, derives the optimal depen-
dency tree [1].

This approach was pioneered by Kudo and Matsumoto [9],
Yamada and Matsumoto [10], and Nivre [11] for unlabeled de-
pendency parsing. Nivre et al. [12] and Nivre and Scholz [13]
extended the approach to labeled dependency parsing. Instead of
the greedy search used in the previous systems, beam search was
applied to dependency parsing by Zhang and Clark [14], [15].
Of the variations of transition-based systems, arc-standard and
arc-eager are representative systems, and the implementation
MALTPARSER has been widely used so far [16]. In this work, we
employ the arc-standard model [17].

In the arc-standard model, configuration c = (s, b, A) con-
sists of a stack s, buffer b, and set of dependency arcs A. The
initial configuration for sentence w1 , . . . , wn is s = [ROOT],
b = [w1 , . . . , wn ], and A = ∅. A configuration c is terminal if
the buffer is empty and the stack contains the single node ROOT,
and the parse tree is given by Ac . Denoting si (i = 1,2,...) as
the ith word on the top of the stack, and bi (i = 1,2,...) as the
ith element on the buffer, the arc-standard system defines three
types of transitions:

1) LEFT-ARC: adds an arc s1 → s2 and removes s2 from
the stack under the precondition | s |≥ 2.

2) RIGHT-ARC: adds an arc s2 → s1 and removes s1 from
the stack under the precondition | s |≥ 2.

3) SHIFT: moves b1 from the buffer to the stack under the
precondition | b |≥ 1.

For instance, consider the sentence “She kept a cat.” in
Fig. 2.At step 6, LEFT-ARC is chosen as the next transition. As
a result, the second top word on the stack “a” (s2) depends on
the top word “cat” (s1) and is removed from the stack. At step
7, RIGHT-ARC is chosen as the next transition; hence, the top
word on the stack “cat” (s1) depends on the second top word
“kept” (s2) and is removed from the stack. At step 8, SHIFT is
chosen as the next transition, and the first word in the buffer “.”
(b1) is removed from the buffer and moved to the stack.

As a result of such transitions, the goal of a transition-based
system is to predict a correct transition sequence based on
each configuration. Specifically, the system chooses the most
probable next transition at each configuration based on scores.
Those scores are computed as the dot product of the weight
and features. Features are represented using some lexical in-
formation based on the current configuration, such as the word
forms and POS tags of some words on the stack/buffer. How-
ever, these types of lexical information do not always suffice
to predict correct transitions because, as features to resolve de-
pendency ambiguities, surface word information is sparse while
POS information is coarse. In this work, we develop and uti-
lize supertags as entities at an intermediate level, capturing the
information necessary to predict a better transition sequence in
transition-based systems.
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Fig. 2. Example of a parsing process with the arc-standard model.

IV. SUPERTAG DESIGN

The main challenge when designing supertags is to find the
right balance between granularity and predictability. Ideally,
we would like to increase the granularity of the supertags in
order capture finer-grained syntactic information, but large tag
sets tend to be more difficult to predict automatically. In this
section, we provide a supertag design framework. Then, using
the framework, we describe various supertag instantiations.

A. Supertag Design Framework

As Fig. 1 shows, each word in a labeled dependency tree
has a head with a dependency label in the left/right direc-
tion. Using such syntactic information, we design various
supertag sets.

Formally, given the i-th word xi in a labeled dependency tree
y, its supertag xi.stag is defined as follows:

xi.stag = STAG(xi, y) (1)

where function STAG(xi, y) can arbitrarily be defined and re-
turns a supertag. In this work, we define the function based on
the syntactic information of the head, left dependents, and right
dependents as follows:

STAG(xi, y) = HEAD(xi, y) ◦ DEP(xi, y) (2)

where HEAD(xi, y) returns head information, and DEP(xi, y) re-
turns dependent information. The variability of syntactic granu-
larity can be represented by the definitions of HEAD(xi, y) and
DEP(xi, y).

B. Supertag Instantiation

Using the generic supertag design framework, we instantiate
a variety of supertag sets. As a basic instantiation, we define the
functions in Eq. (2) using the information of dependency labels
and head directions between a word and its head/dependents.

As the head information, we define function HEAD(xi, y)
as follows:

HEAD(xi, y) = HLABEL(xi, y) ◦ DIR(xi, xi.head, y) (3)

where HLABEL(xi, y) returns the dependency label of the arc
between target word xi and its head in labeled dependency tree
(y), DIR(xi, xi.head, y) returns the direction of xi.head relative
to xi in y, i.e., left (L) or right (R). If a word xi has “ROOT” as its
head, we consider it as having no direction, so NULL is returned.
Concatenating HLABEL(xi, y) with DIR(xi, xi.head, y), head
information HEAD(xi, y) is defined.

In addition to the head information, we add de-
pendent information by defining function DEP(xi, y)
as follows:

DEP(xi, y) = HASDEP(xi, y, L) ◦ DLABEL(xi, y, L)

∪ HASDEP(xi, y,R) ◦ DLABEL(xi, y,R) (4)

where HASDEP(xi, y, L/R) returns TRUEL/R if a word has any
left (L) or right (R) dependents; otherwise, it returns FALSE.
In addition, DLABEL(xi, y, L/R) returns a set of the depen-
dency labels of obligatory left/right dependents. Here, we define
obligatory dependents as dependents which have the following
dependency relation labels: “SUB,” “OBJ,” “PRD,” or “VC”
in the Penn Treebank, and “nsubj,” “nsubjpass,” “dobj,” “iobj,”
“csubj,” “csubjpass,” or “ccomp” in UD.

In previous work on supertag design, Foth et al. [7] define
DEP(xi, y) as the function that encodes the order of depen-
dents as well as the dependent labels. However, we do not
consider the order to avoid increasing the number of tags. As
DLABEL(xi, y, L/R), Ouchi et al. [4] limited only the obliga-
tory dependents of verbs. In this work, we take into account all
the obligatory dependents and are not limited to only verbs.

Based on Eqs. (3) and (4), we define various granularity-
level supertag sets by ablating each function. Table I shows our
seven supertag sets. STAG-A is the most basic instantiation with
all the functions. Ablating the function DLABEL from STAG-A,
STAG-B is instantiated, which encodes no dependency labels for
obligatory dependents and corresponds to Model 1 proposed by
Ouchi et al. [4]. Similarly, other supertag sets are instantiated
by ablating other functions.
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TABLE I
SUPERTAG SETS

HLabel Dir hasDep DLabel

STAG-A ◦ ◦ ◦ ◦
STAG-B ◦ ◦ ◦ ×
STAG-C ◦ ◦ × ◦
STAG-D ◦ × × ◦
STAG-E ◦ ◦ × ×
STAG-F × ◦ ◦ ×
STAG-G ◦ × × ×

TABLE II
EXAMPLES OF SUPERTAG NOTATIONS

She kept a cat .

STAG-A subj/R root+subj/L_obj/R det/R obj/L punct/L
STAG-B subj/R root+L_R det/R obj/L punct/L
STAG-C subj/R root+subj_obj det/R obj/L punct/L
STAG-D subj root+subj_obj det obj punct
STAG-E subj/R root det/R obj/L punct/L
STAG-F R L_R R L L
STAG-G subj root det obj punct

C. Supertag Notation

Supertag notations for each supertag set can be defined ar-
bitrarily. As an example, we introduce our notations for each
supertag set, shown in Table II.

For instance, consider the word “kept” in the example sen-
tence in Fig. 2. This word has root+L/subj_R/obj as its
supertag for STAG-A. First, we encode the head information of
“kept” using the functions in Eq. (3):

HLABEL(xi = kept, y = y′) = root

DIR(xi = kept, xi .head = ROOT, y = y′) = NULL

where function HLABEL returns the dependency label root on
the edge between “ROOT” and “kept,” and function DIR returns
the head direction NULL. Concatenating these results, we obtain
the following head information:

HEAD(xi = kept, y = y′) = root ◦ NULL = root

where the head information root ◦ NULL is converted into the
supertag notation as root, in which NULL is not literally spec-
ified. Note that if the direction is “L” (or “R”), we convert it as
root/L (or root/R).

We then encode dependent information using Eq. (4). The
word “kept” has the following dependent information:

HASDEP(xi = kept, y = y′, L) = TRUEL

HASDEP(xi = kept, y = y′, R) = TRUER

DLABEL(xi = kept, y = y′, L) = {subj}
DLABEL(xi = kept, y = y′, R) = {obj}

where function HASDEP returns a boolean variable of
{TRUEL/R , FALSEL/R}, and function DLABEL returns a set of
dependency labels of all the left/right dependents, which means
that, for example, if the target word has two left dependents
with the labels “obj” and “prep,” DLABEL returns {obj, prep}.

Concatenating these results, we obtain the following dependent
information:

HASDEP(xi =kept, y=y′, L) ◦ DLABEL(xi =kept, y=y′, L)

= TRUEL ◦ {subj} = {subj/L}
HASDEP(xi =kept, y=y′, R) ◦ DLABEL(xi =kept, y=y′, R)

= TRUER ◦ {obj} = {obj/R}

where TRUEL is converted into “L” and concatenated with
{subj} into left information set {subj/L}, and the right de-
pendent information is converted into {obj/R} in the same
way. Note that, if DLABEL returns {obj, prep}, the dependent
possession information “L” is concatenated with each depen-
dent label, i.e., {obj/L, prep/L}. We then compute the union
of the left and right dependent information sets:

{subj/L} ∪ {obj/R} = {subj/L, obj/R}
= subj/Lobj/R

where “ ” is used to concatenate each element.
Finally, based on Eq. (2), we concatenate the obtained head

and dependent information:

STAG(xi = kept, y = y′) = root ◦L/subjR/obj
= root + L/subjR/obj

where “+” indicates the boundary of the head and dependent
information. Depending on each supertag set, different syntac-
tic information is ablated from STAG-A and encoded for each
supertag, as shown in Table II.

V. SUPERTAGGING FOR DEPENDENCY PARSING

To exploit supertags in transition-based dependency parsing
systems, we need to automatically assign them to each word.
We conduct the automatic assignment of our designed supertags
by adopting the same approach used in sequence labeling tasks
such as POS tagging.

A. Automatic Supertag Assignment

We build a supertagger to assign supertag y of supertag set Y
to the i-th word xi in a sentence in a left-to-right manner, based
on the following equation:

ŷ = argmax
y∈Y

w φ(xi, y) (5)

where the score of supertag y is computed by the dot-product of
weight vector w and feature vector φ, and the highest scor-
ing supertag ŷ is picked for assignment to target word xi .
The weight vector is parameterized using training data. The
feature vector is defined using feature templates. We extract
features from a 7-word window (the feature window) sur-
rounding target word xi using the feature templates shown in
Table IV.

We define Unigram, Bigram, and History feature templates.
As the Unigram feature templates, we use the surface word
forms and POS tags of the words in the feature window. As
the Bigram feature templates, we define conjunctive features by
concatenating the surface word form and POS tag information
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TABLE III
SUPERTAG STATISTICS

WSJ-YM WSJ-ST UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.

STAG-A 321 896 998 916 1209 680 655 630 847.50
STAG-B 79 231 183 227 216 186 233 175 203.33
STAG-C 165 528 522 431 558 370 306 360 424.50
STAG-D 127 412 442 321 445 305 237 300 341.67
STAG-E 21 85 57 64 61 55 74 64 62.50
STAG-F 12 12 12 11 11 11 11 11 11.17
STAG-G 12 49 31 33 32 30 39 38 33.83

TABLE IV
FEATURE TEMPLATES OF SUPERTAGGING MODELS

NAME FEATURE WINDOW FEATURE TEMPLATE

Unigram for p in xi−3 , xi−2 , xi−1 , xi , xi + 1 , xi + 2 , xi + 3 〈p.t〉, 〈p.w 〉
Bigram for p, q in (xi , xi + 1 ), (xi , xi + 2 ), (xi , xi + 3 ), (xi−1 , xi ), (xi−2 , xi ),

(xi−3 , xi ), (xi + 1 , xi + 2 ), (xi−2 , xi−1 )
〈p.t ◦ q .t〉, 〈p.w ◦ q .w 〉

History 〈xi−1 .stag〉, 〈xi−1 .stag ◦ xi .t〉, 〈xi−2 .stag〉, 〈xi−2 .stag ◦ xi .t〉,
〈xi−2 .stag ◦ xi−1 .stag〉, 〈xi−2 .stag ◦ xi−1 .stag ◦ xi .t〉

NOTATION: Feature conjunction = ◦; xi is the i-th word in the sentence; w = word form; t = POS tag; stag = supertag

of some specific pairs of the words in the feature window. In
addition to these feature templates, we dynamically utilize the
supertags that have already been predicted during the tagging
process as features. When assigning a supertag to target word
xi in the feature window, the previous words, such as xi−1 and
xi−2 , have already been assigned a supertag, which is expected
to be helpful for predicting the supertag of the target word.
Hence, we define the History feature templates by combining
those supertags assigned to xi−1 and xi−2 with the POS tags
or surface word forms. A supertagging model instantiates the
features from those feature templates. Using the supertags au-
tomatically predicted by the supertagging model, we conduct
dependency parsing.

B. Supertag Features for Dependency Parsing

We employ the arc-standard model as a transition-based de-
pendency parsing system. Specifically, the system chooses the
highest scoring next transition t̂ at each configuration c based
on the following equation:

t̂ = argmax
t∈T

w φ(t, c) (6)

where the score of transition t is computed by the dot-product
of weight vector w and feature vector φ, and the highest scoring
transition ŷ of the possible transition set T is picked up as
the next transition. The weight vector is parameterized using
training data. The feature vector is defined with the feature
templates shown in Table V. Each feature template is defined
with information drawn from the feature window, which consists
of the top three words (or partial structures) on the stack and the
first three words on the buffer.

Unigram, Bigram, and Structural features are based on the
features used in [18] and [19] with some modifications, which
we call Base Features. In contrast, Uni-Stag and Bi-Stag are
novel feature templates related to supertags, which we call
Supertag Features.

For the Uni-Stag features (〈p.stag〉), we use the supertag
of the words p within the feature window. To consider more
context, the Bi-Stag features look at pairs of supertags. For some
specific pairs (p, q) of the words within the feature window,
we set conjunctive features, such as conjunction of the two
supertags (〈p.stag ◦ q.stag〉).

VI. EXPERIMENTS

This section presents the experiments and results
for supertagging and transition-based dependency parsing
exploiting supertags.

A. Datasets

We performed experiments on English dependency parsing
and multilingual dependency parsing.

English Dependency Parsing
For English dependency parsing, we performed experiments

on the Wall Street Journal part of the Penn Treebank (PTB)
dataset [20]. We converted the constituent trees into two types of
dependency format: Yamada and Matsumoto head rules (PTB-
YM) [10] using Penn2Malt2 and Stanford dependencies (PTB-
SD) [21] using the converter3. We adopted the standard splits,
using sections 2–21 for training, section 22 for development,
and section 23 for testing. We assigned POS tags to the training
data by ten-fold jackknifing, following [19]. The development
and test sets were automatically tagged by the tagger trained on
the training set.

Multilingual Dependency Parsing
For multilingual dependency parsing, we used the Univer-

sal Dependencies (UD; release 1.3) data set [22]. This data
set has cross-linguistically consistent treebank annotation for
many languages. The annotation scheme is an extension of

2http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.jar
3http://nlp.stanford.edu/software/stanford-dependencies.shtml

http://nlp.stanford.edu/software/stanford-dependencies.shtml
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TABLE V
FEATURE TEMPLATES FOR THE arc-standard MODEL

NAME FEATURE WINDOW FEATURE TEMPLATE

Unigram for p in s0 , s1 , s2 , b0 , b1 , b2 〈p.t〉, 〈p.w 〉, 〈p.t ◦ p.lc.t〉, 〈p.t ◦ p.rc.t〉, 〈p.t ◦ p.lc.t ◦ p.rc.t〉
Bigram for p, q in (s2 , s1 ), (s1 , s0 ), (s0 , b0 ), (b0 , b1 ), (b1 , b2 ) 〈p.t ◦ q .t〉, 〈p.w ◦ q .w 〉, 〈p.t ◦ q .w 〉, 〈p.w ◦ q .t〉,

〈p.t ◦ q .t ◦ p.lc.t ◦ q .lc.t〉, 〈p.t ◦ q .t ◦ p.rc.t ◦ q .lc.t〉,
〈p.t ◦ q .t ◦ p.lc.t ◦ q .rc.t〉, 〈p.t ◦ q .t ◦ p.rc.t ◦ q .rc.t〉

Structural for p in s0 , s1 , s2 , b0 , b1 , b2 〈dist(p, p.lc) ◦ p.t〉, 〈dist(p, p.rc) ◦ p.t〉, 〈p.nd ◦ p.t〉
for p, q in (s2 , s1 ), (s1 , s0 ), (s0 , b0 ), (b0 , b1 ), (b1 , b2 ) 〈dist(p, q)〉, 〈dist(p, q) ◦ p.t ◦ q .t〉

Uni-Stag for p in s0 , s1 , s2 , b0 , b1 , b2 〈p.stag〉
Bi-Stag for p, q in (s2 , s1 ), (s1 , s0 ), (s0 , b0 ), (b0 , b1 ), (b1 , b2 ) 〈p.stag ◦ q .stag〉, 〈p.stag ◦ q .t〉, 〈p.t ◦ q .stag〉, 〈p.stag ◦ q .w 〉,

〈p.w ◦ q .stag〉

NOTATION: Feature conjunction = ◦; si =i-th word on the top of the stack; bi = i-th word in the buffer; lc = left-most dependent; rc = right-most dependent; w = word form; t
= POS tag; stag = supertag; dist(p, q) = word distance between p and q ; nd = 1 if the word has no dependent, otherwise 0

the Stanford dependencies [21], [23], [24], Google univer-
sal part-of-speech tags [25], and the Interset interlingua for
morphosyntactic tagsets [26].

For the target languages, we chose six languages from differ-
ent language branches: Arabic (AR) from the Semitic languages,
German (DE) from the Germanic Languages, Spanish (ES)
from the Italic languages, Indonesian (ID) from the Malayo-
Polynesian languages, Russian (RU) from the Slavic languages,
and Chinese (ZH) from the Sinitic languages. In some language
data sets, there are no fine-grained POS tags, and in that case,
we used the coarse-grained ones.

B. Supertagging Experimental Setup

To parameterize the supertagging models, we used the av-
eraged perceptron [27] with max violation updates [28]. The
number of iterations was to 10. For decoding, we exploited
beam search with a beam width of 8. Table III shows the size of
each target supertag set.

C. Parsing Experimental Setup

To parameterize the parsing models, we used the averaged
perceptron with max violation updates in the same manner as
the supertagging experiments. The number of iterations is set to
20. For decoding, we exploited beam search with a beam width
of 16. To evaluate the utility of the supertags for arc-standard
dependency parsers, we used the parsers without supertags as
the baseline and compared them with the parsers with supertags.

The supertags used for the parsers were automatically pre-
dicted. Following the same procedure as automatic POS tag-
ging, we assigned the proposed supertags to the training data
by ten-fold jackknifing. For the development and test data, we
automatically assigned the supertags using a supertagger trained
on the whole training data.

VII. RESULTS AND ANALYSIS

A. Results for Suppertagging

Accuracy of Supertagging
Table VI shows the accuracy of supertagging, which suggests

what kind of syntactic information is easy or difficult to predict
as sequential labeling.

In all the languages, the results of STAG-F or STAG-G have the
highest accuracy. As Table I shows, STAG-F encodes the head
directionality and left/right dependent possession information,
and STAG-G encodes the dependency label on the edge between
the target word and its head. Generally, because smaller tag
sets tend to be easier to predict than larger ones, the accura-
cies of the two supertag sets are higher than others. However,
in the six languages of UD, although STAG-F is smaller than
STAG-G, the average STAG-G accuracy (88.44% on average for
the six UD languages) is higher than the average STAG-F ac-
curacy (87.35%). This suggests that it is not always difficult
to predict larger tag sets and, furthermore, the prediction com-
plexity changes according to what information the target tag
set encodes. The results for STAG-F suggest that the syntactic
information encoded by STAG-F is more difficult to predict as se-
quential labeling task than the head dependency labels encoded
by STAG-G in the majority of languages.

Similarly, regardless of the tag set size, the predic-
tion accuracy of STAG-B (82.45/88.94/88.92% for UD-
Avg./PTB-YM/PTB-SD) is lower than STAG-C accuracy
(83.42/89.71/89.67% for UD-Avg./PTB-YM/PTB-SD). These
two tag sets differ with respect to the encoded syntactic in-
formation for dependents. STAG-B encodes the left/right de-
pendent possession information for each target word regardless
of whether the dependents are adjunct or core arguments. In
contrast, STAG-C encodes the dependency labels only if the de-
pendents are core arguments. This suggests that whether the
syntactic information relevant to adjunct arguments is encoded
or not cause performance variation. Because STAG-A encodes
both the dependent possession and core argument labels as well
as the head information, it is more difficult to predict than
STAG-B and STAG-C.

STAG-D is built by ablating the head directionality informa-
tion from STAG-C, so that STAG-D is smaller than STAG-C,
which leads to a performance boost relative to STAG-C. Sim-
ilarly, STAG-E is built by ablating the dependency labels for
core arguments from STAG-C and hence encodes only syntactic
information relevant to heads. The performance boost relative
to STAG-C is also observed. Comparing STAG-D with STAG-E,
a noticeable difference in average accuracy is not observed, but
the results within each language differ. For instance, in Ger-
man (UD-DE), the accuracy for STAG-D is higher by over 2.5
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TABLE VI
SUPERTAGGING RESULTS

PTB-YM PTB-SD UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.

STAG-A 88.05 87.75 79.58 76.17 83.13 80.51 78.74 82.03 80.03
STAG-B 88.94 88.92 82.98 78.47 85.43 82.94 81.10 83.80 82.45
STAG-C 89.71 89.67 83.60 79.78 86.14 84.18 83.22 83.60 83.42
STAG-D 90.77 90.84 85.04 84.89 88.00 86.48 86.20 84.27 85.81
STAG-E 90.56 90.71 87.18 82.25 88.32 87.16 85.73 85.60 86.04
STAG-F 91.61 91.81 89.20 83.76 89.32 87.99 85.99 87.85 87.35
STAG-G 91.60 91.86 88.77 87.45 90.31 89.24 88.60 86.25 88.44

NOTATION : Each number indicates an accuracy, and “UD-Avg.” indicates the macro average accuracy for each supertag set over the languages of UD.

points than STAG-E. On the contrary, in Arabic (UD-AR) and
Chinese (UD-ZH), the accuracy for STAG-E is higher by around
1-2 points than that for STAG-D. A detailed investigation of this
difference is a line of interesting future work.

B. Results for Dependency Parsing With Supertags

In this section, we describe the utility of the supertag features
in transition-based dependency parsing systems.

Accuracy of Dependency Parsing With Gold Supertags
The utility of supertag features for dependency parsing

changes according to each supertag set and supertagging accu-
racy. In order to check whether the proposed supertag sets and
supertag feature templates capture syntactic information that is
helpful for dependency parsing, we performed a parsing simu-
lation experiment in which the condition where an arc-standard
parser knows the correct (gold) supertags. In this simulated ex-
periment, the arc-standard model receives the correct supertags
and utilizes them as features. Table VII shows the unlabeled
attachment scores (UAS) and labeled attachment scores (LAS)
of the baseline parsers and parsers with the supertag features.

In English dependency parsing (PTB-MT for Yamada and
Matsumoto head rules and PTB-SD for Stanford dependencies),
the unlabeled attachment scores of STAG-A/B/F reached around
99%, which indicates that the derived dependency trees were
almost perfect. This implies that information provided by the
supertags is considerably helpful for the transition-based sys-
tem to determine the times at which reduce transitions should be
conducted. Consider the RIGHT-ARC transition, which adds an
arc from the second to the top word on the stack and removes the
top word from the stack. If there are any words in the buffer that
depend on the word on the top of the stack, RIGHT-ARC should
not be executed. The supertag sets STAG-A/B/F encode the head
directionality and dependent possession information, which can
implicitly tell the parser in which direction the second-top word
in the stack has its head and whether the top word has any depen-
dents in the buffer or not. Because this clue could supplement
word form and POS information, a parser was able to select and
accumulate the correct local transition under each configura-
tion. In fact, this result suggests that if transition-based systems
knew the correct supertags that encode the head directional-
ity and dependent possession information and could use them
as features, the dependency parsing problem would be solved
almost completely.

In multilingual dependency parsing, although the unlabeled
attachment scores were not as high as the ones for English de-
pendency parsing, STAG-A/B/F consistently occupied the top-3
highest UAS rankings over the six languages. The score differ-
ence between PTB and UD is likely to be caused by the data
size difference, i.e., the data size of PTB is much larger than that
of UD, so an investigation of the effect of increasing data size
is our interesting future work. In the labeled attachment scores,
STAG-F is inferior to STAG-A/B, which is consistent with En-
glish dependency parsing. This could be caused by the fact that
STAG-F does not encode the head dependency label.

Accuracy of Dependency Parsing With Predicted Supertags
To investigate the utility of our supertag sets in depen-

dency parsing in realistic situations, we performed experiments
in which transition-based systems exploited automatically
predicted supertags as features. Table VIII shows the unla-
beled attachment scores (UAS) and labeled attachment scores
(LAS) of the baseline parsers and the parsers with the supertag
features.

Overall, the parsers with supertag features outperform the
baseline. In particular, across the six languages of UD, a perfor-
mance boost of the parsers with STAG-B is observed, yielding
increases of around 1.0 point in UAS and 1.3 points in LAS. In
Spanish (UD-ES) and Indonesian (UD-ID), the biggest improve-
ments were achieved (+1.5 points in UAS and +2.0 points in
LAS). In English dependency parsing (PTB-MT, PTB-SD), al-
though the improvements of UAS/LAS were smaller than for the
six languages of UD, the supertag features worked effectively.
The biggest improvement (+0.34/+0.36 points in UAS/LAS of
PTB-MT and +0.44/+57 points in UAS/LAS of PTB-SD) was
achieved with STAG-B, which is the same tendency as in the
languages of UD.

Comparing the results with the gold and predicted supertags,
the predicted supertags of STAG-F were not as effective, although
the gold ones were useful for parsing. In English parsing, STAG-
F was not effective for improving UAS and LAS. In the six
languages of UD, although STAG-F was a little bit effective on
average (+0.41 points in UAS and +35 points in LAS), the im-
provement was the worst of the seven supertags. In contrast,
while the gold supertags of STAG-C/D/E/G did not have much
predictability compared with STAG-A/F, the predicted supertags
of STAG-C/D/E/G achieved almost the same UAS and LAS as
STAG-A and were better than STAG-F on average. In particular,
for LAS, the other supertag sets outperformed STAG-F (around
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TABLE VII
DEPENDENCY PARSING RESULTS WITH GOLD SUPERTAGS

PTB-YM PTB-SD UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.

BASELINE 92.60/91.31 92.00/89.33 80.51/74.89 84.53/77.97 86.43/81.62 84.01/78.08 83.37/77.32 83.35/79.48 83.70/78.23
STAG-A 99.06/99.01 98.47/98.27 90.50/89.62 95.03/94.22 95.27/94.87 93.40/92.37 92.69/91.61 96.20/95.42 93.85/93.02
STAG-B 99.10/99.08 98.65/98.55 90.95/90.50 95.71/95.05 95.86/95.65 94.17/93.63 93.74/93.03 96.76/96.27 94.53/94.02
STAG-C 97.77/97.77 96.88/96.78 87.13/86.71 90.52/90.12 93.06/92.93 89.66/89.16 89.38/88.99 95.37/94.97 90.85/90.48
STAG-D 98.44/98.44 96.10/96.00 88.41/88.31 93.62/93.39 94.23/94.23 91.17/91.09 91.02/90.75 95.64/95.47 92.35/92.21
STAG-E 98.45/98.43 96.88/96.76 88.54/88.15 93.36/92.95 94.00/93.86 90.85/90.46 90.85/90.31 95.36/94.88 92.16/91.77
STAG-F 98.77/97.10 98.65/95.23 90.67/83.41 96.78/88.00 95.52/89.83 94.44/87.20 94.59/86.64 95.98/91.20 94.66/87.71
STAG-G 97.65/97.65 96.17/96.15 86.70/86.63 90.61/90.39 92.88/92.86 89.74/89.61 89.57/89.32 95.41/95.41 90.82/90.70

NOTATION: Each number indicates UAS/LAS, in which “UAS” is the unlabeled attachment score and “LAS” is the labeled attachment score.

TABLE VIII
DEPENDENCY PARSING RESULTS WITH PREDICTED SUPERTAGS

PTB-YM PTB-SD UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.

BASELINE 92.60/91.31 92.00/89.33 80.51/74.89 84.53/77.97 86.43/81.62 84.01/78.08 83.37/77.32 83.35/79.48 83.70/78.23
STAG-A 92.80/91.61 92.38/89.89 81.26/76.18 85.05/79.09 87.65/83.55 85.26/79.55 83.17/77.57 83.77/79.71 84.36/79.28
STAG-B 92.94/91.67 92.44/89.90 81.50/76.33 85.01/78.96 87.72/83.48 85.43/79.86 83.82/78.15 84.33/80.40 84.64/79.53
STAG-C 92.59/91.37 92.23/89.85 81.17/76.22 85.09/79.31 87.86/83.69 84.96/79.26 83.63/77.98 84.19/80.35 84.48/79.47
STAG-D 92.65/91.47 92.33/89.85 81.13/75.94 84.86/79.09 87.65/83.48 85.13/79.57 83.42/77.76 84.00/80.24 84.37/79.35
STAG-E 92.72/91.55 92.24/89.83 81.00/76.05 85.00/79.34 87.50/83.43 85.55/79.79 83.42/77.75 83.63/79.89 84.35/79.38
STAG-F 92.48/91.25 92.19/89.50 81.05/75.51 84.76/78.03 87.00/82.19 84.80/78.93 83.78/77.73 83.25/79.10 84.11/78.58
STAG-G 92.51/91.33 92.19/89.72 81.15/76.30 85.04/79.07 87.86/83.57 85.09/79.47 83.66/77.92 83.72/80.04 84.42/79.40

NOTATION: Each number indicates UAS/LAS, in which “UAS” is the unlabeled attachment score and “LAS” is the labeled attachment score.

TABLE IX
F1 SCORES ACCORDING TO THE DEPENDENCY DISTANCES

PTB-YM PTB-SD UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.

root 95.15/96.10 93.60/94.52 93.32/93.18 86.28/87.51 85.04/89.05 87.61/89.05 90.58/90.18 79.40/79.20 87.04/88.03
1 96.72/96.87 96.34/96.53 94.27/94.59 92.44/92.84 95.85/96.09 95.09/95.45 93.87/94.16 94.71/94.66 94.37/94.63
2 94.14/94.42 93.86/94.08 80.04/81.54 87.27/88.42 91.99/93.53 84.50/85.93 87.20/87.93 86.64/87.46 86.27/87.47
3-6 90.92/91.39 90.57/91.27 74.71/76.71 84.80/85.19 85.03/85.76 79.80/82.21 80.01/79.81 83.69/84.24 81.34/82.32
7- 86.28/87.15 85.08/85.90 69.23/71.20 82.55/83.41 72.37/76.01 73.45/74.23 67.01/67.53 75.68/77.33 72.81/74.70

NOTATION: Each number is “Baseline-F1/Stag-F1,” “root” indicates the root identification, and “1/2/3-6/7-” indicates the distance (the number of words) between a target word
and its head.

+0.8 points), which suggests that it is better to encode the de-
pendency label on the edge between the target word and its head
for dependency parsing.

In addition to such head information, we wished to know
which syntactic information of dependents could contribute
to the improvements of UAS and LAS. To investigate
this question, we compare the results of STAG-B/C/E, in
which STAG-B encodes HLABEL/DIR/HASDEP, STAG-C encodes
HLABLE/DIR/DLABEL, and STAG-E encodes HLABEL/DIR.
Comparing STAG-C with STAG-E, they obtain much the same
in UAS and LAS for both English and multilingual parsing set-
tings. Comparing STAG-B with STAG-C, STAG-B outperformed
STAG-C in both settings. These results suggest that the depen-
dency labels of core arguments (DLABEL) are not always effec-
tive and the dependent possession information (HASDEP) con-
tributes to the improvements of UAS and LAS.

Effects of Distance
To more deeply understand the characteristics of the parsers

with supertags, we describe the parsing performance (F1

score) according to the dependency distance, which rep-
resents the distance between a target word and its head
word. Table IX shows the F1 scores of the baseline parser
and parser with STAG-B (the supertag set that achieved
the highest UAS/LAS on average) for each dependency
distance.

Overall, the supertags helped improve the identification of the
longer distance dependencies. For distances over seven words
(7-), a performance boost is observed, yielding an increase of
around 2.0 points on average over the six languages of UD.
Similarly, English dependency parsing is improved by around
1.0 point.

The F1 scores of the root identification are improved on av-
erage as well. However, there is a performance gap between the
languages. While the scores of English, German, Spanish, and
Indonesian are drastically improved by the supertags, the scores
of Arabic, Russian, and Chinese slightly decrease. A more de-
tailed investigation of this is an interesting direction for future
work.
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TABLE X
UAS/LAS OF DEPENDENCY PARSERS IN PREVIOUS WORK

UAS LAS

Yamada & Matsumoto 2003 [10] 90.3 -
Zhang & Clark 2008 [14] 91.4 -
Huang & Sagae 2010 [19] 92.1 -
Zhang & Nivre 2011 [2] 92.9 91.8
Bohnet & Nivre 2012 [29] 93.38 92.44
Ouchi et al. 2014 [4] 91.35 -
Chen & Manning 2014 [30] 91.8 89.6
this work 92.94 91.67

C. Comparison With Existing Parsers

We compared our English parser with representative
transition-based dependency parsing systems that use the Penn
Treebank of Yamada & Matsumoto head rules (PTB-YM),
i.e., the transition-based parser with a support vector ma-
chine of [10], pure transition-based parser of [14], dynamic-
programming arc-standard parser of [19], arc-eager parser with
rich non-local features of [2], transition-based joint POS tagging
and parsing system of [29], easy-first parser with supertags of
[4], and transition-based parser using neural networks of [30].

Table X shows the UAS and LAS on the test set. For our parser,
we selected the highest scoring parser with STAG-B, and this
parser is comparable to the previous systems. Although Ouchi
et al. [4] used the same supertag set as STAG-B, our parser in this
work outperformed it by over 1.5 points because we employed
a more sophisticated parser, the arc-standard system with beam
search.

However, the transition-based systems of [29] are slightly
better than our parser. One of the possible explanations is that
their system is a joint model for POS tagging and dependency
parsing, and hence employs higher-order features, such as third-
order features, which are not utilized in our system. They use
such features by dynamically extracting them from the partial
tree structures built during the parsing process (what we call
dynamic features). Although such dynamic higher-order fea-
tures are available after partial tree structures are constructed,
they capture a wider context, which could lead to the high per-
formance. On the contrary, supertags capture second-order in-
formation because they consist of head and dependent infor-
mation, and supertag features are always available regardless
of such partial tree structures, which help improve the parsing
performance. As an interesting issue, it remains for us to de-
termine how these different types of features interact with or
complement each other when both features are leveraged in a
transition-based system.

VIII. CONCLUSION

In this work, we presented a supertag design framework that
is flexible so that various supertag sets may be designed. Based
on the framework, we instantiated various granularity supertag
sets that encode rich syntactic information. In previous work,
syntactic information, such as the head and dependents of a
word, cannot be used as features before partial tree structures

are constructed [2]. However, by exploiting the supertags as fea-
tures, we can utilize fine-grained syntactic information without
waiting for partial trees to be built.

To investigate the utility of these supertag features, we have
performed the experiments in multilingual dependency parsing
as well as English parsing. The experimental results suggest the
following:

1) Overall, our proposed supertag sets are effective for En-
glish and multilingual dependency parsing.

2) In particular, the supertag set that encodes the head direc-
tionality/head labels/dependent possession achieves the
highest UAS and LAS.

3) Supertags contribute to the resolution of long distance
dependencies.

Based on our proposed supertag design framework, we
instantiated the seven supertag sets and used them as fea-
tures for dependency parsers. For six languages that be-
long to different language branches as well as English,
the supertag sets contributed to the improvements of UAS
and LAS.

Comparing the results of the supertag sets, we found that in
order to improve dependency parsing, it is critical to encode
the head directionality, head label, and dependent possession
information as supertags. In particular, the head label informa-
tion is crucial for improving LAS. In contrast, the obligatory
dependent labels do not improve the results.

Analyzing the results from the aspect of dependency dis-
tances, supertags especially contributed to the improvements in
long distance dependency prediction. Long distance dependen-
cies have been regarded as a troublesome problems in depen-
dency parsing. Our experimental results suggest that supertags
could be a solution to this problem.

As our future research, we would like to investigate the in-
teraction of supertag features with higher-order features and
explore linguistic entities that capture structurally richer infor-
mation, such as subtree structures.
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