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Experiments and Results

» Sentences are ranked by similarity scores and distributed Data
evenly into shards. Language pairs: de-en, ru-en

» General domain data (57 million): OpenSubtitles2018,
1 2 3 4
) Low

1 WMT2017 (Europarl, UN Parallel Copus, news commentary,
High (similarity score Rapid corpus, Common Crawl, Yandex, Wikipedia titles)
in-domain-like in-domain-unlike * In-domain data (15k): TED talks, Patents
* unlabeled-domain data (13.6 million de-en, 3.7 million ru-en);
web-crawled bitext from Paracrawl project

Overview

Curriculum Learning Training Strategy

Two significant challenges for neural machine translation (NMT):
Domain mismatch & scarce in-domain data

Existing data selection methods for domain adaptation;

- Assume large unlabeled-domain corpus, select subset that is similar
to in-domain text

- Problem: No clear-cut way to define whether a sample is sufficiently
similar to in-domain data to be included in training; need to try
different thresholds

shards

* The training process Is segmented into consecutive

hases, where only a subset of shards are available for _ _
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* The presentation order of samples is not deterministic:
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code: https://github.com/kevinduh/sockeye-recipes/tree/master/egs/curriculum
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