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Precise segmentation and identification of thoracic vertebrae is important for many medical imaging
applications though it remains challenging due to the vertebra’s complex shape and varied neighboring
structures. In this paper, a new method based on learned bone-structure edge detectors and a coarse-to-
fine deformable surface model is proposed to segment and identify vertebrae in 3D CT thoracic images. In
the training stage, a discriminative classifier for object-specific edge detection is trained using steerable
features and statistical shape models for 12 thoracic vertebrae are also learned. For the run-time testing,
we design a new coarse-to-fine, two-stage segmentation strategy: subregions of a vertebra first deform
together as a group; then vertebra mesh vertices in a smaller neighborhood move group-wise to progres-
sively drive the deformable model towards edge response maps by optimizing a probability cost function.
In this manner, the smoothness and topology of vertebrae shapes are guaranteed. This algorithm per-
forms successfully with reliable mean point-to-surface errors 0.95 ± 0.91 mm on 40 volumes. Conse-
quently a vertebra identification scheme is also proposed via mean surface mesh matching. We
achieve a success rate of 73.1% using a single vertebra, and over 95% for 8 or more vertebra which is com-
parable or slightly better than state-of-the-art [5].

Published by Elsevier Inc.
1. Introduction

A precise vertebra segmentation and identification method is in
high demand due to its importance in many orthopaedic, neurolog-
ical and oncological applications. In this paper, we focus on tho-
racic vertebra where accurate segmentation and identification
can directly eliminate false findings on lung nodules in computer
aided diagnosis (Lung CAD) system [14,25,6]. However, this task
remains challenging due to the significant complexity of vertebrae,
i.e., within-class shape variation and different neighboring struc-
tures. An illustration of our motivation is shown in Fig. 1.

Several methods have been reported addressing segmentation
and/or identification of vertebra under different modalities
[24,17,4,13,15,5], e.g., magnetic resonance imaging (MRI) or com-
puted tomography (CT). Yao et al. [24] present a method to auto-
matically extract and partition the spinal cord in CT images, and
a surface-based registration approach for automatic lumbar verte-
bra identification is described in [4], where no identification was
carried out in either work. A hierarchical 3D segmentation method
of the lumbar spine in CT images with the definition of vertebral
body coordinate systems is described in [13]. In [15], Peng et al.
propose a vertebra detection and segmentation algorithm process-
ing 2D slices of MRI images, instead of the 3D volume as a whole.
Recently, Klinder et al. [5] propose a model-based solution for ver-
tebra detection, segmentation and identification in CT images.
They achieved very competitive identification rates of >70% for a
single vertebra and 100% for 16 or more vertebrae. However, their
identification algorithm is based on vertebrae active appearance
model (i.e., an averaged intensity volume block) for spatial regis-
tration and matching which is very computationally expensive
(20–30 min).

In this paper, we present a new automatic vertebra segmenta-
tion and identification method. Although this work mainly focuses
on thoracic vertebra (for potential lung applications), our approach
can be easily extended to cervical and lumbar vertebrae. The main
contributions of this paper are summarized as follows. First, we
introduce a learning based bone structure edge detection algo-
rithm, including efficient and effective gradient steerable features
and robust training data sampling. Second, we propose a hierarchi-
cal, coarse-to-fine deformable surface based segmentation method
based on the response maps from the learned edge detector, fol-
lowed with an efficient vertebra identification method using mean
shapes. Finally, promising results of both segmentation and identi-
fication are presented, compared with the state-of-the-art [5]. An
earlier version of this paper appears in [11].
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http://www.sciencedirect.com/science/journal/10773142
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Fig. 1. (a) Illustration of the human vertebra system: cervical, thoracic, lumbar and sacum sections (http://en.wikipedia.org/wiki/Vertebral_column). (b) Expected thoracic
vertebra segmentation result to delineate 3D vertebra boundary from surrounding soft tissues, including lung.

Fig. 2. Steerable features of x. Five red dots indicate sampling parcel associated
with x. Yellow arrow indicates the normal direction. Red and black arrows indicate
gradient rI and projection rI � n. (For interpretation of the references to color in
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2. Method

Due to complex neighboring structures around vertebra and
imaging noise, common edge detectors (e.g., Canny operator) often
produce leaking and spurious edge. To achieve robust edge detec-
tion, we develop a learning-based object specific edge detection
algorithm similar to semantic object-level boundary lineation in
natural and medical images [2,12,28,10].

2.1. Supervised bone edge detection

Bone-structures normally show high intensity/attenuation in CT
images. However, due to complex neighboring structures around
vertebra and imaging noise, common edge detectors (e.g., Canny
operator) do not perform well, often with leaking and spurious
edge.

We manually segmented 12 thoracic vertebrae from 20 CT vol-
umes for training, and generated corresponding triangulated sur-
faces using the Marching Cube algorithm [8], with about 10,000
triangular faces per vertebra model. It is observed that along the
normal direction of the bone boundary, the intensity values
roughly form a ridge pattern. Our new set of steerable features
are designed to describe the characteristics of boundary appear-
ance, which make it feasible for statistical training.

2.1.1. Gradient steerable features
For each triangle face of the surface mesh, we take 5 sampling

points (called a sampling parcel) along the face normal direction
with one voxel interval. Specifically, given x as a point on the nor-
mal line and n the unit normal vector, the sampling parcel associ-
ated with x is

PðxÞ ¼ fx� 2n; x� n; x; xþ n; xþ 2ng

For each of the 5 sampling points we compute three features: (1)
intensity I, (2) and (3) projections of gradient onto the normal direc-
tionr1I � n andr2I � n, wherer1I andr2I are gradient vectors com-
puted using derivative of Gaussian with two different kernel scales.
In total, the feature vector of a point x, denoted by FðxÞ, has 15
elements:

FðxÞ ¼ fIðyÞ;r1IðyÞ � n;r2IðyÞ � njy 2 PðxÞg
Fig. 2 illustrates the sampling parcel and its associated features. Our
steerable features are indeed oriented-gradient pattern descriptor
with easy computation.

2.1.2. Vertebra edge detector training
The training samples of positive and negative boundary voxels

are obtained from manually segmented vertebra meshes. For a tri-
angle face center c, we define the boundary parcel as

PðcÞ ¼ fc � 2n; c � n; c; c þ n; c þ 2ng

interior parcel as

Pðc � 3nÞ ¼ fc � 5n; c � 4n; c � 3n; c � 2n; c � ng

and exterior parcel as

Pðc þ 3nÞ ¼ fc þ n; c þ 2n; c þ 3n; c þ 4n; c þ 5ng

That is, the interior parcel is three voxels away backward from
boundary parcel while exterior parcel is the three voxels forward,
where 3 is adjustable. The corresponding feature vectors
FðcÞ; Fðc � 3nÞ; Fðc þ 3nÞ can be also computed. Then we label
FðcÞ as positive (i.e., boundary), and label both Fðc � 3nÞ and
Fðc þ 3nÞ as negative (i.e., non-boundary), as Fig. 3 (top-left). Thus,
this figure legend, the reader is referred to the web version of this article.)

http://en.wikipedia.org/wiki/Vertebral_column


Fig. 3. (a) Surface template perfectly aligned with the true boundary. (b) Disturbed surface template overlapped within the volume. Green plus and yellow minus signs are
positive or negative sample samples, respectively. (c) Response map of vertebra edge detection in the section view of 3D CT volume. The red curve indicates the template
surface while the green dots are the voxels classified as boundary points with likelihood values >0.8. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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each triangle face provides one positive data example and two neg-
ative examples. Given one vertebra surface mesh with about 10,000
faces, sufficient and adequate training feature vectors are obtained.
Note that a single and unified bony edge detector will be learned for
all 12 thoracic vertebrae. Compared with implicit object ‘‘inside–
outside’’ learning1 [27,10,16], our boundary/non-boundary delinea-
tion strategy directly focuses on modeling the runtime boundary
localization process (i.e., explicitly moving towards classified bound-
ary positives), and is expected to have higher precision.

The feature vectors depend on the normal direction of triangle
faces and consequently the edge detector is sensitive to the initial-
ization of the surface template. In our experimental setup, the sur-
face model is first roughly registered with images by automatic
detection [9,28,23] or manual alignment, thus the normal direction
of the surface model cannot perfectly coincide with the true bony
normal. To make the detector more robust to mis-alignment errors
and the later deformable model convergent, it is important that we
synthesize some ‘‘noisy’’ training samples by stress testing. Partic-
ularly, we add some random perturbations to the orientations and
scales of the template model so that the template surface model
does not accurately overlap with the manual segmentation. Con-
sidering a similarity transform, a random number between 0.9
and 1.1 for each of the three scales, and a random angle between
1 The boundary has to be further inferred from the transition of (object) internal
positives and external negatives in prostate or polyp segmentation [27,10] which may
not be trivial.
� p
10 and p

10 for each of the three orientation angles are used. The
true boundary parcels, as well as interior and exterior parcels are
defined using ground truth positions but with perturbed template
surface normals. Refer to Fig. 3 (top-right) for an illustrative exam-
ple. Their corresponding feature vectors are consequently calcu-
lated (with the disturbed face normals) and added into our
training sets. The random perturbation process is repeated 10
times for each training mesh to guarantee sufficient noisy training
samples. We then train a Linear or Quadratic Discriminant (LDA,Q-
DA) classifier [3] based on the combined non-perturbed and per-
turbed feature vectors. Both LDA and QDA are evaluated and we
find that LDA yields more robust results. The experiment results
are computed with LDA. Finally, given a voxel x and its feature vec-
tor FðxÞ, our classifier assigns a value LðxÞ 2 ½0;1:0� which indi-
cates the likelihood of x being boundary point.

Our method is conceptually simple and easy to compute com-
pared with boundary detectors learned using tens of thousands
of 3D Haar features [20] or steerable features [28,10,7] with hierar-
chical boosting framework [22,19]. Due to our effective coarse-to-
fine deformable model, it also alleviates the requirement or burden
of generating perfect boundary response maps where even more
sophisticated methods [28,10,7] still produce noisy responses. In
general, per-voxel class conditional labeling is non-trivial and
needs spatial regularization for smooth results. Note that here
we only need to train one classifier for detecting all 3D (thoracic)
vertebra bone boundaries coupled with our deformation model
(Non-Gaussian), while active shape model [1] based deformation



Fig. 4. Subregions of the surface. Subregions are illustrated in different colors. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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(Gaussian) needs to build several individual boundary detectors for
successive organ parts of 3D liver segmentation in CT images [7].
2.2. Segmentation: Coarse-to-fine deformation

In this work, our research is focused on providing an automatic
vertebra segmentation and identification module instead of detect-
ing the pose of vertebra. We manually initialize the position and
orientation of the template surface using landmarks so that the
surface model roughly coincides with the vertebrae to be seg-
mented in the 3D volume. The automatic algorithm for detection
and localizing vertebra [30,18] is also used for evaluation later,
using similar strategies as sparse redundant anatomical landmark
Fig. 5. (a and b) Deformation of left transverse process. (a) Dot curves indicate searchin
optimal position. (b) Subregion deformation result. (c and d) Deformation of patches. (c)
response. The green dots indicates the optimal displacement. (d) Patch deformation res
referred to the web version of this article.)
detections [29] or marginal space learning [9,28] in the full 3D vol-
umetric domain.

The main idea of segmentation is to deform the surface tem-
plate mesh towards boundary points detected by the learned edge
detector. After the surface template is initially positioned in a new
volume (the template can be initialized using similar strategies as
marginal space learning [9,28] for 3D organ localization), the edge
detector calculates the edge likelihoods LðxÞ for voxels along the
normal directions of all mesh faces so that a response map is gen-
erated. As shown in Fig. 3 (bottom-right), this response map is
informative but unavoidably noisy. If we just deform each face to-
ward its most-likely boundary position independently, the shape
of vertebrae may not be retained. Hence some constraints to guar-
antee the surface shape topology and smoothness during deforma-
tion/segmentation must be enforced. To guarantee the surface
shape topology and smoothness during deformation/segmenta-
tion, we propose a hierarchical deformation scheme of first per-
forming deformation of subregions; then performing patch-wise
deformation (i.e., points in the same neighborhood move together).

2.2.1. Deformation of subregions
We manually divide the surface mesh into 12 subregions, as

indicated by Fig. 4. In order to maintain the shape of these subre-
gions, a similarity transformation to each subregion is applied such
that the total response of edge detection is maximum in the trans-
formed configuration. For a subregion S and some face center f on S,
we intend to find a similarity transformation bT satisfying

bT ¼ arg max
T2T

X
f2S

LðTðf ÞÞ ð1Þ
g of transformations of this subregion. In this case, the orange curve indicates the
Dot curve indicate displacing a patch in the normal direction for search of strongest
ult. (For interpretation of the references to color in this figure legend, the reader is
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where T is the set of similarity transformations T:

T ¼ R
Sx

Sy

Sz

0
B@

1
CAþ

Tx

Ty

Tz

0
B@

1
CA ð2Þ

Here R is a rotation matrix parameterized by three angles hx, hy, hz.
Searching the optimal T involves the 9-dimensional parameters
space of (Tx,Ty,Tz,Sx,Sy,Sz,hx,hy,hz). If we perform a exhaustive search
with 5 grid steps for each parameters, then possible transformation
is 59 which is computationally prohibitive. To reduce the search
space, we perform a three-stage search. First, search for (Tx,Ty,Tz)
with displacement {�4,�2,0,2,4} voxels for each translation; sec-
ond, with fixed ðbT x; bT y; bT zÞ, search for (Sx,Sy,Sz) with discretization
grids of {0.8,0.9,1.0,1.1,1.2} for each scaling; third, with fixed opti-
mal translation and scaling, search for (hx,hy,hz) with intervals of
{�p/10,�p/20,0,p/20,p/10} for each orientation. In this way, we
need to only consider 53 � 3 = 375 possible poses and select the
one with the strongest response as bT . This heuristic searching strat-
egy turns out to be effective in capturing the true pose of subregions
though it might be suboptimal. Fig. 5a illustrates the searching
process.

After the optimal similarity transformation is found for each
subregions, a smooth deformation of the whole surface can be ob-
tained using simple Gaussian smoothing. Let S1, S2, . . . , S12 denote
the twelve subregions, and T1, T2, . . . , T12 be the corresponding
optimal transform. Denote v to be an arbitrary vertex in the tem-
plate surface and u a vertex in a certain subregion. Then the new
position of v is

v 0 ¼ v þ k
X12

i¼1

X
w2Si

ðTiðwÞ �wÞKðw� vÞ
Fig. 6. The flowcharts of our vertebra segmentatio
where KðxÞ ¼ e�
x2

2r2 is the Gaussian kernel and k is a regulation
parameter. Fig. 5b shows the result of ‘‘deformation of subregion’’
stage. One can see the surface mesh is more closely aligned with
the true boundary through ‘‘articulated’’ similarity moves, although
in several areas, the surface mesh still has a certain distance from
the true boundary. This will be solved by the finer-scale deforma-
tion strategy described below.

2.2.2. Deformation of patches
After deforming the subregions, the surface mesh is approxi-

mately overlapped with the vertebra’s boundary in CT volume.
Next, we perform deformation on local neighborhoods of 200
patches divided from each vertebra mesh surface (each patch
may contain approximately 50 faces). For each patch (denoted as
PT), we compute its mean normal by this formula:

�n ¼ 1
N

X
f2PT

nðf Þ ð3Þ

where f is a face in the patch and n(f) is the unit normal of the face.
Then the patch is moved along its mean normal direction in search
of the strongest response, that is, we optimize this term:

î ¼ arg max
i

X
f2S

Lðf þ i�nÞ ð4Þ

where the search range is limited in i = �6, �5, . . . , 5, 6. Fig. 5c
shows the a patch is displaced along its mean normal direction in
search of the boundary. After all patches find their optimal displace-
ment, a smooth deformation of the surface is again obtained by
Gaussian smoothing. Fig. 5d shows the segmentation result of the
‘‘deformation of patches’’ stage. Clearly, the surface mesh now can
accurately capture the true boundary of the vertebra. The two-
n (left) and identification (right) algorithms.
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stage, coarse-to-fine deformation of surface model guarantees the
accuracy of segmentation as well as the smoothness of the shapes,
using articulated similarity transforms and nonrigid transform
respectively. In practice, we execute multiple rounds of Part- and
Patch-based deformation schemes. The iteration numbers are
empirically calibrated using cross-validation. In this paper, we
choose the iteration numbers as Pt = 3 (Part) and Ph = 4 (Patch) by
default.

Remark. Though the 12 subregions and patches are selected
manually during the model building, this does not require much
time (e.g., takes about 30 min for each thoracic vertebra 3D mesh
model). Once these models are selected, all other surface meshes
can be generated by deforming the first template against other
vertebra instances (i.e., 12 thoracic vertebra models are learned by
fitting one template mesh on one exemplar case and then
deforming on the other 9 instances2; each of the 12 vertebra
models has 12 subgroups). Hence, the subregions and patches are
inherited.
2.3. Identification using mean shapes

We applied the segmentation algorithm to 40 volumes at 1 mm
by 1 mm by 1 mm resolution, and 31–40 surface meshes are ob-
tained per thoracic vertebra, due to missing vertebrae in some vol-
umes. Vertex correspondence across meshes for each vertebra is
also directly available since surface meshes are deformed by the
same template. Therefore we can compute the mean vertebra
shapes by simply taking the arithmetic mean of corresponding ver-
tices’ positions. There are 12 thoracic vertebrae, namely
T1, T2, . . . , T12. Vertebra identification is to label a segmented ver-
tebra to be one of the twelve. In this context, given a single verte-
bra subvolume, we carry out the identification process by testing
which mean shape has the maximum response. Specifically, we
feed the 12 mean shapes to the vertebra volume one after another,
and calculate the supervised edge response scores without defor-
mation. The mean shape with the strongest response is determined
as the label of this vertebra.

Let M1, M2, . . . , M12 denote the twelve mean shapes and f, an
arbitrary face center in the mean shapes. One way to calculate
the responses is computing the overall likelihood of boundary:

î ¼ arg max
i

X
f2Mi

Lðf Þ ð5Þ

Another way is to count the number of faces with high probability
values as valid boundary points:

î ¼ arg max
i

X
f2Mi

1Lðf Þ>a ð6Þ

where a is a threshold. We find the second method is more robust
against outliers and noise, by tolerating up to (1 � a) portion of data
being polluted at the correct spatial configuration where a = 0.8 is
used for following experiments. We also extend the identification
method to multiple vertebrae (i.e., a vertebra string). By using more
context, multiple vertebrae identification is expected to have higher
success rate. Refer to Fig. 7 for the mean shapes. This process is
illustrated in Fig. 8.

The algorithm flowcharts of our proposed deformable vertebra
segmentation and identification algorithms are summarized in
Fig. 6.
2 In our fourfold cross validation setting, ten volumes are used to learn the mean
mesh shape model for each thoracic vertebra. Then these fitted models are applied on
other 30 volumes for deformable segmentation. This is that we use onefold for
training and three folds for testing.
3. Results

3.1. Data and experiment setup

We apply our automatic segmentation algorithm to 40 volumes
of thoracic scans and the evaluation is performed using fourfold
cross validation. These 40 volumes are randomly sampled from
our Lung CAD dataset [6] that was collected from multiple hospi-
tals in Asia, Europe and United States. Many types of Siemens,
GE, Philips and Toshiba scanners were used for the original data
acquisition. All 40 volumes have slice thickness ranging from
1.00 mm to 1.25 mm, with 512 by 512 (voxel) axial-slice resolu-
tion. The voxel size in axial-planes ranges from 0.782 mm to
1.12 mm. In Fig. 9, we illustrate the process for single vertebra
manual annotation and building surface mesh models of the
ground truth generation. From an original 3D Lung CT scan, we
manually localize and crop any thoracic vertebra. This step can
be replaced by the recent development of highly robust and fully
Fig. 7. Mean shapes of 12 thoracic vertebrae: (a) axial view and (b) sagittal view.



Fig. 8. The vertebra identification process pipeline.
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automatic spine labeling system (FAST-Spine) [18,30,23]. Then the
ITK Snap Tool is used to annotate or ‘‘paint’’ all vertebra voxels, fol-
lowed by surface generation M and smoothing from the annotated
vertebra mask. Optional mesh editing is used to fit the image
boundary as accurately as possible. The manual annotation proxi-
mately takes 1 h per vertebra by a medical student. The mesh mod-
els M (generated using the Marching Cubes algorithm [8] from the
annotated binary volume masks) of the same vertebra across CT
volumes (or different patients) do not have mesh correspondence,
but can be used for training our supervised bone boundary detec-
tor (as in Section 2.1). We further select one M0 per vertebra from
an anchor volume and deform M0 to align or register with Mk of the
same vertebra in another volume k to obtain M0k, via our coarse-to-
fine deformation method. Therefore the mesh correspondence
relationships are set up from M0 to any M0k where we also treat
them as ground truth. The mean mesh model per vertebra can be
further computed using the collection of M0; . . . ;M0k

� �
.

In implementation, we run the subregion deformation step
multiple (m) times followed by patch-based deformation n times,
where m and n are empirically optimized to be 3 and 4, respec-
tively. The supervised edge detection is performed at each iteration
to reflect the runtime vertebra mesh surface configuration. In



Fig. 9. The pipeline for single vertebra manual annotation and building surface mesh models of ground truth generation. (a) Original 3D CT image, (b) pre-processing of
vertebra localization, (c) manual segmentation via ITK Snap Tool (http://www.itksnap.org/), and (d) mesh generation and optional mesh editing.

Fig. 10. Segmentation results of four individual vertebrae (columnwise) in axial or sagittal and coronal views. Different vertebrae are featured in different colors. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Segmentation results of chosen volume in axial or sagittal or coronal view. Different vertebrae are featured in different colors. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Mean point-to-surface error and standard deviation for individual vertebra by manual
initialization.

Vertebra T1 T2 T3 T4 T5 T6

Mean error (mm) 1.05 1.11 1.03 0.93 0.99 0.92
Std deviation (mm) 0.96 0.97 1.04 1.03 1.31 0.92

Vertebra T7 T8 T9 T10 T11 T12
Mean error (mm) 0.83 0.75 0.89 0.79 0.94 1.21
Std deviation (mm) 0.56 0.59 0.68 0.50 0.63 1.16
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Figs. 10 and 11, we show some segmentation examples in axial,
sagittal or coronal views, for visual inspection. To quantitatively
evaluate our segmentation algorithm, we use the distance of a ver-
tex on the fitted mesh to the closest mesh point (not necessarily a
vertex) of the ground truth mesh which is generated from manual
segmentation. The mean point-to-surface error and the standard
deviation for individual vertebra is shown in Table 1. Highly reli-
able and accurate segmentation results have been achieved, with
the overall final mean error of 0.95 ± 0.91 mm [5] reports a compa-
rable accuracy level at 1.12 ± 1.04 mm.

For identification, we have an average success rate of 73.1%
using single vertebra. This success rate also varies regarding to a
specific vertebra where the rates for T5, T6, T7, T8 as 660% are
especially lower than others because these four vertebrae look
alike. Furthermore, when exploiting the vertebra strings or chains
for identification, the success rates are improved to increase with
longer string lengths. With a string of 7 or 8 and more vertebrae,
we achieve over 91% or >95% success rates, whereas rates are
�73.1% for one vertebra, �87%, 89% for 7 or 8 vertebra strings in



Fig. 12. Identification success rates of individual vertebra and stringed vertebrae.
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[5]. The success rates of individual and stringed vertebra identifica-
tion (via mean mesh shapes) are comparable or better than [5]
using intensity based matching, as shown in Fig. 12.

A volumetric mean appearance model is used for vertebra iden-
tification in [5], which seems more comprehensive than our shape
information alone. However we observe that in real cases, the var-
iability of neighboring structures is quite large due to patients’
pose variation. The adjacent vertebrae can be so close to each other
where the boundary is difficult to be clearly distinguished; or, suc-
cessive vertebrae are apart from each other with a large distance.
Thus, the neighboring structures are not necessarily positive fac-
tors in the identification procedure. A clean shape model without
surrounding structures may be advantageous and our identifica-
tion results are indeed slightly better. Lastly, our vertebra segmen-
tation method is applicable to other orthopedic bone structures as
well, e.g., manubrium, as shown in Fig. 13.
Fig. 13. Segmentation results of manubriu
3.2. Evaluation on automatic initialization via fast spine

We evaluate our vertebra segmentation and identification
based on the initialization of the Siemens Fast Spine [18,30] soft-
ware application. Fast Spine is developed using Learning Ensem-
bles of Anatomical Patterns (LEAP) framework [29] through
redundant anatomy feature detection, parsing and fusion [30,23].
An illustrative example is shown in Fig. 14. Its extension from CT
spine labeling to MR is shown in [26]. Fast Spine can achieve high
robustness and accuracy on 3D localization of the center origins
CT(x,y,z), CB(x,y,z) of each vertebra body top plane and bottom
plane, and the three orthogonal axes !T(x,y,z), !B(x,y,z) represent-
ing its local vertebra anatomy coordinates [5]. This anatomical
information can uniquely determine the position and pose or ori-
entation of each individual vertebra. In practice, we use transla-
tion + uniform scaling transformation to align the vertebra mesh
model onto a new detection by Fast Spine. The geometry of verte-
bra detection is defined as the centroid point CC(x,y,z) = (CT(-
x,y,z) + CB(x,y,z))/2 and mean local anatomical coordinates
!C(x,y,z) = (!T(x,y,z) + !B(x,y,z))/2. Note that Fast Spine also iden-
tifies and labels vertebra with very high accuracy �100%, as it al-
ways uses the full length of vertebra string information. Our
vertebra identification is based on very different cues of robust
shape matching, not landmark detection and counting in Fast
Spine. Our method achieve about 100% identification accuracy
when having strings of 9 vertebra or longer (Fig. 12). Therefore
the performances of two methods are comparable and comple-
mentary for further enhanced robustness.

To increase the robustness, as discussed in Section 2.1, we add
random perturbations on manually initialized vertebra pose varia-
tions in the range of [�p/10; p/10] during training the edge re-
sponse classifier and corresponding vertebra edge response map.
This largely assures that our coarse-to-fine deformation scheme
will converge correctly even under moderate to large perturbations
on initialization. Using Fast Spine software application for auto-
matic initialization (i.e., replacing our manual initialization), we
achieve consistently more accurate segmentation results (Table 2)
and comparable identification performance. In summary, we
take the stratified, divide-and-conquer approach by solving verte-
bra detection via Fast Spine and segmentation problems in this
paper.

3.3. Evaluation on different learning based bone boundary edge
detectors

We study and compare different learning based boundary
detectors through ROC analysis, specifically comparing our method
with [28,10,7]. Note that 3D Haar based supervised edge detection
does not work well in general since it cannot be steered efficiently
in 3D space to fit edges with different orientations [21]. Thus, as in
m in axial or sagittal or coronal view.



Fig. 14. Fast Spine application: (a) vertebra separating planes and (b) vertebra landmarks, derived from detected CT(x,y,z), CB(x,y,z), CC(x,y,z) and local 3D coordinates
!T(x,y,z), !B(x,y,z), as output geometric results.
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Fig. 15. Comparison of testing ROC curves for supervised vertebra edge detection
using our simple steerable gradient vector + LDA classifier versus 3D steerable
features + PBT scheme in [28,10,7].

Table 3
Mean point-to-surface error (mm) of all vertebrae (averaged) by different number of
iterations for part- (Pt = 1,2,3,4) and patch-(Ph = 1,2,3,4,5) based deformable
models.

Iteration # Ph = 1 Ph = 2 Ph = 3 Ph = 4 Ph = 5

Pt = 1 4.21 3.88 3.65 3.54 3.46
Pt = 2 2.49 2.31 2.15 2.02 1.95
Pt = 3 1.54 1.40 1.25 1.12 1.11
Pt = 4 1.55 1.41 1.22 1.13 1.13

Table 2
Mean point-to-surface error and standard deviation for individual vertebra by
automatic initialization via Siemens Fast Spine [30].

Vertebra T1 T2 T3 T4 T5 T6

Mean error (mm) 1.02 1.02 0.98 0.93 0.96 0.91
Std deviation (mm) 0.94 0.99 1.01 1.11 1.23 0.88

Vertebra T7 T8 T9 T10 T11 T12
Mean error (mm) 0.82 0.77 0.83 0.76 0.87 1.17
Std deviation (mm) 0.56 0.64 0.63 0.52 0.72 1.08

3 It could be significantly worse for low-contrast organ boundaries (e.g., liver,
heart), which is not the focus of this paper.
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[28,10,7], the organ boundary detectors are learned by boosted 3D
steerable features using probabilistic boosting tree (PBT) classifier
[19]. In brief, 3D Haar features [21] are generally believed to be
unsuitable for voxel-level boundary learning with varying orienta-
tions, but are more common for global scale organ localization
[28,7].

In our experiments, the very simple steerable gradient feature
vector + LDA classifier performs slightly worse than 3D steerable
features + PBT scheme in [28,10,7], for vertebra bone edge detec-
tion task via ROC analysis,3 as shown in Fig. 15. The testing and
training ROC curves appear similar and only testing curves are
shown for better clarity. Even the area under ROC curve (AUC) mea-
surements are both reasonably high at 0.9781 and 0.9690 respec-
tively, which still represents noisy edge responses in run time. On
the other hand, our version of steerable feature + LDA classifier has
only 15 computed features with a linear classifier, thus it has much
lower model and computational complexity which may also indicate
good generality to unseen data. As discussed in this paper, our de-
ployed deformable model is sufficiently comprehensive and robustly
designed to handle imperfect, noisy bone edge response maps. For
segmentation purpose, the accuracy results are statistically different
using the current detector or detectors in [28,10,7]. However it
slightly helps improve the identification performance, especially
for lower order vertebra strings, e.g., comparing 74.6% from 73.1%
for one vertebra, 76.7% for strings of two vertebrae from Fig. 12.

3.4. Evaluation on different iteration numbers of part- and patch-
based deformable models

As mentioned in Section 2.2, we perform multiple rounds of
Part- and Patch-based deformable processes. The numerical rela-
tionship between segmentation accuracy (in terms of Mean
point-to-surface error (mm) of all vertebrae averaged) and these
iteration numbers (Pt = 1,2,3,4; Ph = 1,2,3,4,5) are given in Table 3.
We find that, with more iterations in both Pt and Ph, the averaged
segmentation accuracy improves gradually until the respective
iteration numbers reach Pt = 3 (Part) and Ph = 4 (Patch). There are
no iterations in the vertebra identification task.
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4. Conclusion and discussion

In this paper, a hierarchical thoracic vertebra segmentation and
identification method is presented. We propose steerable gradient
features for learning based edge detection with intended mis-
alignment perturbations for training dataset construction, to en-
sure robustness and convergence. The segmentation applies a sur-
face deformable model by adopting a new two-stage ‘‘coarse-to-
fine’’ deformation scheme: first subregion based articulated simi-
larity deformation and then nonrigid local patch deformation.
The segmentation result is highly competitive with the point-to-
surface error 0.95 ± 0.91 mm. We also use the generated mean
shape model of each thoracic vertebra for identification process,
where success rates of 73.1% for a single vertebra, and over 95%
for 7 or more vertebra are achieved. Both our segmentation and
identification performance compare favorably with the state-of-
the-art [5], as surface based versus intensity based approach [5].

Our proposed hierarchical thoracic vertebra segmentation and
identification method is directly extensible to other cervical or
lumbar vertebrae or bone structures. For example [23], utilizes
2D Curved Multi-planar projection of CT images and Orthogonal
Matching Pursuit (OMP) classification to distinguish thoracic ver-
sus lumbar Vertebrae. Therefore thoracolumbar vertebrae model-
ing can be solved in a divide-and-conquer manner.
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