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QE% O-Current Status of Cancer Screening

Currently, WHO and internationally recognized clinical standards have standardized recommended screening

methods for only four types of cancer/premalignant lesions, which are also eligible for insurance reimbursement.

1. Lung Cancer/Pulmonary Nodules: Low-Dose Chest CT (LDCT) for high-risk populations such as smokers and
individuals with a family history, recommended annually or biennially.

2. Breast Cancer: Mammography for women aged 40 and older or those with a family history, recommended
annually or biennially.

3. Cervical Cancer: Pap Smear, a medical procedure for screening cervical cancer in women, requires the collection
of cervical cells.

4. Colorectal Cancer/Colonic Polyps: Colonoscopy, starting at age 40-45 for men and 45 for women,

recommended every two years.

Other cancers: Although numerous clinical studies exist, the information is inconsistent, and there is currently no

universal standard of care, hence no screenings are recommended at this time.



4 1-MCED Liquid Biopsy?
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MCED (Multi-Cancer Early Detection) liquid biopsy encountered an increasing number of difficulties in early multi-cancer
screening over nearly 20 years of development, many of which currently seem insurmountable. Why? (Note: This is based on

my understanding from the literature, and there are ongoing debates)

* Blood tests measuring ctDNA and protein sequencing have a low signal-to-noise ratio, or even a very low ratio. “Because the tissue being sampled is blood, hematologic
cancer signals are disproportionately detected. Developers have had to work hard to more stringently exclude cancer like hematologic signals.” [2]

* For the patient groups that may benefit the most, such as those in the surgically resectable stages (T1, T2), the sensitivity of MCED screening is low, with literature
suggesting it is only about 13% to 40%, depending on the type of cancer. “ the most commonly detected solid tumors are late-stage or recurrent cancers.” [2]

* Patients who test positive cannot be confirmed or diagnosed effectively, leading to challenges in follow-up; there is a high rate of false positives, which imposes a societal
burden and causes anxiety in the general population. “Most patients with a positive test result do not have a cancer identified. This is typical of screening: The low
prevalence of cancer means positive tests are less likely to represent clinically relevant disease and more likely to represent false-positive results or overdiagnosis. ” [2]

* Due to intrinsic issues with the computational and biological mechanisms, MCED is fundamentally a problematic issue that Al cannot resolve (GRAIL's Galleri product is
based on Al computation [6]). Additionally, the generalizability across multiple centers and locations is poor; cancer targets can change over time and cannot be captured

in a timely manner, which adds another layer of complexity to the problem.

[1] Questions Swirl Around Screening for Multiple Cancers With a Single Blood Test, https://jamanetwork.com/journals/jama/fullarticle/2816615 JAMA

[2] Assessing the Clinical Utility of Liquid Biopsies Across 5 Potential Indications From Therapy Selection to Population Screening, https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2808647 JAMA

[3] Deploying blood-based cancer screening, https:.//www.science.org/doi/10.1126/science.adk1213?url_ver=739.88-2003&rfr_id=ori:rid:crossref.org&rfr dat=cr_pub%20%200pubmed Science

[4] Why are so many young people getting cancer? What the data say https://www.nature.com/articles/d41586-024-00720-6#:~:text=The%20prominence%200f%20gastrointestinal%20cancers,contributing%20t0%20rising%20case%20rates.

Nature

[5] Blood Test for Multicancer Detection in Symptomatic Individuals, https://ascopubs.org/doi/10.1200/P0O.23.00305 JCO, most authoritative journal in oncology

[6] Performance of a Cell-Free DNA-Based Multi-cancer Detection Test in Individuals Presenting With Symptoms Suspicious for Cancers, https://ascopubs.org/doi/10.1200/P0.22.00679 JCO Precision Oncology JCO



https://jamanetwork.com/journals/jama/fullarticle/2816615
https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2808647
https://www.science.org/doi/10.1126/science.adk1213?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://www.nature.com/articles/d41586-024-00720-6#:~:text=The%20prominence%20of%20gastrointestinal%20cancers,contributing%20to%20rising%20case%20rates
https://ascopubs.org/doi/10.1200/PO.23.00305
https://ascopubs.org/doi/10.1200/PO.22.00679

ég% 2-Using Imaging Means for (Early) Cancer Screening

(Early) cancer screening can be effective if the following three conditions are fully met:

1. Enhanced CT, Enhanced MRI, preferably PET-CT, or PET-MRI.

2. Tumor markers (at least CA199; if financial conditions allow, it's best to screen for major digestive system
tumor markers: CA199, CEA, CA125, CA19-9, AFP, CA724) & more...

3. Specialized radiology and surgical oncologists with rich experience in interpreting images and

scientifically managing patient follow-ups.

[1] https://www.q.bio/ “We collect blood, vitals and urine, and perform a whole-body MRI from which extensive quantitative data is derived by our Anatomical Foundation Model. This is all seamlessly combined with your medical history, lifestyle

and other data to create your Gemini Digital Twin Dashboard — the most comprehensive view of your health and risks available today."

[2] https://humanlongevity.com/ Human Longevity Inc. healthnucleus100plus.com https://www.youtube.com/watch?v=QwS-b-stG70&t=223s

[3] https://rossdawson.com/futurist/companies-creating-future/top-11-longevity-companies-life-extension-immortality/
[4] CancerUniT: Towards a Single Unified Model for Effective Detection, Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection of CT Scans. |CCV 2023: 21270-21281

[5] Devil is in the Queries: Advancing Mask Transformers for Real-world Medical Image Segmentation and Out-of-Distribution Localization. CVPR 2023: 23879-23889


https://www.q.bio/
https://humanlongevity.com/
https://www.youtube.com/watch?v=QwS-b-stG7o&t=223s
https://rossdawson.com/futurist/companies-creating-future/top-11-longevity-companies-life-extension-immortality/
https://dblp.org/db/conf/iccv/iccv2023.html#ChenXYYZ0WZQYYF23
https://dblp.org/db/conf/cvpr/cvpr2023.html#YuanXDCYQYYSCL023

3. Do we have a (hew) way out?

Do we have an early cancer screening solution that is affordable for ordinary
people, very effective, and easily accessible?

N/

“ “8+5” multi-cancer and chronic disease screening

using non-contrast CT
“via “Al + Cloud Computing”

Attempt to solve the "impossible trinity" problem in healthcare



Multi-cancer Early Screening with Non-contrast CT and Deep Learning
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Al + Non-contrast CT Technology helps to Achieve
Detection of Multiple Cancers in the Early Stages

Technological Breakthroughs: For the first time in the world

that a single CT scan could be used to screen for multiple
cancers and diseases.
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ii }% % (1) Pancreatic cancer screening using
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Article https://doi.org/10.1038/s41591-023-02640-w

Large-scale pancreatic cancer detectionvia
non-contrast CT and deep learning
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RW1: PDAC identification

L T
The positive predictive / Sensitivity
value (PPV) for PPV

Real-world validation in a
health check population

revealed a sensitivity of
84.6%, specificity of
99.0%, and a positive

predictive value of 56%.

Among hospitalized
patients, the sensitivity

was highest at 88.6%,

opportunistic screening
In hospitalized and

emergency patients was

between 0.75 and 0.85.

A multidisciplinary team
(MDT) found that 51%
(80 out of 156) of the
false positives were due
to peripancreatic
diseases.

The adjusted specificity
for tumor detection was
99.5%, and the adjusted
specificity for identifying
PDAC was 99.9%.

PPV*

n/a n/a n/a n/a n/a n/a n/a n/a n/a

99.899'9 100100 99_799.8

= 99.6°9:8
| I I I

Specificity
 Specificity*®
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(1) Validation - Changing Clinical Pancreatic
cancer screening
Non-contrast CT + Al Real-World Practice

v The PANDA model detected

* ] case of PDAC, 1 case of PNET, 3 cases of IPMNs, 1 case of metastatic cancer,
6 cases of pancreatitis, 1 case of peripancreatic tumor, and 13 cases of
SCN/cysts (ranging from 10 to 33 mm).

* One patient was followed up and underwent contrast-enhanced MRI,
followed by minimally invasive surgery with the aim of achieving a cure tor
sized at 1.5 cm [1].

»With opportunistic screening using the PANDA++ model, one of our
collaboration hospitals in Shanghai identified measuring
2 cm or less among over 6200 consecutive patients (all hospitalized for
other reasons) within 12 days,

detected from 24000+ patients with chest CT scans by Al,

11 of them could be surgically resected, 3 out them already done with
surgery removal.

Standard of Care (SOC)

O
diEih

Initial SOC

' Physical exam chest CT

No pancreatic lesion reported 3¢

PANDA screen-detected PNET

Data collection

Month 7 PANDA detected v

Real-world clinical study  PANDA NonPDAC: probability 95%

2

MDT review Recall for contrast MRI

Month 7
MRISEIRES S

£ &
sna: w0

| | MRIreport conclusion: consider PNET

WS
B R
WReW

2 MDT recommends Patient consent
- forsurgery for surgery

Month 7

Successful minimally invasive surgery

Pathology report | Ei#E#

FRUHRES (CHH)

PR RRLTH KA Scn, BHRRAASS LS, BT Mon B-RIKARY, RAE
Sl 1 Sen, SO, MEER, SN, BEAAS6LIm, BRRUF, RERE.

l:CK’I:I;“MH;N‘.\I‘(I~)
—— BN
MRI report conclusion: no relapse, no metastasis
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Highlighted Research:

CT Panda

Pancreatic ductal adenocarcinoma (PDAC) is a particularly
lethal cancer, often detected too late for surgical intervention.
Screening for PDAC in asymptomatic individuals is
challenging due to its low prevalence and the risk of false
positives. This year, a Chinese research team developed

PANDA (pancreatic cancer detection with artificial

intelligence), an Al model capable of efficiently detecting

and classifying pancreatic lesions in X-rays (Figure 5.2.16). In
validation tests, PANDA surpassed the average radiologist in
sensitivity by 34.1% and in specificity by 6.3% (Figure 5.2.17).
In a large-scale, real-world test involving approximately
20,000 patients, PANDA achieved a sensitivity of 92.9% and
a specificity of 99.9% (Figure 5.2.18). Al medical tools like

PANDA represent significant advancements in diagnosing

challenging conditions, offering cost-effective and accurate

detection previously considered difficult or prohibitive.

PANDA vs. mean radiologist on multicenter validation

Source: Cao et al., 2023 | Chart: 2024 Al Index report
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Figure 5.217

PANDA
detection

Source:

Cao et al., 2023
Figure 5.2.16

PANDA performance on real-world multi-scenario
(6,239 patients) validation (20,530 patients)

Source: Cao et al., 2023 | Chart: 2024 Al Index report

92.90%

Chapter 5: Science and Medicine
5.2 Al in Medicine

PANDA prediction
(on non-contrast CT)

Sensitivity

Specificity

Figure 5.2.18

© Chapter 5 Preview
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if P (2) CT screening for Esophageal cancer

DAMO ACADEMY 95%

90%
ANNALS or
ONCOLOGY

100%

60%

L: 94 194 100.0%
e~ 100% *
10 64.7% $ . ,
M |
H 75% |

12.5%
2 513“( = )
-
:E LI SR
= : IIBA(105) I1HA(97) IVEA(36)
Q 0%
7]

| 1l 1l v

(1/8) (1117)  (32/34)  (40/40)

v The sensitivity for stage | esophageal cancer reported by MCED in AO is 12.5%,
and for stage |l iIs 64.7%. In our results, the sensitivity is 59% for stage | and 90%
for stage Il (with 99.1% specificity).

v" We are even able to effectively detect TO (in collaboration with a top hospital in
Sichuan, China).

v" From May 8 to July 23, 25,756 patients underwent Al screening for esophageal

JE\E\,r
cancer, with ; 97 patients are being followed up. -

IEA(31) I1EA(46)



3 }%% (3) Liver cancer screening using
non-contrast CT

* A screening AUC of 0.99 on the internal testing set with a
specificity of 99% and sensitivity exceeding 85%.

* Two real-world validation studies, under a specificity of 99%,
reporting sensitivities of 87.6%, 78.3%, respectively.

* From June 14 to July 9, Al screening found 161 positive cases,

where ; SIX
positive patients are followed up with 5 malignant tumors.

Reader study
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Radiologist 1/ 94.1 99.0 90.8
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00 0.2 04 06 08 1.0
1-Specificity

“Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient Network”, MICCAI 2023

D 01 s WN

APPSR UESRTR & 1

Sensitivity Specificity

A case of missed diagnosis of a metastatic tumor based on
non-contrast CT, 4 months faster than clinical discovery.

“A Two-streamed Network Approach for Effective Liver Tumor Screening on Non-Contrast CT using Label Distillation”, 2024

"Improving Liver Tumor Identification in Non-contrast CT Scans using Label Distillation”, RSNA 2024

"Automatic Liver Tumor Diagnosis in Contrast-Enhanced CT Scans with Variable Input Phases", RSNA 2024

"Automatic Liver Tumor Screening and Differential Diagnosis in CT Using Pixel-Lesion-Patient Network with Reader Study and External Validation", Oral, RSNA 2023
"Accurate Liver Tumor Detection on Non-contrast CT Scans via Annotation-Efficient Semi-Supervised Learning (#14687)", RSNA 2022



ii }? Pz (3) Liver tumor diagnosis using contrast-
et enhanced CT (8 sub-types)

Case 1l
« Task: On multi-phase enhanced CT, screen for liver tumors (such as those with
cirrhosis and tumors in other organs)
« If present, differentiate the categories of liver tumors
AUC HCC ICC Meta Heman FNH Cyst Calc others Average
| | Case 2
» Challenges: Differential diagnosis of malignant categories (HCC, ICC,
metastasis) and detection of subtle lesions. bl
ICC -
* In a reader study with 150 samples, accuracy comparable to that of era
experienced physicians. % veman -
* Two difficult cases were sent by physicians, with algorithm diagnoses T FNH - 3
. . . . =
similar to those by experienced doctors using MRI. Cyst -

Calc

Pathology

» » : Others -
others” or meta Possibly meta of

neuroendocrine
tumor

|

? X o N

¥ & N
&

Predicted Labels

Junior radiologist (2 yrs exp)

Senior radiologist (16 yrs exp)

Our algorithm

Hard Meta or ICC ICC or meta ICC
case?

[1] “LIDIA: Precise Liver Tumor Diagnosis on Multi-Phase Contrast-Enhanced CT via Iterative Fusion and Asymmetric Contrastive Learning”, MICCAI 2024
[2] "Automatic Liver Tumor Diagnosis in Contrast-Enhanced CT Scans with Variable Input Phases"”, RSNA 2024
[3] "Automatic Liver Tumor Screening and Differential Diagnosis in CT Using Pixel-Lesion-Patient Network with Reader Study and External Validation", Oral, RSNA 2023



ii E PX (4) Colorectal Cancer Screening using

DAMO ACADEMY
NOn"COntl”aSt CT AUC, sensitivity, and Specificity of CRC detection on internal, external center cohorts and real-world .
b y .
AUC Sensitivity (%) Specificity (%
0.992 01.8 08.8
Case #1 TP (T:stage e Internal Test Cohorts (0.987 - 0.996) (88.5-94.9) (97.3-100.0)
External Test Cohorts 0.978 86.3 99.5
(abdominal CT) (0.969 - 0.987) (83.3-89.6) CERELR)
in 0.967 88.8 76.5 09 .4
(0.942-0.987) (83.6-93.4) (98.5-100.0)
max 0.996 89.5 99.6
(0.992-0.999) (82.1-96.0) (98.2-100.0)
External Test Cohorts ) 75.0 99.9
(chest CT) (45.5-100.0) (99.8-100.0)
Real-World clinical ) 88.2 99.5
evaluation (79.1-96.3) (99.3-99.6)
Chest 4 missed diagnoses, _ 99979*989 :
11 valuable (99.7- G
discoveries 88.2 98.0
Abdomen (79.1-96.3) (97.3-98.6)

Real world evaluation: From May 8 to July 23, Al
screening for colon cancer was conducted on 32,739

patients. Among the positive cases, there were

Sensitivity Specificity
Chest CT 99.96%

Abdominal CT 99%

, there were 56 positive patients still being
followed up.
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(a)

(4) Colorectal Cancer Screening using Non-Contrast CT

(b)

0.9
1.00 +
0.8 100 -
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>06 0.90 - 80 -
E
.w 05 — —
= 0.85 g 2 »
D04 > >
0.80 ' T T Y ,g %
0.3 000 005 0.10 0.15 g v-g
____ Internal test cohorts(n=528) 3 B 40
0.2 AUC = 0.974 (95% C1 0.962 - 0.985)
____ External test cohorts(n=1525)
0.1 AUC = 0.979 (95% C1 0.968 - 0.987)
%« COCADA operating point 20 -
0.0 L) T L] T Ll L] T L3 1 T
00 01 02 03 04 05 06 07 08 09 1.0
1 - Specificity 04
<45 45-54 55-74 >75 Stage | Stage Il Stage il Stage IV
(23|22) (41/69) (1671262) (48|79) (30}49) (99]226) (116[71) (23/85)
Age TNM Stage
100 - 100 -
80 - 80
®
> 60- g3 o
:.g ? - & Ead
o 40- 2 =
7)) § 40 - ‘§
20 -
B Internal test cohorts 20 -
0 External test cohorts
0 o
Rectum Sigmoid  Descending Transverse Ascending 5L
(74275) (75/53) (31]21) (35/15) (64/68) T T2 3 T4 <3 23to<d 24105 25
Location (11]12) (26]54) (188[316) (38]49) (68178) (36/92) (52]101)  (101]136)

pT Stage CRC Size



ﬁf’%% (5) Gastric Cancer Screening using
Non-Contrast CT

DAMO ACADEMY
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— QOur approach (AUC=0.939)
*  Our operating point
e Radiologist 1 (R1, ~20yr)
Radiologist 2 (R2, ~9yr)

O
N

Real world evaluation: from May 8 to July 23, a total of 34,937
patients were screened for gastric cancer via Al. Among the positive . . 0.4 0.6 0.8 1.0
cases, there were 1 - Specificity

O
o

, there were 131 patients still being followed up.

Sensitivity Specificity




Q}%% (6) Lung nodule screening and diagnosis
using non-contrast CT

Table 3. Comparison of different methods on both NLST and in-house test sets. ':
. o . o o . i
: pure segmentation; “: multi-task learning;

:E: -

pure classification; : ensemble of deep

supervision heads. Note that we add the segmentation task in CA-Net.

NLST test aet In-house test set

10~20mm 1{10~20mm | >20mm| All

CNN 0.706 ).89¢ 0.797 | 0.744 |0.901
ASPP [7] ).708 0.902| 0. 0.788 | 0.743 |0.901
MiT [24]7 | 0.8 '_.;-'_f. ).858 0.751 |0.904
nnUnet [3]* | 0.81 736 :.i 63 | 0.80« 0.911
CA-Net [12]°] 0.833 | 0.759 ).916

PARE®

PARE®*

Method

il G515 RSl P BEAE 22 B SRR A R 8 _EHEAT 1 VP, SRR LTS
o eemmew smuiww XX-1 0.910
RE YRR EE 1 2 XX-2 0.969

5 T 0 ] 1 . . . . .
CEwE® o 6t % o ®s o mro 8e %8s Optellum (FDA) 0.921
%1. 1E3278%1 2 H U B4 b 1 i 45 0 R 0 44 e

Lung mass screening

 New capabilities for detecting large lung masses, with a detection
sensitivity of over 98%.
e Can distinguish between large lung masses and pneumonia.

True Positive Rate

Al model (AUC = 0.801)

® Radiologist 1 (~8yr)
A Radiologist 2 (~13yr)

Currently undergoing clinical multicenter validation and multiple 0. | 04 06 08 10

False Positive Rate

scenarios in Shanghai for the differentiation of benign and malignant Fig. 3. Reader study compared with AL

lung nodules.
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studyDate: 2024-11-18 13:24:38
StudyDescription: CHEST
Ser: 202

3l / Fi&g: F /0727
HEHEE:

Acc No:
PID: **

5 mm

HU:-904

e - 4 ‘ |
KV:120 e —— gt
mAs:107 . ’ Zoom: 157%
Img: 40 / 70 WW: 150 WL: 30
512 x. 512 DefaultWW: 400 DefaultWL: 40
Loc: =539.53 mm Thick: 5.00 mm Lossless / Uncompressed

(7) Breast cancer screening using Non-Contrast CT

In a preliminary reader study conducted on 100 patients with a
total of 200 breasts, a comparison of the performance
between doctors and the model was performed. Doctors had
a low accuracy rate for non-contrast CT breast cancer
detection ( ), while the model's performance significantly
outperformed that of the doctors ( ).

When both the model and Doctor 1 exhibited the same
sensitivity, the specificity of the model was 20 percentage
points higher than that of Doctor 1;

. Both doctors had an accuracy rate
of 76% with high specificity (99%); the model achieved an
accuracy rate of 87%, which was 11 percentage points higher
than that of the doctors.

AUC Sensitivity (%) | Specificity (%)

Internal test 0.9686

0.9158

External test 1

External test 2 0.9416




i Epg Screening of seven cancers - Cloud APl integration
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"filename": "eso_esoCancer_ZSECO500_NC_z5.00",
"Tumor probabilities": {

 |nitial version, 2 min/case A N
%;reast“: {
"BC": 0.114
1,
"liver": {
"HCC": 0.0,
"other_malignant": 0.0,
"other_benign": 0.0,
"cyst": 0.0
1,
"eso": {
"EC": 0.9994,
"nonEC": 0.0002
1,
"stomach": {
"GC": 0.1642
1,
"erc": {
"CRC": 0.2092
1,
. . "panﬁreas:f {
3D chest / abdominal Fast organ segmentation onDAC o o351
non-contrast CT and localization .
Cancer and other tumor
Organ|ROls probabilities
. Eso Sto Pan
Lung| Breast Liver P Colon
hagus| mach creas
Lung Al Breast Al Liver Al Esuc;pzflg Stomach Colon Al Pan;:eas
expert expert expert expert expert expert expert

Segmentation +
probability fusion

Tumor segmentation
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Cervical lymph nodes\
I

Lymphatics of the
mammary gland

Cisterna chyli
Lumbar lymph nodes

Pelvic lymph nodes

(8) Whole-body abnormal lymph node
screening on non-contrast CT

@ i W
Y :", I
|£ ,‘ l Thoracic duct

|

il

B, <l Thymus
vl XON >

1 I ', ‘/L RN

7. ALY Axillary lymph nodes

Spleen

. Lymphatics of the
I upper limb

d Lymph nodes are distributed throughout the body. Currently, there are no methods for
comprehensive screening of abnormal lymph nodes. Existing CT-based detection methods for

abnormal lymph nodes focus on specific areas, resulting in a high false positive rate and can only
screen lymph nodes with a short diameter greater than 1 cm (lymph nodes <1 cm have at least a 20-

30% chance of being malignant [1]).

(d We cover the head and neck, mediastinum, upper abdomen, and pelvis, which are the most common
sites for cancer metastasis. Previously, the universal lesion detection model [2] showed an average of
0.5 to 4 false positives when detecting lymph nodes >1 cm, with a detection sensitivity of 71.6%. Our

method achieves a sensitivity of 77.2% (+5.6%). For lymph nodes larger than 7 mm, the lesion

detection method has a sensitivity of 61.7%, while our method has a sensitivity of 67.3% (+5.6%).

BN =

85

75

65

55

45

S0

80

70

60

LN size > 7mm

+5.2

+4.1
+7.7 I I

FP @0.5 FP@1 FP @2
MULAN m LN-DETR

LN size = 10mm

FP @0.5 FP @1 FP @2
MULAN mLN-DETR

“Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling”, Radiology, 1992
“Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in CT”, IEEE TMI, 2020

“Effective Lymph Nodes Detection in CT Scans Using Location Debiased Query Selection and Contrastive Query Representation in Transformer”, ECCV 2024
“Slice-Consistent Lymph Nodes Detection Transformer in CT Scans via Cross-slice Query Contrastive Learning”, MICCAI 2024

+5 3 +5.4
+5.5 I I

FP @4

FP @4



ii E F% (8) Universal Whole-body Abnormal Lymph Node Detection
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Cervical lymph nodes Thoracic duct

Thymus

Lymphatics of the
mammary gland

Axillary lymph nodes

Cisterna chyli Spleen

Lumbar lymph nodes
Lymphatics of the

NN upper limb
Pelvic lymph nodes I

* Propose the first transformer-based universal lymph node detection model —

e B Dcbiased top-k queries Decoder Tl‘aining Decoder Inference
g i g and box predictions i * B e s
Concat . . . . - positive parey final predictions
' > oy ¢ | 1 HIEI.
» 1x1 Conv
: Pl HREEN ..”d ehrakats
P — - A7 S p o N

Location Debiased Location Debiased
Query Selection Query Selection

-- 2.5D Fusion . — :
O "l Ee

4 : : Cls
S(c:(l)sre Mask Maiched Unmatched iDenoised: 1%, Seon ' Score Mask

oS L i \ \ TS S S S U U S A S \

[ Contrastive Projection } ;

A

LN-DETR

Box

A

Prediction Heads

|

Q { [ Matching & Denoise
/

| [ S S S S S W p1 \
P ~25DFusnon 55555555 ' I :
T SN AEEEEEEN
‘ Encoder Layers ’ g @ g ;] g@ {;J g
. F”5'°" A A A A A A A Key&Value[ Decoder Layers I:Bj’”“
: 2.5D Image tokens Lo
: . - - . - - - - Init contents i i i i i i i i GT embeddings
Flatten =
| D D D D D D \:] D }E?_t"‘[‘\i\")‘:ﬁi D D D I:] D D D D GT boxes+noise

Position embeddings

CNN Backbone Transformer Encoder Transformer Decoder

[3] Baumgartner, et al.

Mask DINO

LN-DETR

(d LN-DETR achieves top performance
on DeeplLesion benchmark results

Recall(%)QFPs
b b @05 @1 E@z) @4 | Avg.
3DCE [57] 62.48 73.37 80.70 85.65 | 75.55
RetinaNet [72] 72.18 80.07 86.40 90.77 | 82.36
MVP [31] 73.83 81.82 87.60 91.30 | 83.64
MULAN [60] 76.12 83.69 88.76 92.30 | 85.22
A3D [62] 79.24 85.04 89.15 92.71 | 86.54
LENS [58] 78.60 85.50 89.60 92.50 | 86.60
DKMA [51] 78.48 85.95 90.48 93.48 | 87.16
A3D [62]+SATr [27]| 81.03 86.64 90.70 93.30 | 87.92
P3D* [68] 82.22 87.42 90.91 93.65 |88.55
LN-DETR 79.89 87.05 92.00 94.89| 88.46

(J Datasets: 7 datasets covering head & neck, mediastinal, abdomen regions with 1000+
patients with 10,000+ lymph nodes

(J LN-DETR substantially outperforms leading detectors in both internal and external testing.

Internal test External test

Model Recall(%)@QFPs Apbex Recall(%)QFPs APbos

@0.5 @1 Q@2 @4 | Avg. @0.5 @1 Q2 @4 | Avg.
Mask2Former [10]| 32.63 39.76 49.77 58.28|45.11|49.91 || 28.69 37.49 46.14 54.57 |41.72|43.66
MP- Former‘68] 34.07 44.33 51.44 60.93|47.69|49.86 || 29.34 38.05 46.02 54.69|42.03|43.10
nnDetection |3] 26.54 33.34 41.34 50.89 | 38.03 | 50.35 || 25.57 31.98 39.43 49.36 |36.59 | 39.21
Mask-RCNN |19 | 31.24 37.05 49.21 60.33 |44.45|46.63 || 27.00 34.52 47.87 53.46|40.71|42.18
LENS |60| 33.55 43.84 54.17 65.87(49.36|55.39 |[26.83 36.52 44.42 53.62|40.35| 45.55
MULAN |62] 34.79 46.29 57.75 64.58 |50.85|54.34 |[34.99 44.36 53.00 59.80 [48.03|47.43
DINO 167] 37.55 44.80 57.43 65.16|51.23|54.42 |[32.32 42.04 49.85 58.13|45.60|45.20
Mask DINO |27| |38.48 47.09 55.27 64.43|51.32|54.72 || 34.80 43.05 51.49 58.20|46.89 | 46.90
LN-DETR 42.48 51.02 60.60 70.96|56.27|58.47(/35.26 48.18 57.92 66.78/52.04|50.24

+F4.00% +3.93% +42.85% +45.09% | +4.95% | +3.08% F0.27% +3.82% +44.92% +46.98% | +4.01% | +2.81%

“ndetection: a self-configuring method for medical object detection”, MICCAI, 2021.

[27] Li, et al. “Mask dino: Towards a unified transformer-based framework for object detection and segmentation”, CVPR, 2023
[60] Yan, et al. “Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in CT”, IEEE TMI, 2020
[62] Yan et al. “Mulan: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation”, MICCAI, 2019
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using non-contrast CT

Overall Goal: To achieve an algorithm for opportunistic screening of CVD risk based
on CT imaging and its productization for major cardiovascular events.

Objectives:

Technical and clinical validation: interpretability, AUC reaching SOTA (>0.85).
Multi-center retrospective validation: retrospective validation

Productization for health check-up scenarios

Progress:

1. Interpretable algorithm, achieving optimal performance across different test
cohorts.

2. Testing on a data set of 10,000 cases composed of various diseases, with an
average sensitivity close to 80%.

Testing completed and clinical paper under review

Mastered the performance boundaries of the algorithm and completed the design

for the algorithm's product interface and output reports.

Xu, et al., “A Joint Representation using Continuous (Deep) and Discrete Features for Cardiovascular
Disease Risk Prediction on Chest CT Scans”, under review, 2024

Chao, et al., “Deep learning predicts cardiovascular disease risks from lung cancer screening low dose

computed tomography”, Nature Communications 12 (1), 2963, 2021

(1) Opportunistic screening for major CVD risk

Feature Representation Manner Method Accuracy  Sensitivity  Specificity F1-Score = AUC
P
Discrete Xgboost [14]" 0.771 0.264 0.971 0.394 0.835
Internal NLST cohort ResNet34 [ ] 0.796 0.543 0.896 0.601 0.844
nnUNet [ ] 0.825 0.587 0.919 0.655 0.874
Continuous ViT-B [*1]" 0.651 0.560 0.686 0.475 0.676
nnFormer [ 7]" 0.788 0.692 0.825 0.648 0.837
Tri2D-Net [ ] 0.819 0.485 0.952 0.603 0.869
Joint Ours 0.835 0.613 0.922 0.677 0.875
External cohort 1 -
100% = 89.74%
Zg’;: 78.06% — 75.91% g 75.88% 75.70%
> 0% 65.91% 63.86%
> 60%
= 50%
2 0% I I
5 30%
20%
10%
0%
) A QN o O N o) o\ ™ e W
@ ALY < o o\ o ov aV Ry R Pleg
..{.‘g;\\ -l & 8 --.25?'%\‘ y\ .-v;“‘b\\. _,.‘:'-*v -.;‘,-f:""e .v“{\‘?'w Q 3 Y
AERB O MEHRR
External cohort 2

SENSITIVITY

100%

90%
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70%
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F XAk (55/61)

86.67%
79.41%
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Interpretability and Usability of Medical Al Diagnosis & Collaboration
with Physicians

2 g, — Classifi
o) = assifier
S8 5T
® 2 3
a3 S q
=
m o o
3 = o3
@ S 8
a “ B m g.
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~
1) Q c g 1
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,1‘ " ’}- i lf‘ v S Ry iy ® _ Contribution
R A U ) *' s ) ‘_';'x-r | ' ‘ ' :.';., ‘ 19 x 32 Scores
Inputs Deep continuous feature & discrete quantltatlve blomarkers extractlon module Features joint representation module

Fig. 1. The overview of our proposed continuous and discrete features joint representation framework for CVD risk prediction. It consists of two
main modules: one is the deep continuous features and discrete CT quantitative biomarkers extraction module based on the pre-trained models,
and another is the features joint representation module. The input of this approach is Chest CT solely, the output is the prediction of CVD risk and
contribution score of each feature.
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Fig. 2. The fully automated body part segmentation models used in this study. (a) Input Chest CT scan. (b) Heart chambers and pericardium
segmentation. (c) Lungs segmentation. (d) Aortic calcium segmentation. (e) Coronary calcium segmentation. (f) Aorta segmentation.
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Fig. 6. It visually illustrates discrete CT quantitative biomarkers related to the heart and vasculature. (a) The input CT scan is in the axial view. (b)
Segmentation results of pericardial fat in the axial view. (c) 3D visualization of the segmented pericardial fat. (d) Segmentation results for coronary
artery calcification and aortic calcification in the axial view. (e) 3D visualization of the segmented coronary artery and aortic calcifications. (f) Axial
view showing the segmentation results for cardiac chambers and pericardium, as well as a schematic representation of the calculation of cardiac
long and short axes. (g) Schematic representation of calculating the cardiothoracic ratio. (h) 3D visualization of the thoracic aorta. (i) Cross-sectional
view illustrating the segmentation at the ascending aorta. (j) Cross-sectional view depicting the segmentation at the descending thoracic aorta

Fig. 7. It visually represents discrete CT quantitative biomarkers related to the lungs. (a) The input CT scan is in the axial view. (b) Lung
segmentation results are displayed in the axial view. (c) Segmentation outcome of high attenuation regions within the lungs in the axial view. (d)

Segmentation results of low attenuation regions within the lungs in the axial view.



(2.A) Diagnosis of Acute Aortic Syndrome (AAS)
via non-contrast CT
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Our Product's Position in the Clinical Pathway (highlighted in orange)

—_—

high suspected AAS Aortic CTA <

A A

Overall Goal: To develop a product that completes the clinical diagnostic pathway for AAS, saving lives and

achieving equitable healthcare.

1.Acute chest pain

Stage Goals: @
1. Technical and Clinical Validation: Retrospective validation across 8 centers (NPV > 0.98, SEN > 0.95, SPE > 2.Discomfort

in the shoulders, arms, neck, (— EEE
09 7) . back, upper abdomen, or jaw

2. Real-World Value Validation: Multi-center verification of time savings in diagnosis, identification of missed .
.shortness of breath

diagnoses, and enhancement of trainee competency.

uonednsaaul Jo spunod ajdujnw

1.pulmonary artery CTA
2.coronary CTA

\

3. Prospective validation in tiered Hospital System: Complete prospective multi-center validation covering

0] =23 B Be

hdiElle 2 susp:zct;d other — > 3.chest non-contrast CT
community — county — municipal - provincial hospital levels. ol 4.abdomen non-contrast CT
Current Progress: User study validates our value in equitable access
1. Completed I‘etI‘OSpeCtlve Validat|0n DeepAAS alone Radiologist w/o DeepAAS Radiologist w/ DeepAAS

2. Conducted a user study (positive patients diagnosed an average of 11 hours earlier, ongoing statistics for
missed diagnoses show an average SEN of 0.928 and SPE of 0.992).

Next Steps:

1. Complete the full productization chain including OCR, H5, and algorithm API, followed by deployment in

prospective hospitals.

2. Conduct a multi-center prospective validation in Zhejiang Province across community — county — municipal -

provincial hospitals over a duration of 1 year.

Medical trainee

Board-certified

Special expert

Medical trainee

Board-certified

Special expert

Sensitivity
Specificity
Accuracy
PPV

NPV

0.984 (0.972-0.990)
0.947 (0.935-0.957)
0.960 (0.951-0.967)
0.908 (0.887-0.926)

0.991 (0.984-0.995)

0.488 (0.478-0.501)
0.804 (0.796-0.812)
0.689 (0.672-0.703)
0.589 (0.573-0.602)

0.733 (0.724-0.745)

0.649 (0.637-0.661)
0.856 (0.849-0.864)
0.781 (0.767-0.796)
0.722 (0.706-0.736)

0.811 (0.796-0.822)

0.786 (0.772-0.802)
0.922 (0.912-0.934)
0.873 (0.862-0.882)
0.855 (0.842-0.869)

0.883 (0.869-0.899)

0.843 (0.829-0.856)
0.914 (0.905-0.921)
0.888 (0.877-0.900)
0.852 (0.840-0.864)

0.912 (0.897-0.929)

0.856 (0.843-0.867)
0.913 (0.906-0.921)
0.892 (0.878-0.905)
0.850 (0.838-0.861)

0.917 (0.907-0.926)

0.924 (0.912-0.936)
0.948 (0.942-0.956)
0.939 (0.927-0.953)
0.911 (0.901-0.921)

0.956 (0.948-0.966)

Data are presented as the mean number (95% CI). PPV = Positive predictive value. NPV = negative predictive value.

Real-world verification involving 110,000 individuals across 3 centers

Cohort 1 Cohort 2 Cohort 3
Hu, Xiang, Zhou, et al., Rapid and Accurate Diagnosis of Acute Aortic Syndrome using Non-contrast CT: A Arey SREIE Quznon
Large-scale, Retrospective, Multi-center and Al-based Study. CoRR abs/2406.15222 in revision, (2024) Sensitivity 0.947 0.923 0.913
(DeepAAS) ' ' '
Specificity 0.990 0.991 0.993

(DeepAAS)


https://arxiv.org/pdf/2406.15222

ii.}? % (2.B) Pulmonary Embolism (PE) Diagnosis using Non-Contrast CT

DAMO ACADEMY®

Overall Goal: To achieve precise PE diagnhosis based on CT, complementing our algorithm (CPMN)
the solution for chest pain triad with AAS.
IFA ~ Mutual Learning Strategy (MLS) IFD
: ? %
Stage Goals' Encoder N ---k-- > | ¥ Decoder |---- [[E_—'! > IO%OO
1. Technical and Clinical Validation: Approach the sensitivity (SEN) and ; I ooo
CTPA volume n s b e e
specificity (SPE) of CTA, which are 0.969 and 0.996 respectively, using non- g o L D e - 'o = o »'
o mEmm ool B O~ O e !
R . I 1 2R \O % ‘
COntraSt CT SCadns. E | e Classifier 0, —[;1:212-4.: ;5 @ DenseCexIt-e;—Loss NCTQ
2. Multi-Center Retrospective Validation: Conduct validation, completing a F | \
maJOI’ C||n|ca| pa pel‘ 63' Encoder P, ——-—> v, Decoder |—— —_ \\\ ‘ '/':'/C,;C-)O\ \‘I
3. Prospective validation in tiered Hospital System: Complete prospective | - EREREEST 0, e = | oo%
NCT volume | D e orinumng 7 : -
multi-center validation covering community — county — municipal - provincial
, Validation of CPMN on Zheyi dataset
hospital levels.
Current Progress: Bliase Ao Classification Segmentation
y Sens. (%) Spec. (%) AUC Dice (%)
1. Completed technical and clinical validation on a secondary vessel dataset, I CTPA ol 96.9 99 6 0.996 -0 0
with the manuscript accepted by MICCAI 2024. R NCT model 84.6 97.8 0.973 68.8
2. Ongoing construction of a large cohort with big data from hospital for + MLS™) 92.3 99.1 0.989 70.1
ovel th q] < al o iterative < to th Dual® + MLS + IFA® 92.3 99.1 0.988 75.7
evel three and lower vessels, alongside iterative improvements to the L+ MLS + IFA + IFD®  95.4t 906!  0.990! -8 B

model's segmentation capabilities.

[1] Bai, Zhou, et al., “Cross-Phase Mutual Learning Framework for Pulmonary Embolism Identification on Non-Contrast CT Scans”, early accept, MICCAI 2024
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1. Features Extraction

¢1 fe
_..
6 xLSTM
Encoder
0,
2,

Fig. 1.

CTPA

xLSTM
Encoder

NCT

atures

v
]

features

3. Mutual Learning 4. Intra-Class Feature Learning

ﬁ: E Decoder | > Pull
@l @ : w ! > Push
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|
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= € d e ] , Background
' Decoder |
Latent Space ! %, ' Feature Space

Overview of our proposed contrastive mutual learning framework that contains the CTPA-pathway network (£21) and the NCT-pathway

network (£2»). Each pathway network comprises an encoder-decoder pair (1 /¥1, $2/W¥2) that extracts features from the corresponding volume.
The presented Inter-Feature Alignment (IFA) strategy through an affinity graph captures pair-wise spatial feature similarities in the encoder. The
predicted PE probabilities (p1, p2) are harmonized using KL divergence to align feature distributions without altering the CTPA-pathway network.
The dense center loss is designed to refine the segmentation feature space (X1, X2).
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,/’ % Our operating point
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1 - Specificity

User study results and visualization

5 ﬂ!
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Ground Truth: PE
Radiologists: Normal (3/3)
Our CIassnflcation Output: Normal 0.1%, PE 99. 9% |
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ig E F% (3) Chronic liver diseases: steatosis (fatty liver), cirrhosis, and esophageal varices

LIRS

Physical i Crvomic Lver 12250 istlogy Report
e.g. height, weight, BMI <l Isease

F '-pulati’;’,n
Serum
e.g. AST, ALT, PLT

DAMO ACADEMY% a
Gold Standards

____________

Demographics
e.g. age, gender

In'e

*» Products for screening steatosis based on non-
contrast CT serve a broad patient population

= Products for cirrhosis screening based on non-

Non-contrast CT Scans -
. e.g. chest, abdomen scans
contrast CT, as well as esophageal varices
. . . . Biomarkers <
screening for the cirrhotic population | :
attenuation (Hu) - General Population 3 Radlology Report
. - . . o | i - T o@ ) |mE
[1] “Effective Opportunistic Hepatic Steatosis Screening Using Imaging and Non- .-ﬁ..,l:,i: @ . g/lg(r)ess R | € Yl [2F
. . . . v |l| - : SO [s1 [s2 |s3
Imaging Cues via Robust Multi-modal Learning”, 2024 it maoss [ egressioy = ] 421 4l I
Imaging data ~ ° Sld jo (o jo : ll I
1 . " A 3
[2] “Improved Esophageal Varices Assessment on Non-Contrast CT Scans”, vasta | @ G~ e | BT [ A
% TBIL: [x] — : - FER TR D Mild
MICCAI 2024 = Lol =3
/GGT:26.7 Distillation I il i [ models
Non-imaging data \ Ordinal Regression / \Curated Distillatiory
. . ) ) ) ) C Development Dataset Histology-proved Validation Real-world S ios Valid
Bowen Li, et al., Accurate and Generalizable Quantitative Scoring of Liver (n=1784) § S ea08) § ST T
. . . . + +
= = ®
Steatosis from Ultrasound Images via Scalable Deep Learning, YIA Sliver N .n\ [ ]n=681 R ,“, [ ] ik @ﬁ e
Medal, AFSUMB 2021 Conventional grayscale ultrasound diagnosis surpasses ¥ ey inslitute C_EMERGENC INPATIENT
: : . . . fL[ S0: 203 $1: 250 $2:139 S§3: 89 S0: 20 S1: 82 S2: 57 S3: 32 n¥3861/685 3159/291
n=191 n=264
elastographic ultrasound (Software Medical Device - Hardware Medical Device). A a— i o -
Computer Science Ph.D. candidate received the Young Scientist Award/Silver ] 1100 (:3h III |§'| iy B b
Award at the 2021 Asian Ultrasound Congress. - Institute B Institute D PHYSICAL __ outeaTieNT
;‘;’;‘:r:fea Hgd'si?,;e- n=207 S0:1781:4382:5283:95 n=18278 o0"ect a746i4as
. . . . 246 ’ ' None/Mild-Severe
BOwen L|, et al., Accurate and Re“able L|Ver SteatOS|S Assessment From d Evaluation of the integration of MAOSS into SOC workflow for patient risk stratification
Conventional Ultrasound Images Trained With Subjective Ratings, - _ Y @ » '
Scientific Oral, RSNA 2021 e - p T T 5 3 =
>;t o le= R e TlmetodevelopClrrhosls
s ~ P< 0001 z e |
Bowen Li, et al., Learning from Subjective Ratings Using Auto-Decoded Deep recap VS Sereeing ] ol T
Latent Embeddings. (early accept, MICCAI Student Travel Award, ORAL) i+ | ju] gl
MICCAI 2021, CoRR abs/2104.05570 (2021) =i I kR g

£3 Y Nega
Patients with Categories
progression of hepatic Medium-High risk

fibrosis


https://www.cs.jhu.edu/~lelu/afsumb2021.tiemeeting.com/EN
https://www.rsna.org/annual-meeting

ii E F% (3.a) Steatosis: Real-World Opportunistic

oamo scanenve  Screening via Non-Contrast CT

¢
¢

A clinical product solution based on non-contrast CT for steatosis

screening

Steatosis Screening Product: Completed the v2 version upgrade

and real-world testing and gather feedback to optimize product
capabillities.

Greatest challenge: early diagnosis of mild steatosis, which can hardly be
detected by doctors on CT — yet, with appropriate intervention, mild
steatosis is reversible without medication.

Another issue is the scarcity of gold standards, which makes deep models
prone to overfitting and poor generalization. To address this, we propose a
novel learning framework that leverages a limited number of pathologically
confirmed gold standard steatosis cases. It also employs distillation to
curate labels from a vast amount of real-world data with imaging reports,
Incorporating reliable annotations into an iterative learning and refinement
process!

High-quality algorithms remain crucial!

Currently, this solution shows good generalizability across four internal and
external centers (in China and Brazil), and validation results on a pathology
gold standard patient test set outperform elastography ultrasound / SOC
significantly, approaching the diagnostic accuracy of MRI-PDFF!

1] Quantification of liver fat content with ct and mri: state of the art. Radiology,
301(2):250-262, 2021.

2] Gao et al., “Effective Opportunistic Hepatic Steatosis Screening Using Imaging
and Non-Imaging Cues via Robust Multi-modal Learning”, 2024

Deep-bio screens steatosis achieving SOTA in real-world validation

S lie Inpatient Outpatient | Emergency Health
i (3450) |  (4231) (4546)  |check (4177)

Sensitivity 0.835 0.905 0.88 0.943
Specificity 0.926 0.898 0.834 0.908
AUC 0.947 0.963 0.926 0.970

More accurate in edge cases than the method of Radiology [1]

- —
- -

Pathology: QuanLF [1]:
S0  Deep-bio [2]: None-/ S1

®
SR: 46.50u

. A

Pathé)éogy: Quf";mLF [1]: Mild Pathology: QuanLF [1]: Moderate 3§
Deep-bio[2]: Moderate\/ S3 Deep-bio [2]: Severe \/

Pathological staging of steatosis (SO: None; S1: Mild;
S2: Moderate; S3: Severe)




ii E F% (3.b) Screening for Liver Cirrhosis and Esophageal Varices using Non-Contrast CT
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Patient X baseline: chronic hepatitis, mild, G2/F0, steatosis; scattered small cysts within the
liver. 2012/11/24

€ Screening for liver cirrhosis based on non-contrast CT Al prediction
€ Screening for esophageal varices in liver cirrhosis 0 no
population using non-contrast CT Precise fibrosis
patient | o -
. lonaitu- Patient X Outcome: liver cirrhosis and splenomegaly persisting as
Current Project Progress _g before.2019/11/11
dinal
. . manag- Al prediction
€ Version 1 of the algorithm has been developed and J
. . ement F3, advanced
iInternally independently tested fSbrosis
€ Further validation of algorithm accuracy and generalization
capabillity Is required using data from external centers with ORI and HFE : 0.962 G2 (Pred), GT: G2
Grading of  » 22 ®° 05 048 ge; o904 sz, 52 Esophageal —

Liver & | varices : Affected
Fibrosis: - screeni ng . 5_'\ regions in
Internal o : : : with ORI and HFE : 0.718 G3 (Pred), GT: G3 ./ the

independent  “ INn cirrhosis esophagus,
_ - - liver, and
testing L - patients .
1 AUC = highlighted
SIGNIFICANT FIBROSIS ADVANCED FIBROSIS CIRRHOSIS =F4
0.832,0.864 | £
= Sensiticity = Specificity ®"BACC = PPV = NPV e CORBETT | & e

Chunli Li, et al., “Improved Esophageal Varices Assessment on Non-Contrast CT Scans”, early accept, MICCAI 2024
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Algorithm flowchart

ROI Extraction Anatomy Detection Segmentation

Overall Objective: To achieve intelligent estimation/tri-classification of bone mineral density (BMD) in any

vertebral body of the human spine through non-contrast CT : Normal Bone Density/0; Bone Loss/Deficiency/1;

Osteoporosis/2.

1. Optimization of Vertebral Body Instance Segmentation Model: Achieve a failure rate of less than 1% in

vertebral identification and segmentation across multi-center datasets. DXA-CT Paired Data from Multiple Centers and Devices
2. Prediction Model for Vertebral Body BMD Values: Demonstrate universal consistency with readings from at B Bk CTHiES DXARES DX =T
least three common DXA devices (Correlation Coefficient R>0.85). eI EREER 2633 2633 Hologic

3. Product Implementation and Validation: Validate algorithms and refine models in 4-6 collaborating A 7o o Hotogic

hospitals, leading to productization.

Progress Update: EIRIFIAED 475 475 GE Lunar

1. Finished Algorithm V1.0 and conducted tests in Zhuji and Lishui with a correlation coefficient over R>0.85. T y o "

2. Collected pairs of BMD data from three different DXA machines and corresponding CT scans, initiating the FRATERA i =2 MEEES REE
upgrade to V1.0. KRB 800 200 GE Lunar LR

3. A clinical paper with multi-center validation is being authored.

[1] Rib-Query: Steerable 9-DoF Rib Instance Segmentation and Labeling with Query,
(JBHI, 2024) segmentation tool
[2] Towards a Comprehensive, Efficient and Promptable Anatomic Structure |
Segmentation Model using 3D Whole-body CT Scans, CoRR abs/2403.15063 (2024)

DAMO Academy’s universal multi-organ interactive segmentation tool is open-sourced in the
Alibaba Cloud ModelScope Community https://modelscope.cn/models/xiuanl123/CT-SAM3D

T T
Regression analysis 11 Regression analysis based on || Regression analysis

based on bone density 1 calibrated bone density Il based on T-score



https://modelscope.cn/models/xiuan123/CT-SAM3D

Scenario 1: Continuous Segmentation

ig EF% (5) Whole-body organ segmentation on
non-contrast CT scans / 236 organs

DAMO ACADEMY® . .
Performance vs. relative model complexity

o By integrating multiple partial label datasets and employing a framework of universal encoder coupled with scalable 100 ° 1 5 testing datasets:
and pruned decoders, we establish a unified segmentation model for all 236 organs and lesions throughout the body. O . Single 5 '
This acts as a large-scale medical segmentation model empowering downstream segmentation , chronic disease o ours: 89.02 v Sy rpasses nnUnet
management, muscle mass assessment, fat analysis, radiation therapy planning, and diagnosis. (?) 50 ' ' dataset: . _

| | | | | s e 38 30 trained on single
[ When multiple datasets are not simultaneously accessible, our Continual Segmentation System (CSS) O ® :
dynamically updates the segmentation capability for select organs while preserving the segmentation accuracy A 2 datasets.
for others (no forgetting) [1]. .
(no forgetting) [1] 0 v’ Parameter count is
O When multiple datasets are concurrently available, our Universal Segmentation Model facilitates easier 1 2 3 4 5 onlv about 40%
optimization, enabling the model to gain broader knowledge across these datasets, thereby enhancing ®MiB @OPLOP @ nnUNet @ cINet CSS y °
segmentation precision [2,3]. B
ow | ] [ owm Scenario 2: Universal Segmentation
o G S B B
i I e— et +1.6
Muscles §- Muscles 4 94 6
Collar + Ribs g- Collar + Ribs 5
> i N % ______________ \’ __________ Confidence Map ‘_‘_\ +2 . 6
§ <. Feat I G)
Eyes 1) *. Supporting 4 91
et NS B 5 +1.3 ——
Brain Stem o Parotid 3 - —
¥ R [ Turer et ) 0 88 +5- —
Auxiliary Tasks — § Brain Stem ; CI)
Task 2 § 'L_J 85
TumerSegreniaten| | -1 S -
Subclavian Vein é Subdav:n I [ —— 82
o Pericardium ] :g( B Pedca[qlgm Tas‘k : l,) eq
Body Parts Estimation - /"\‘ Fgﬁ:’“pfz;::“;e' *’ ‘ 7 9 - - - - -
_ umerien) L Head & Neck Chest Abdomen Tumor Average
} nnUNet clnet_CSS mclnet_universal

Currently, we are compiling additional results and optimizing inference for parallel outputs .

Open-sourced within the Alibaba Cloud ModelScope Community. Model as a Service! ¥ Our Universal Model surpasses CSS model, achieving 2.6% in Dice Similarity

Coefficient (DSC) per organ compared to nnUNet trained on single datasets!

https://github.com/alibaba-damo-academy/ct-sam3d
https://modelscope.cn/models/xiuanl123/CT-SAM3D I C CVZS
PARIS
1] Ji, Z. et al., “Continual segment: Towards a single, unified and non-forgetting continual segmentation model of 143 whole-body organs in CT scans”, IEEE ICCV, 2023
2] Zhu, V. et al., “Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in 3D CT Scans with Light-Weighted Adaptation”, MICCAI 2024
3] Guo, H. et al., “Towards a Comprehensive, Efficient and Promptable Anatomic Structure Segmentation Model using 3D Whole-body CT Scans”, CoRR abs/2403.15063 (2024, in review)
4] Ulrich et al., “Multitalent: A multi-dataset approach to medical image segmentation”, MICCAI, 2023



https://github.com/alibaba-damo-academy/ct-sam3d
https://modelscope.cn/models/xiuan123/CT-SAM3D

Unified, Accurate, Generalizable and Non-forgetting Con-

ii EF% tinual Segmentation Models of Fine-grained 236 Whole-

PAMO ACADEMYE . body Organs, Lymph Node Stations and Lesions in 3D CT
. Scans: Is Organ Segmentation in CT a Solved Problem?

—

[y}

s Dazhou Guo'', Zhanghexuan Ji'', Yanzhou Su'*®, Dandan Zheng?', Heng Guo', Puyang Wang?,
s Ke Yan!3, Yirui Wang!, Zi Li}3, Minfeng Xu'3, Qifeng Wang®, Na Shen®, Tsung-Ying Ho’, Jia
7 Ge?, Yun Bian®, Hua Zhang”, Alan L. Yuille'°, Ronald M. Summers'!, Zhiyong Lu'?, Perry J.
s Pickhardt', Cher Heng Tan!4, Chunyan Miao'*:1%, Senxiang Yan?*, Le Lu'*, Dakai Jin'*, Xianghua
9 YE:Q*

10 'DAMO Academy, Alibaba Group

11 2Department of Radiation Oncology, The first Affiliated Hospital, Zhejiang University, Hangzhou,
12 China

13 SHupan Laboratory, Hangzhou, China

1o *School of Medicine, Johns Hopkins University, Baltimore, United States of America

15 °Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan, China

16 9Department of Otolaryngology-Head & Neck Surgery, Zhongshan Hospital, Fudan University,
17 Shanghai, China

s ' Department of Nuclear Medicine, Chang Gung Memorial Hospital, LinKou, ROC

1o SDepartment of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China

20 °Linking Med Inc., Beijing, China

2 0Department of Computer Science, Johns Hopkins University, Baltimore, United States of America
2 1Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, United
23 States of America

2« 1?National Library of Medicine, National Institutes of Health, Bethesda, United States of America
» SRadiology & Medical Physics, School of Medicine & Public Health, University of Wisconsin,
26 Madison, United States of America

27 1*Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore

s 1°Centre of Al in Medicine, Nanyang Technological University, Singapore

20 19Alibaba-NTU Global e-Sustainability CorpLab (ANGEL), Nanyang Technological University,
30 Singapore
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Hospital/Datasets Model Update Organ Segmentation
° .

R

o Despite claimed as foundation models, none of recent e T
medical SAM-type models!12l have truly surpassed the @ = I g‘
performance of dataset-specific trained nnUNet®l under 7N b !

rigorous and fair evaluation.

\ :i Step 2: Chest Decoders
o We tackle universal segmentation from a new B C ,
perspective of continual learning and propose a unified, f I : ' 3 ,7
scalable and non-forgetting Continual Learning model, '

CL-Net!%3]

(J Harness the synergies of a large set of partially labeled
datasets to accurately segment all anatomies present across

all datasets /
X .
J Dynamically extend to segment new anatomies without . @ E g Step 4: Head & Neck Decoders 5
compromising previously learned knowledge, even without \__/ s ® q ?
access to prior training datasets aﬂ ? k - m ?
J 20 public and 16 private datasets (collection of our previous . :
peer-reviewed work) from different institutions with various ' — | | ' o & -
. . . . X / General Encoder el Model Learning Flow o :;B Hospital Sites
vendors, phases and pathologies, resulting in a substantial , T, i He
total of 13,952 CT scans covering 236 whole-body Multi-head Decoder  ——)(~3 Training Dataset Flow ﬁ m Body Parts/

anatomies: 193 organs/sub-organs, 33 lymph node stations,

and 10 tumor GTVs. Continual Segmentation

Zhao, Z. et al. One model to rule them all: Towards universal segmentation for medical images with text prompts. Nature Communications under review (2024)

Zhao, T. et al. Blomedparse: a biomedical foundation model for image parsing of everything everywhere all at once. Nature Methods (2024)

Isensee, F., et al. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods (2021)

Zhang et al. “Continual segment: Towards a single, unified and non-forgetting continual segmentation model of 143 whole-body organs in ct scans”, IEEE ICCV (2023)

S5 a8 N B

In submission (2024)

Partial label
Segmentation

Guo, D. et al., “Unified, Accurate, Generalizable and Non-forgetting Continual Segmentation Model of Fine-grained 236 Whole body Organs, Lymph Node Stations and Lesions in CT scans’,
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Table 1 | Evaluation results of nnUNet?s6, CL-Net

CL-Net®s and CL-Net“36 on different

Universal Segmentation for Fine-grained 236 Whole-body anatomies

Table 3 | Performance comparison of CL-Nets, nnUNet”s 1, and BiomedParse ** on 13 organs

unpruned? A . . ; .
. * _
whole body organ groups. All: average over all 236 classes. There metrics are reported to evaluate Oij FLARE22.24N0te that DSC* (2D slice-level) are 2D segmentation results directly copied from
BiomedParse “*.
Metric Method Head & Neck (49) Chest (52) Abdomen (28) Bone (63) LNS (33) Lesion (10) Body (1) | All (236) - - : -
- Metric Method Liver Kidney_R Kidney_L Spleen Pancreas A Aorta  V_VenaCava._l
Y36
“”UNC‘;J 74.26 85.45 90.81 91.92 7211 70.31 96.97 83.03 DSC* (2D slice-level) BiomedParset 96.6 95.7 96.3 96.1 86.7 94.8 89.6
pscr o CleNeti 80.63 88.15 91.85 92.26 72.27 70.81 9717 | 85.21 : -
Ol NatGe - — — — = 7560 T T T TR0 T T TOTSI T T T 004 T TR T 7067 T T 9705 | TS0 - Blomedgfrse 24.1+19.8 53.9+7.5 64.943.6 L62..3:‘:6.1. 24404 272405 11.6+1.5
Nl 80.64 a8 15 o1 84 9228 297 20.89 0711 85,2 DSCt nnUNet? 98.1+14.5 92.4+16.9 9284169 9794156 9164172 9674165  88.8+10.1
CL-Net™ _ _ _ _ 8064 _ _ 88 D o o 20T 2O el IO 2D L O9se CL-Net“s 98.345.8 94.3+7.1 92.946.7 08.046.6  924+7.0  97.1+16.5 88.6+9.9
nnUNet"36 1.18 1.37 1.14 0.86 1.35 3.59 2.2 1.26 BiomedParse © 48.34426.44 57.48+14.48  69.38+10.18 51.4148.09 60.92+0.61 64.15+£3.13  70.89+8.90
CL-Net,™ 4 0.96 1.18 0.98 0.83 1.29 3.64 2.29 1.14 ASD| nnUNet?s 0.8340.98 1.8140.74 92.8416.9  0.30+0.37  0.80+£0.69 0214095  1.08+1.03
ASDL r CL-Net®ss 101 0119 T 102 T T T 083 T T 130 T 7367 0 T 233 7116 '; CL-Net 0.8141.00 1.4440.76 1.184£0.69  0.19+0.37  0.72+0.38  0.18+0.83 1.1240.98
Cl_‘—l”_ﬂefib_ _____ 095 17 097 082 129 348 25 | 113 Metric Method GInd_Adrenal R GInd_Adrenal L.  Gallbladder Eso Stomach  Duodenum | Mean
nnUNetEss 1126.8%  DSC* (2D slice-level) BiomedParset® 76.3 79.0 86.8 85.0 92.8 8.1 | 89.0
Dec. P 4 CL-th”'“‘Ewd_ 438.2 485.2 2974 172.2 31.3 156.5 15.7 1596.5 BiomedParse 0.0+0.0 0.0+0.0 1.0+1.0 59.4413.7 0.8+0.0 1.0+1.0 23.7
ec. Param# r =, == T T TRy T T T T 69 ~ T T35 TTT7 207 7 738 T T 716 T T T01 | T400 ] DSC? nnUNet? 85.9412.3 88.0+13.3 80.2424.7 844431 9174164 79.8425.9 89.9
CL-NetHss 12.1 6.9 35 20 38 116 0.1 39.9 CL-Net%s 87.9413.2 87.74+12.5 83.148.7 86.0+3.0 924465  81.0+16.1 90.7
____________________________________________ —— BiomedParse®  79.70+2.33 102.87416.02  134.81£19.78 34.80+28.08 59.1642.60 58.08-7.51 68.62
ASD] nnUNet?s 0.39+0.37 0.26+1.16 2.16+0.83  1.70+0.15  1.24+0.67 2.71+1.29 .14
. . ) CL-Net“s 0.35+0.39 0.2140.38 2.124+0.83  1.61+0.14  1.17+0.69  2.39+1.18 1.04
Table 2 | Performance comparison of PLS models on five representative public datasets. The
2 Es : 2 3
mean DSC (%) and ASD (mm) of CL-Net*>, nnUNet”s, MultiTalent 2, and SAT. pro = are evaluated or Multi-talent —— <t BiomedParse®  CL-NetU3$

on five representative public datasets. CL-Net"s achieves the top performance in both DSC and
ASD. Note that the officially released SAT-pro model removes image metadata headers during
inference, preventing the calculation of ASD.

Metric Method TotalSegmentator StructSegl9 FLARE22 SegThor KiTS21 | Mean
nnUNet’s 94.06 86.39 89.87 92.58 86.70 | 92.53
DSCH MultiTalent 2 92.55 78.96 89.29 90.66 79.57 | 90.21
SAT-pro*  _ _ _ _ _ 86.38 _ ____0287 _ _ 813 _ _90.34 _ 79.98 | 83.00
LCL-Net  _ _ _ _ _ 4.28 _ _ _ _ _ 86.95_ _ _ _90.73 __ 9371 _ 8716 | 92.88
nnUNet?s 0.97 0.29 1.14 0.34 1.18 0.87
MultiTalent 2 0.81 1.95 1.83 1.44 9.94 1.13
ASDY SAT-pro® L
LCL-Net™_ ___ __085 ____ __ 027 __ __104 ___032__ _1.03_| 077
2] Ulrich et al. “Multitalent: A multi-dataset approach to medical image segmentation”, MICCAI, 2023
3]
6]

o CL-Net achieves consistent
superior or on par accuracy
with dataset-specific trained
nnUNet

CL-Net outperforms nnUNet-
extended universal model
MultiTalent!2! by +2.64% DS

Significantly outperforms SAM-
type medical imaging
foundation models by large
margins, e.g., SATI3] (+9.9% DS),
BiomedParsel® (+67.0% DS).

Zhao, Z. et al. One model to rule them all: Towards universal segmentation for medical imageswith text prompts. Nature Communications under review (2024)
Zhao, T. et al. Biomedparse: a biomedical foundation model for image parsing of everything everywhere all at once. Nature Methods (2024)



ig E F% Universal Segmentation for Fine-grained 236 Whole-body anatomies
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ii EF% Whole-body/chest/abdominal muscle and fat segmentation on non-contrast CT
scans - management of chronic disease treatment response
(Severe Fever with Thrombocytopenia Syndrome, SFTS)

DAMO ACADEMY %

{V{#F radiomics $F4iE: {N{FE AL RgRRYFALE :
ROC ROC
1.0 1 ~ 1.0 =
- i
. R -
& o
r o
e - o
F i
0.8 - ~” 0.8 - ~
- ”
- &
# #
- -
e F
J - rF
F -
06- L 06- L
- F
- -
o Fa
-
P —— ROC fold 1 (AUC = 0.895) —— ROC fold 1 (AUC = 0.72)
0 4+ # —— ROC fold 2 (AUC = 0.87) 044 —— ROC fold 2 (AUC = 0.75)
. —— ROC fold 3 (AUC = 0.87) —— ROC fold 3 (AUC = 0. 86)
i —— ROC fold 4 (AUC = 0.85) —— ROC fold 4 (AUC = 0.68)
ob f.«" —— ROC fold 5 (AUC = 0.79) nib —— ROC fold 5 (AUC = 0.69)
' '.,4" = = [Chance ' = = [Chance
oy —— Mean ROC (AUC = 0.86 = 0.05) —— Mean ROC (AUC = 0.74 = 0.06)
F
*,-" + 1 std. dey + 1 std. devy.
ﬂ.ﬂ ] ] I L) 1 ﬂ_ﬂ L] T
0.0 0.2 0.4 0.6 08 1.0 0.6 08 1.0
DREL] M ER ST {FRRHA SIS
i ROC o ROC
_wir .||""l.'ll r .w"ip.||l
- #
- &
- -
- -
F F
0.8 |_/ 7 0.8 - »°
- ”
- &
# #
- -
F r
o -
F F
06 - e 06 - e
Fa F
- -
F i F i
- f.p“
P —— ROC fold 1 (AUC = 0.79) _#" —— ROC fold 1 (AUC = 0.87)
D47 s —— ROC fold 2 (AUC = 0.87) sl Ry —— ROC fold 2 (AUC = 0.93)
> —— ROC fold 3 (AUC = 0 88) 7 —— ROC fold 3 (AUC = 0.95)
i —— ROC fold 4 (AUC = 0.78) »* —— ROC fold 4 (AUC = 0.86)
ol ol —— ROC fold 5 (AUC = 0.77) . ol —— ROC fold 5 (AUC = 0.90)
' _.,-" = = [Chance ' # = = Chance
Py —— Mean ROC (AUC = 0.82 + 0.05) —— Mean ROC (AUC = 090 + 0.04)
"
4 + 1 std. dev. + 1 std. devw.
ﬂ.ﬂ L] L] I L) 1 ﬂ_ﬂ T T T T
0.0 0.2 0.4 0.6 08 1.0 0.2 0.4 0.8 08 1.0



QEF% (6) Full brain area segmentation based on MRI/ 106 brain

DAMO ACADEMY®

(a) Surface-based complex pipelines for whole brain segmentation

s < »
’ . ! &5 . '
! ‘ ~ #_ . y
| &4 3 . T .-
\ \ ol e Y~ ) »
\ A\~ Fo 4 - Z s
\ L 3 - 5

Anatomical Cortical surface  Curvature Spherical Spherical Spherical
segmentation reconstruction computation mapping registration parcellation

Parcellation
Original image
surface mesh

(b) Volume-based deep neural network for whole brain segmentation

N Neural network
model
\

Original image

(c) Our curvature-guided coarse-to-fine framework

-
-
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Parcellation
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volume space

Whole brain
segmentation

segmentati g |

\ on model

Anatomical White matter and

Original image 2 .
8 8 segmentation &ubcortlcal structures

Whole brain

segmentation}

v A i
Coarse stage Fine stage

Tlw image

Table 2. Comparison with state-of-the-art whole brain segmentation methods.

#1 #2 w/ curv #1

SS Dice | WM |GM Dice| All Dice| Time

(%) |Dice (%)| (%) (70)
FreeSurfer | ] 76.28 91.22 86.45 | 82.84 ~5Hh
UNesT [/] 74.59 88.32 73.49 74.20 ~10s
Our method (nnU-Net #2 w/ curv)| 77.42 | 94.46 | 83.13 81.36 ~10s

regions

SWINnUNETR nnU-Net
#2 w/ curv #1 #2 w/ curv

3D U-Net
Ground truth

106 manually labeled ROIs include 31 cortex labels in each
hemisphere, 1 WM label in each hemisphere, 41 SS labels,
and 1 background label.

https://modelscope.cn/models/...Open-sourced Iin the Alibaba

Cloud ModelScope community: Model as a Service!

Zhao, et al., A Curvature-Guided Coarse-to-Fine Framework for Enhanced Whole Brain Segmentation, (early accept, Top 11%), pdf, 27th INTER.
CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024, 6-10 October 2024, MARRAKESH/MOROCCO



https://www.cs.jhu.edu/~lelu/publication/MICCAI2024-2514.pdf
https://conferences.miccai.org/2024/en/
https://modelscope.cn/models/

4. How to adequately and rapidly address the very next step

clinical needs for our screened-positive patient population ...

Cancer Precision Diagnosis & Treatment Recommendation (Al-MDT)

o* Contrast CT+ multi-modal head and neck cancer TNM

N/

% Contrast CT+ multi-modal lung cancer TNM

NG

% Contrast CT+ multi-modal esophageal cancer TNM

N/

¢ Contrast CT+ multi-modal pancreatic cancer TNM

NG

“ Contrast CT unified detection and diagnosis model of at least eight major cancers (M)



QE F% (1) T-staging for laryngeal cancer based on CT

DAMO ACADEMY®

IR MR B I 8% B > B R

[ The precise clinical T staging before treatment for laryngeal cancer patients determines the

100 — —
therapeutic approach, such as larynx preserving surgery (for T1-T3 stages) or total = - -
laryngectomy (for T4 stage), which in turn leads to varying 75
[ Currently, clinical diagnosis of T staging relies on PET-CT; however, even PET often fails to 50
clearly demonstrate invasion of the thyroid cartilage and extralaryngeal tissues [2]. 55
(d Objective: To establish preoperative T staging for laryngeal cancer based on CT, reducing the 0
need for additional PET-CT radiation exposure and patient expenses, concurrently devising the g Q ™ < o & o R o &
most accurate surgical approach. 5 Sy &9 & < © @ &
A\ > N Q o O O Y ®
Qp Q§° Qp S S
g La rynx preserving surgery Total Iaryngectomy surgery no revision minor revision M moderate revision major revision
| o 2 AMCHE - $ 2N OB EF AR RS O TIEAEFR
-,-;;.i_ e . \\;\ ﬁﬂﬁt)]l.‘% T, 2%, JMBEEBER
D= PICK G "
~ P e — N o Over 300 pathologically confirmed patients for early N stage, with
i A | ,/\ = he ™ /
) & —~ o SR | \ plans for more cases and PET-CT data.

' /\ ﬁi;@\ e Ui E \ = \\ : .

. B\ | | | o 54-organ segmentation model for head and neck.

Y BESEFRHOEASRBARL U i - e S < | mEEen : .

FCEBH DR - T ABME - B v o Tumor segmentation accuracy of 78% for nasopharyngeal cancer
Qv SEARSTRENE ;,ll; BREA (SHBMA) . .
N e R swoen S based on non-contrast CT scans (approaching the 80% consistency
R EN S | T Y TR \'k: of physician delineation on multi-modal MRI).

SEAXRLDBEER

o Our current system scores at 3.1.

[1] Lydiatt et al. “Head and neck cancers—major changes in the American Joint Committee on cancer eighth edition cancer staging manual”, CA: A Cancer Journal for Clinicians, 2017

[2] Forastiere et al. “Use of Larynx-Preservation Strategies in the Treatment of Laryngeal Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update”, Journal of Clinical Oncology,
2018

[3] “Comprehensive and Clinically Accurate Head and Neck Cancer Organs-at-risk Delineation on a Multi-institutional Study”, Nature Communications, 2022
[4] “Deep learning for fully automated prediction of overall survival in patients with oropharyngeal cancer using FDGPET imaging: an international retrospective study”, Clinical Cancer Research, 2021
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(1) N-staging in head and neck squamous
cell carcinoma using CT

Head and neck squamous cell carcinoma refers to malignant epithelial tumors originating from the

®
oral cavity, pharynx, and other sites, ranking 6th in overall cancer incidence and accounting for over
90% of all head and neck cancers.

o These cancers often affect vital functions such as chewing, speaking, swallowing, and aesthetics due
to their involvement of multiple sites, highlighting the importance of precise N staging for HNSCC
[1,2], which enables reasonable treatment plans that balance patients' quality of life, aesthetic
appearance, and prognosis.

o Since the 8th edition of the UICC/AJCC TNM staging system, extranodal extension (ENE), defined as
the spread of cancer beyond the lymph node capsule, has been incorporated into the N staging,
recommending a combined modality of treatment.

; — " HELEELIESMIIC ENE

mREKIR ot 1 Nt
T 1 28
| *f% 38
Tl ——— sl ] RIS
8% LN B
o JCO ENE diagnosis AUC 0.87; Lancet DH AUC 0.86; Our AUC for metastatic lymph node diagnosis is

0.90-0.93, ENEdiagnosis AUC 0.91-0.96; ENE diagnosis for two radiologists in internal and external

data is only 64% and 28% in average.

W N B

trial”, Lancet Digital Health, 2023

True Positive Rate
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Lydiatt et al. “Head and neck cancers—major changes in the American Joint Committee on cancer eighth edition cancer staging manual”, CA: A Cancer Journal for Clinicians, 2017

Ho et al. “Association of Quantitative Metastatic Lymph Node Burden With Survival in Hypopharyngeal and Laryngeal Cancer”, JAMA Oncology, 2018
Kann et al. “Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma”, Journal of Clinical Oncology, 2020

4] Kann et al. “Screening for extranodal extension in HPV-associated oropharyngeal carcinoma: evaluation of a CT-based deep learning algorithm in patient data from a multicentre, randomised de-escalation



ii E % (2) T-staging for Esophageal Cancer using CT

Key slice identification ROC curve

DAMO ACADEMY % 1.0 Key slice confusion matrix
80
o The T stage refers to the status of the primary tumor, T1 to T4 showing the tumor volume enlarges 0.8 120 17
and involvement of adjacent tissues expands. & & BEEEON (12.41%)
2 0.6 )
o The precise clinical T staging of esophageal cancer patients before treatment determines the é —
therapeutic approach taken (e.g. surgery versus neoadjuvant chemoradiotherapy), impacting £ 0.4 - e 103 40
patients' prognoses and survival outcomes [1]. S 0. {jg 1 (35.22%) B(LRZIA
~ 0.2 3
o The accuracy of clinical T staging based on CT/MRI/PET by physicians is low, from 30% to 70% [2,3], — ROC curve (AUC = 0.83) \;0‘\ | __20
while endoscopic ultrasound achieves an accuracy rate of 85%; however, it is invasive, not 0.0 , , | , , Key Non-Key
: - ! - 0.0 0.2 0.4 0.6 0.8 1.0 ..
universally offered and relies on the operator's skill [4]. False Positive Rate Prediction
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Currently, our precision in !dentlfylng the key slices determining T staging in esophageal Micro-average (AUC = 0.87)
tumors stands at 87.6%, with an area under the curve (AUC) of 83%. For T1, T2, and 0.0 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

combined T3+T4 staging, the respective AUCs are 89%, 63%, and 77%, with a micro AUC of
87%.

False Positive Rate

Rice et al. “Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer”, Journal of Thoracic Oncology, 2017

Lee et al. “Clinical implication of PET/MR imaging in preoperative esophageal cancer staging: comparison with PET/CT, EUS, and CT", Journal of Nuclear Medicine, 2014
Lee et al. “Diagnostic Performance of MRI for Esophageal Carcinoma: A Systematic Review and Meta-Analysis”, Radiology, 2021

Puli et al. “Staging accuracy of esophageal cancer by endoscopic ultrasound: A meta-analysis and systematic review”, World Journal of Gastroenterology , 2008
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o The accurate clinical N staging [1] before treatment for esophageal cancer patients determines the
treatment (such as surgery versus neoadjuvant chemoradiotherapy) and the precision(the scope of
lymph node dissection, the range of radiotherapy clinical target volume [CTV]), which direct impacts
patients' survival outcomes [2].

d The accuracy of differentiating between benign and malignant esophageal lymph nodes based
on EUS/CT/PET by clinicians is low: sensitivity ranges from 50% to 80% [2,3], and specificity
ranges from 70% to 85% [3,4].

Lymph noge mastasisC location

e " :

Tis (HGD) A

T2
T3 T4a T4b

)4
d

Our AUC to identify malignant lymph nodes in esophageal cancer is 88.4%, with a
sensitivity of 82.02% at 80% specificity, and a specificity of 81.76% at 80%
sensitivity.
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(2) N-staging for Esophageal Cancer using CT
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[ The precise clinical T staging prior to treatment in lung cancer patients
determines the therapeutic approach adopted (such as varying surgical
procedures, combined treatment modalities, etc.), which in turn leads to
differing prognosis and quality of life outcomes for the patients [1].

1 Lung cancer T staging relies on accurate tumor segmentation, coupled with the
spatial relationship to the bronchial tree, as well as the spatial relationship with
surrounding tissues (including the pericardium, chest wall, nerves, esophagus,
diaphragm, vertebral bodies, etc.) [2].

3
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Our accuracy for lung tumor segmentation is 81%
(Inter-observer consistency ~ 80%),

[1] “The International Association for the Study of Lung Cancer Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groups in the Forthcoming (Ninth) Edition of the TNM

Classification for Lung Cancer”, Journal of Thoracic Oncology, 2024

[2] “The International Association for the Study of Lung Cancer Lung Cancer Staging Project. Proposals for the Revisions of the T-Descriptors in the Forthcoming Ninth Edition of the TNM

Classification for Lung Cancer”, Journal of Thoracic Oncology, 2024
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DAMO ACADEMYE station segmentation results

.. i i ] Dice Score Average Dist Error Hausdorff Dist Error
o Accurate clinical N staging prior to treatment for lung cancer determines the 0.85

therapeutic approach (such as various surgical methods, combined treatment +5% 1.4

25
strategies, etc.), which in turn results in differing prognoses and quality of life for the 0.8 15 o
patients [1]. ) -319%
D Radiology only detected N2 patients from enhanced CT images of tumors [2]; whereas Nature 0.75 15 -56%
Communications identifies both N1 and N2 patients using tumors on PET/CT scans [3]. 0.8 I 10
0.7 0.6 5 l
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'S Lymph node detection results
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The preliminary techniques has been established; data collection for lung

. o . FP @0.5 FP@1 FP @2 FP @4
cancer lymph node differentiation is still ongoing.
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[1] “The International Association for the Study of Lung Cancer Lung Cancer Staging Project: Proposals for the Revisions of the N-Descriptors in the Forthcoming Ninth
Edition of the TNM Classification for Lung Cancer”, Journal of Thoracic Oncology, 2024

[2] “Deep learning for prediction of N2 metastasis and survival for clinical stage | non—small cell lung cancer”, Radiology, 2022
[3] “PET/CT based cross-modal deep learning signature to predict occult nodal metastasis in lung cancer”’, Nature Communications, 2023
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Management of Precancerous Pancreatic Lesions; Resectability, N-Stage Assessment
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Figure 3: Imagesin a 71-year-old man with pancreatic ductal adenocarcinoma in the lymph node (LN)-negative group. (A) Hematoxylin-eosin stain shows that the
peritumoral LNs (arrows) are negatfive (hematoxylin-eosin staining; magnification, X 1). The dashed line indicates the tumor periphery. (B) Graphic shows LNs (green
arrows), tumor (blue arrow), and pancreas (yellow) segmented and diagnosed by artificial intelligence (Al). (€) Axial portal phase CT scan segmented by the Al model
shows a negative LN (arrow) located at the pancreatic head. (D) Axial portal phase CT scan segmented by the Al model shows a negative LN (arrow) located at the
pancreatic head. (E) Axial portal phase CT scan segmented by the Al model shows an infilirative low-attenuation mass (arrow) at the pancreatic head.

Data distribution

Monitoring

Patient Management

[1] “Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma”, Radiology, 2023
[2] “Deep Attention Learning for Pre-operative Lymph Node Metastasis Prediction in Pancreatic Cancer via Multi-object Relationship
Modeling”, International Journal of Computer Vision, 2024

[3] “Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer: A
Retrospective Multicenter Study”. Annals of Surgery, 2023

[4] “Graph Anatomy Geometry-Integrated Network for Pancreatic Mass Segmentation, Diagnosis, and Quantitative Patient
Management”, IEEE CVPR 2021

[5] S Springer, DL Masica, M Dal Molin, C Douville..., “A multimodality test to guide the management of patients with a pancreatic
cyst” - Science translational Medicine, 2019




- Image Reading Al on Enhanced CT: Detection, Measurement,
’iﬁ F% Diagnosis & Beyond = can we go to M (detecting cancer )?

DAMO ACADEMY

"~ Gancer |
nonCancer

- o Breast tumor
Esophagus tumor——= = . .. =& _
AR 1. Techniques:
T — (1) Data & Annotation: A training set of 10,000 labeled cases

Others Beni

Lung tumor— e | .\"‘:-. (2) Algorithm: Hierarchical optimization with background modeling

. .
Stomach tumor (HOBM), Partial label learning

Cancer 2. Product Readiness:

nonCancer

- Kidney tumor
Colon tumor | Tumor
Others_Mali | Cyst

3. Next Steps:

Breast Shenyi

colon Shengyi 847 100
. esoBenign Advancing towards universal lesion detection capabilities: Establishing

Pancreas tumor

Deepening collaboration for clinical iteration.

eso esoCancer an ultra-large-scale real-world dataset, integrating with DeeplLesion, and
Eso esosiChuan incorporating Vision-Language Pretraining.
eso eso/ZJU

eso esoZJU-EarlyEC24
eso eso/ZJU-ECA300
kidney KITS23

Liver LivShengjingl16-22
lung GDLC

lung /DY670

lung ZDY2000

Detection

Detection_hit
Segmentation
Segmentation_TP
Specificity

pancreas shangyi i )
Diagnosis

pancreas shangyi?
stomach shengyi
stomach shenyiAddData [1]

stomach shiyiNormal . IEEE ICCV, 2023
CT Scans




ig E F% (6) Towards bigger models --- in Radiology & Pathology

DAMO ACADEMY®

9 ) e CLIP Adrena| gland Kldney
Finding: The pancreas demonstrates SAREE @ M@r"ep“m‘s
normal morphology, with slight fullness ¢a® (Pancreatitis) (Nodule] (Calculi) A“O h /‘9027
. - ; Cyst ) |Gallstone €
in the body and tail regions. The m 6868 71860 7; Sk Stz:el = 4
. x - r . olecystitis
peripancreatic fat planes surrounding /ﬁ’ancreat'c duct d"atat'on] 8 68 Aden‘:m oo
x . g iuae . : Y !
the body and tail are indistinct, with [Pancreatic cancer} A il
. : 2 (Pleural effusion ] g8 : [Hemang oma 2
evidence of minor exudative changes. — TR ; & %
& [ Bronchiectasis | \ 79 58 : @ S,
< 96
p e . 5 Emphysem ; ‘ - :
Impression: Acute pancreatitis with ¥ e P N . : |splenomegaly] N
minimal peripancreatic exudative Atelectasis ' 77 m \“c’;
6 changes. Pneumonia | /{ o 8'21 .\88 Diverticulum %
J A e [( - '
- . Stomach cancer | o 100 | Thrombosis o
(b) Diagnostic report z . v P S
o Gastric wall 90  1loo : o
= 1.0 & thickening 9 . ‘ Hypertension
' )
[Glisson’s Capsule] ' ' 4o 90 360 [ Hiatal Hernia | &
Effusion bo— . a7l g <
- 0.8 : w2/ a6 " | Vvaricose Veins &
Metastase 8 54 - 9 u.v}
llntrahepatuc Bule' 61 6‘1 : (Cardiomegaly) A
- 0.6 Duct Dilatation ‘36 ' ,65 Lper cardial Effusion :g’y
< \) : 65 [Appenducolith]
3 | Steatosis | ; 68
Lo:a ~ [Appendlcutls]
| : / Dnvemculum
m : —- 28/ olorectal Cancer
- 0.2 ~ ' 76 88-'19/92‘ [ Rectal Cancer ]
(Gas) —
][Effus.on] [Osteiti
[Dlvertuculum -
0.0 Lntussusceptnon Obstruction ]
- - - - . . S,nall ,n —
(c) Visual activation map of CLIP (d) Visual activation map of our fVLM (e) testing S

Figure 1: Comparative analysis of vanilla VLM (CLIP) and our fine-grained VLM (fVLM). (a,b)
A representative CT slice and 1ts corresponding radiological report. (c,d) Visual activation maps
generated by CLIP and VLM respectively, illustrating regions of interest for pancreatitis diagnosis.
(e) Quantitative comparison of AUC scores across 54 disease diagnosis tasks in 15 anatomies.
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Original reports

Anatomy-level decomposed reports

Findings. The liver demonstrates normal position, size,
and morphology. Diffuse decreased density is observed in
the liver parenchyma. A small, round, non-enhancing low-
density lesion with well-defined margins is visible in the
right lobe of the liver. No dilation of intrahepatic or
extrahepatic bile ducts is noted. The kidneys are normal in
position and morphology; the right kidney shows punctate
high-density shadows, with no enhancing small cystic
lesions in both kidneys. The pancreas is normal in size and
density, with no abnormal enhancement foci. There is no
dilation of the pancreatic duct. A slightly hypo-dense

nodule is observed on the greater curvature side of the|E "

gastric wall, with indistinct margins from the stomach wall,
measuring approximately 14mm in diameter.

()7 (Findings) The liver demonstrates normal position, size, and
morphology. Diffuse decreased density is observed in the liver
parenchyma. A small, round, non-enhancing low-density lesion with
well-defined margins is visible in the right lobe of the liver. No
dilation of intrahepatic or extrahepatic bile ducts is noted.
(Impression) Fatty liver. Small cyst in the right lobe of the liver.

* (Findings) Punctate high-density shadows in the right kidney,
with no enhancing small cystic lesions in both kidneys. (Impression)
Small calculi in the right kidney and small cysts in both kidneys.

g (Findings) Normal in size and density, with no abnormal
enhancement foci. No dilation of the pancreatic duct.

Impression. Fatty liver. Small cyst in the right lobe of
the liver. There are small calculi in the right kidney and
small cysts in both kidneys. Nodule on the greater
curvature side of the stomach; consideration of a
gastrointestinal stromal tumor is suggested.

,’ (Findings) A slightly hypo-dense nodule is observed on the
greater curvature side of the gastric wall, with indistinct margins
from the stomach wall, measuring approximately 14mm in diameter.
(Impression) Nodule on the greater curvature side of the stomach;
consideration of a gastrointestinal stromal tumor is suggested.

Figure 2: Illustration of CT anatomy parsing (left) and diagnostic report decomposition (right).
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Table 2. The results of the tumor staging and survival analysis on pathology images. V-FM: Vision Foundation Model. VL-FM: Vision-

(6) Towards bigger models --- in Radiology & Pathology

Language Foundation Model. The best results are highlighted in bold, and the second-best results are in underlined.

Tasks Tumor Staging (5 Fold - Macro F1 Score) Survival Analysis (5 Fold - C-index)
Methods Backbone Params. BLCA BRCA LUAD BLCA BRCA LUAD
Two-stage MIL; Patch features: ResNet-50 [14]; Pre-training: ImageNet
MeanMIL 25M + 4.1K [0.3760 4= 0.0689 0.1860 + 0.0049 0.1800 =+ 0.0089 | 0.5256 + 0.0564 0.5303 £ 0.0535 0.5883 + 0.0803
MaxMIL 25M +4.1K [0.3640 + 0.0745 0.1840 £ 0.0049 0.1880 = 0.0223 | 0.5250 £ 0.0548 0.5036 + 0.0707 0.5009 + 0.0703
ABMIL [19] ResNet-50 25M + 0.9M | 0.4100 £ 0.0498 0.2300 = 0.0245 0.2540 + 0.0242 [ 0.5813 +0.0349 0.6118 = 0.0331 0.6130 + 0.0270
TransMIL [33] 25M + 2.7M | 0.4200 + 0.0268 0.2900 + 0.0126 0.3020 4= 0.0417 [ 0.5610 £ 0.0223 0.5689 + 0.0273 0.5973 + 0.0338
ILRA-MIL [41] 25M + 3.7M | 0.4460 £ 0.0441 0.2400 = 0.0261 0.2540 4= 0.0432 | 0.5570 £ 0.0219 0.5998 + 0.0333 0.5725 = 0.0519
Two-stage MIL; Patch features: V-FM (GigaPath) [45]; pre-training: 171K WSIs
MeanMIL 1.1G + 6.1K [ 0.4880 + 0.0426 0.3160 £ 0.0287 0.3140 £ 0.0233|0.6052 £ 0.0575 0.6255 £ 0.0391 0.6004 + 0.0506
MaxMIL 1.1G + 6.1K [ 0.4240 £ 0.0939 0.1940 £ 0.0233 0.2360 + 0.0233|0.5798 = 0.0290 0.5803 & 0.0357 0.5263 + 0.0552
ABMIL [19] VIT.G 1.1G + 1.2M | 0.5220 £ 0.0662 0.3520 £ 0.0286 0.3820 £ 0.0331|0.5990 + 0.0698 0.6594 + 0.0437 0.6083 £ 0.0461
TransMIL [33] 1.1G +2.9M | 0.4720 £ 0.0458 0.2980 4 0.0133 0.3200 £ 0.0420|0.6141 = 0.0549 0.6291 & 0.0580 0.5770 + 0.0741
ILRA-MIL [41] 1.1G +4.2M | 0.5320 £ 0.0487 0.3640 4 0.0294 0.3880 £ 0.0643 | 0.6153 + 0.0397 0.6528 + 0.0430 0.6006 + 0.0714
Two-stage MIL; Patch features: VL-FM (CONCH) [27]; pre-training: 1.17 million pathology image—caption pairs
MeanMIL 86M + 2.1K | 0.5160 4 0.0427 0.3040 + 0.0326 0.3260 + 0.0459 [ 0.5977 £ 0.0305 0.6451 £ 0.0637 0.6174 £+ 0.0704
MaxMIL 86M + 2.1K | 0.4660 + 0.0408 0.1860 + 0.0080 0.2460 + 0.0388 | 0.5701 £ 0.0588 0.5483 + 0.0742 0.5731 + 0.0626
ABMIL [19] ViLB 86M + 0.7M | 0.5260 + 0.0753 0.3340 = 0.0320 0.3840 £ 0.0700 | 0.6057 £ 0.0344 0.6444 + 0.0770 0.6399 + 0.0578
TransMIL [33] 86M + 2.4M | 0.5180 £ 0.0312 0.3700 4= 0.0940 0.3500 & 0.0253 | 0.6404 4+ 0.0253 0.6380 & 0.0379 0.5879 + 0.0389
ILRA-MIL [41] 86M + 3.2M | 0.5160 + 0.0561 0.3380 & 0.0264 0.3880 + 0.0271 | 0.6030 £ 0.0363 0.6532 + 0.0409 0.6218 + 0.0881
Two-Stage Hierarchical Representation; pre-training: 104M pathology patches + 400K WSI regions
HIPT [4] HIPT-ViT-6 |24M + 2.2M [0.4660 4= 0.0185 0.3240 + 0.0287 0.3480 £ 0.0299 [ 0.5731 £ 0.0331 0.6139 £ 0.0446 0.5895 + 0.0478
Prov-GigaPath (CLS token) [45] | ViT-LongNet | 1.2G + 6.1K | 0.4820 £ 0.0466 0.3060 + 0.0388 0.2940 + 0.0224 | 0.5435 4+ 0.0635 0.5697 & 0.0964 0.6044 + 0.0294
Prov-GigaPath (feature) [45] | ViT-LongNet | 1.2G + 1.2M [ 0.5200 £ 0.0486 0.3300 £ 0.0219 0.3500 £ 0.0452{0.5954 +0.0311 0.6193 £+ 0.0313 0.6210 £+ 0.0724
End-to-End; pre-training: ImageNet + 10K WSIs
LongViT [38] (0.6x) ViT-S 22M 0.2310 = 0.0731 0.3049 +0.0137 0.2757 £+ 0.0240 [ 0.5885 £ 0.0439 0.6453 + 0.0699 0.5890 + 0.0236
LongViT [38] (2.5x) ViT-S 22M 0.4963 + 0.0908 0.3068 £+ 0.0276 0.3155 + 0.0358 | 0.5789 £ 0.0506 0.6403 £ 0.0588 0.6085 + 0.0140
LongViT [38] (5.0x) ViT-S 22M 0.4757 £+ 0.0847 0.2979 £ 0.0265 0.2809 + 0.0196 [ 0.5708 £+ 0.0377 0.6316 £ 0.0832 0.6030 + 0.0267
End-to-End; pre-training: ImageNet

Pixel-Mamba-Stage/Surv (2.5x) | Pixel-Mamba 6.2M 0.5334 + 0.0608 0.3744 + 0.0163 0.3917 + 0.0125 | 0.6507 £+ 0.0485 0.6707 £+ 0.0728 0.6468 + 0.0331
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Figure 1. (a) Pathologists integrate observations from multiple re-
gions across different scales to make a comprehensive assessment.
(b) Frameworks of mainstream WSI analysis methods: a two-
stage pipeline (top) and memory-optimized ViT (bottom, often
with heavily pruned attention). (c¢) The proposed Pixel-Mamba,
an end-to-end framework that combines progressive token expan-
sion and the Mamba module to effectively integrate local inductive
biases with long-range dependencies in a hierarchical manner.
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Table 1. Comparison of survival prediction with SOTA methods in C-Index (7).
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0.610 0.643 0.629 0.572 0.676 0.571 0.526 0.672 0.579 0.727
-
= MeanPool (Patch) AIK 1 L0024 £0031  +0186 40037 +£0051 +0057 +0051 +0097 +0085 -+ 0041
2 0.510 0.589 0.585 0.561 0.590 0.480 0.493 0.404 0.474 0.650
E MaxPool (Patch) AIK 1 L0038 £0063 +£0078 +0068 +0076 +0037 +0075 +£0122 +0.102 0036
*E ABMIL [17] 0.9M 0.609 0.656 0.668 0.606 0.712 0.614 0.595 0.696 0.650 0.735
E ' +0028 40055 +0167 +0044 +0057 +£0066 +0.073 +0.080 +0098 +0.039
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= -
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© PointNet [31] 35\ 0.633 0.665 0.732 0.650 0.649 0.638 0.612 0.715 0.682 0.706
= ' +0025 40021 +0044 +0032 +0035 +0012 +£0.021 +0047 +0075 =+0.048
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' +0038 40036 +0028 +0030 +0045 +£0.020 +0.036 +0043 +£0055 =+0.045
PTV3 [46] 18 8M 0.553 0.536 0616 0.571 0.498 0.591 0.579 0.631 0.560 0.600
V2 170 ' +0039 40054 +0069 +0034 +0037 +0050 +0.041 +0.114 +0023 =+0.087
CCPormer (ours) > OM 0.645 0.688 0.753 0.649 0.658 0.657 0.633 0.739 0.687 0.693
' +0031 40040 +0069 +0032 +0052 +0012 +0019 +0044 +0062 +0.049
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+ MeanPool (Patch) ' +0019 40065 +0076 +0032 +0038 +0018 +0.017 40066 +0062 +0.052
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Thanks for your interests!

PATIENT FIRST

le.lu@alibaba-inc.com
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