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Abstract—Remarkable progress has been made in image recog-
nition, primarily due to the availability of large-scale annotated
datasets and deep convolutional neural networks (CNNs). CNNs
enable learning data-driven, highly representative, hierarchical
image features from sufficient training data. However, obtaining
datasets as comprehensively annotated as ImageNet in the medical
imaging domain remains a challenge. There are currently three
major techniques that successfully employ CNNs to medical image
classification: training the CNN from scratch, using off-the-shelf
pre-trained CNN features, and conducting unsupervised CNN
pre-training with supervised fine-tuning. Another effectivemethod
is transfer learning, i.e., fine-tuning CNN models pre-trained from
natural image dataset to medical image tasks. In this paper, we
exploit three important, but previously understudied factors of
employing deep convolutional neural networks to computer-aided
detection problems. We first explore and evaluate different CNN
architectures. The studied models contain 5 thousand to 160 mil-
lion parameters, and vary in numbers of layers. We then evaluate
the influence of dataset scale and spatial image context on perfor-
mance. Finally, we examine when and why transfer learning from
pre-trained ImageNet (via fine-tuning) can be useful. We study
two specific computer-aided detection (CADe) problems, namely
thoraco-abdominal lymph node (LN) detection and interstitial
lung disease (ILD) classification. We achieve the state-of-the-art
performance on the mediastinal LN detection, and report the first
five-fold cross-validation classification results on predicting axial
CT slices with ILD categories. Our extensive empirical evaluation,
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CNN model analysis and valuable insights can be extended to
the design of high performance CAD systems for other medical
imaging tasks.
Index Terms—Biomedical imaging, computer aided diagnosis,

image analysis, machine learning, neural networks.

I. INTRODUCTION

T REMENDOUS progress has been made in image recog-
nition, primarily due to the availability of large-scale an-

notated datasets (i.e., ImageNet [1], [2]) and the recent revival
of deep convolutional neural networks (CNN) [3], [4]. For data-
driven learning, large-scale well-annotated datasets with repre-
sentative data distribution characteristics are crucial to learning
more accurate or generalizable models [5], [4]. Unlike previous
image datasets used in computer vision, ImageNet [1] offers
a very comprehensive database of more than 1.2 million cat-
egorized natural images of 1000+ classes. The CNN models
trained upon this database serve as the backbone for signifi-
cantly improving many object detection and image segmenta-
tion problems using other datasets [6], [7], e.g., PASCAL [8]
and medical image categorization [9]–[12]. However, there ex-
ists no large-scale annotated medical image dataset comparable
to ImageNet, as data acquisition is difficult, and quality annota-
tion is costly.
There are currently three major techniques that successfully

employ CNNs to medical image classification: 1) training the
“CNN from scratch” [13]–[17]; 2) using “off-the-shelf CNN”
features (without retraining the CNN) as complementary infor-
mation channels to existing hand-crafted image features, for
chest X-rays [10] and CT lung nodule identification [9], [12];
and 3) performing unsupervised pre-training on natural or med-
ical images and fine-tuning onmedical target images using CNN
or other types of deep learning models [18]–[21]. A decomposi-
tional 2.5D view resampling and an aggregation of random view
classification scores are used to eliminate the “curse-of-dimen-
sionality” issue in [22], in order to acquire a sufficient number
of training image samples.
Previous studies have analyzed three-dimensional patch cre-

ation for LN detection [23], [24], atlas creation from chest CT
[25] and the extraction of multi-level image features [26], [27].
At present, there are several extensions or variations of the de-
compositional view representation introduced in [22], [28], such
as: using a novel vessel-aligned multi-planar image representa-
tion for pulmonary embolism detection [29], fusing unregistered
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multiview for mammogram analysis [16] and classifying pul-
monary peri-fissural nodules via an ensemble of 2D views [12].
Although natural images and medical images differ signif-

icantly, conventional image descriptors developed for object
recognition in natural images, such as the scale-invariant fea-
ture transform (SIFT) [30] and the histogram of oriented gra-
dients (HOG) [31], have been widely used for object detec-
tion and segmentation in medical image analysis. Recently, Im-
ageNet pre-trained CNNs have been used for chest pathology
identification and detection in X-ray and CT modalities [10],
[9], [12]. They have yielded the best performance results by in-
tegrating low-level image features (e.g., GIST [32], bag of vi-
sual words (BoVW) and bag-of-frequency [12]). However, the
fine-tuning of an ImageNet pre-trained CNN model on medical
image datasets has not yet been exploited.
In this paper, we exploit three important, but previously

under-studied factors of employing deep convolutional neural
networks to computer-aided detection problems. Particularly,
we explore and evaluate different CNN architectures varying
in width (ranging from 5 thousand to 160 million parameters)
and depth (various numbers of layers), describe the effects of
varying dataset scale and spatial image context on performance,
and discuss when and why transfer learning from pre-trained
ImageNet CNN models can be valuable. We further verify our
hypothesis by inheriting and adapting rich hierarchical image
features [5], [33] from the large-scale ImageNet dataset for
computer aided diagnosis (CAD). We also explore CNN ar-
chitectures of the most studied seven-layered “AlexNet-CNN”
[4], a shallower “Cifar-CNN” [22], and a much deeper ver-
sion of “GoogLeNet-CNN” [33] (with our modifications on
CNN structures). This study is partially motivated by recent
studies [34], [35] in computer vision. The thorough quantitative
analysis and evaluation on deep CNN [34] or sparsity image
coding methods [35] elucidate the emerging techniques of the
time and provide useful suggestions for their future stages of
development, respectively.
Two specific computer-aided detection (CADe) problems,

namely thoraco-abdominal lymph node (LN) detection and
interstitial lung disease (ILD) classification are studied in this
work. On mediastinal LN detection, we surpass all currently
reported results. We obtain 86% sensitivity on 3 false positives
(FP) per patient, versus the prior state-of-art sensitivities of
78% [36] (stacked shallow learning) and 70% [22] (CNN), as
prior state-of-the-art. For the first time, ILD classification re-
sults under the patient-level five-fold cross-validation protocol
(CV5) are investigated and reported. The ILD dataset [37] con-
tains 905 annotated image slices with 120 patients and 6 ILD
labels. Such sparsely annotated datasets are generally difficult
for CNN learning, due to the paucity of labeled instances.
Evaluation protocols and details are critical to deriving

significant empirical findings [34]. Our experimental results
suggest that different CNN architectures and dataset re-sam-
pling protocols are critical for the LN detection tasks where the
amount of labeled training data is sufficient and spatial contexts
are local. Since LN images are more flexible than ILD images
with respect to resampling and reformatting, LN datasets may
be more readily augmented by such image transformations.
As a result, LN datasets contain more training and testing data

instances (due to data auugmentation) than ILD datasets. They
nonetheless remain less comprehensive than natural image
datasets, such as ImageNet. Fine-tuning ImageNet-trained
models for ILD classification is clearly advantageous and yields
early promising results, when the amount of labeled training
data is highly insufficient and multi-class categorization is
used, as opposed to the LN dataset's binary class categorization.
Another significant finding is that CNNs trained from scratch
or fine-tuned from ImageNet models consistently outperform
CNNs that merely use off-the-shelf CNN features, in both the
LN and ILD classification problems. We further analyze, via
CNN activation visualizations, when and why transfer learning
from non-medical to medical images in CADe problems can be
valuable.

II. DATASETS AND RELATED WORK

We employ CNNs (with the characteristics defined above) to
thoraco-abdominal lymph node (LN) detection (evaluated sep-
arately on the mediastinal and abdominal regions) and intersti-
tial lung disease (ILD) detection. For LN detection, we use ran-
domly sampled 2.5D views in CT [22]. We use 2D CT slices
[38]–[40] for ILD detection. We then evaluate and compare
CNN performance results.
Until the detection aggregation approach [22], [41], thora-

coabdominal lymph node (LN) detection via CADe mecha-
nisms has yielded poor performance results. In [22], each 3D
LN candidate produces up to 100 random 2.5D orthogonally
sampled images or views which are then used to train an
effective CNN model. The best performance on abdominal LN
detection is achieved at 83% recall on 3FP per patient [22],
using a “Cifar-10” CNN. Using the thoracoabdominal LN de-
tection datasets [22], we aim to surpass this CADe performance
level, by testing different CNN architectures, exploring various
dataset re-sampling protocols, and applying transfer learning
from ImageNet pre-trained CNN models.
Interstitial lung disease (ILD) comprises more than 150 lung

diseases affecting the interstitium, which can severely impair
the patient's ability to breathe. Gao et al. [40] investigate the
ILD classification problem in two scenarios: 1) slice-level
classification: assigning a holistic two-dimensional axial CT
slice image with its occurring ILD disease label(s); and 2)
patch-level classification: a/ sampling patches within the 2D
ROIs (Regions of Interest provided by [37]), then b/ classi-
fying patches into seven category labels (six disease labels
and one “healthy” label). Song et al. [38], [39] only address
the second sub-task of patch-level classification under the
“leave-one-patient-out” (LOO) criterion. By training on the
moderate-to-small scale ILD dataset [37], our main objective
is to exploit and benchmark CNN based ILD classification
performances under the CV5 metric (which is more realistic
and unbiased than LOO [38], [39] and hard-split [40]), with
and without transfer learning.

A. Thoracoabdominal Lymph Node Datasets
We use the publicly available dataset from [22], [41]. There

are 388 mediastinal LNs labeled by radiologists in 90 patient
CT scans, and 595 abdominal LNs in 86 patient CT scans. To
facilitate comparison, we adopt the data preparation protocol of
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Fig. 1. Some examples of abdominal and mediastinal lymph nodes sampled
on axial (ax), coronal (co), and sagittal (sa) views, with four different fields-of-
views (30 mm: orange; 45 mm: red; 85 mm: green; 128 mm: blue) surrounding
lymph nodes.

[22], where positive and negative LN candidates are sampled
with the fields-of-view (FOVs) of 30mm to 45mm, surrounding
the annotated and detected LN centers (obtained by a candidate
generation process). More precisely, [22], [41], [36] follow a
coarse-to-fine CADe scheme, partially inspired by [42], which
operates with detection recalls at the cost of approxi-
mately 40 false or negative LN candidates per patient scan. In
this work, positive and negative LN candidate are first sampled
up to 200 times with translations and rotations. Afterwards, neg-
ative LN samples are randomly re-selected at a lower rate close
to the total number of positives. LN candidates are randomly ex-
tracted from fields-of-view (FOVs) spanning 35 mm to 128 mm
in soft-tissue window . This allows us to capture
multiple spatial scales of image context [43], [44]). The sam-
ples are then rescaled to a resolution via B-spline
interpolation. A few examples of LNs with axial, coronal, and
sagittal views encoded in RGB color images [22] are shown in
Fig. 1.
Unlike the heart or the liver, lymph nodes have no pre-deter-

mined anatomic orientation. Hence, the purely random image
resampling (with respect to scale, displacement and orienta-
tion) and reformatting (the axial, coronal, and sagittal views
are in any system randomly resampled coordinates) is a natural
choice, which also happens to yield high CNN performance. Al-
though we integrate three channels of information from three
orthogonal views for LN detection, the pixel-wise spatial cor-
relations between or among channels are not necessary. The
convolutional kernels in the lower level CNN architectures can
learn the optimal weights to linearly combine the observations
from the axial, coronal, and sagittal channels by computing their
dot-products. Transforming axial, coronal, and sagittal repre-
sentations to RGB also facilitates transfer learning from CNN
models trained on ImageNet.
This learning representation (i.e., “built-in CNN”) is flexible,

in that it naturally combines multiple sources or channels of
information. In the recent literature [45], even heterogeneous
class-conditional probability maps can be combined with raw
images to improve performance. This set-up is similar to that of
other works in computer vision, such as [46], where heteroge-

Fig. 2. Some examples of CT image slices with six lung tissue types in the
ILD dataset [37]. Disease tissue types are located with dark orange arrows.
(a): healthy; (b): emphysema; (c): ground glass; (d): fibrosis; (e): micronodules;
(f): consolidation.

neous image information channels are jointly fed into the CNN
convolutional layers for high-accuracy human parsing and seg-
mentation. Finally, if there are correlations among CNN input
channels, one may observe the corresponding correlated pat-
terns in the learned filters.
In summary, the assumption that there are or must be

pixel-wise spatial correlations among input channels does not
apply to the CNN model representation. For other medical
imaging problems, such as pulmonary embolism detection
[29], in which orientation can be constrained along the attached
vessel axis, vessel-aligned multi-planar image representation
(MPR) is more effective than randomly aligned MPR.

B. Interstitial Lung Disease Dataset

We utilize the publicly available dataset of [37]. It contains
905 image slices from 120 patients, with six lung tissue types an-
notations containing at least one of the following: healthy (NM),
emphysema (EM), ground glass (GG), fibrosis (FB), micronod-
ules (MN) and consolidation (CD) (Fig. 3). At the slice level, the
objective is to classify the status of “presence/absence” of any
of the six ILD classes for an input axial CT slice [40]. Char-
acterizing an arbitrary CT slice against any possible ILD type,
without any manual ROI (in contrast to [38], [39]), can be useful
for large-scale patient screening. For slice-level ILD classifica-
tion, we sampled the slices 12 times with random translations
and rotations. After this, we balanced the numbers of CT slice
samples for the six classes by randomly sampling several in-
stances at various rates. For patch-based classification, we sam-
pled up to 100 patches of size 64 64 from each ROI. This
dataset is divided into five folds with disjoint patient subsets.
The average number of CT slices (training instances) per fold
is small, as shown in Table I. Slice-level ILD classification is
a very challenging task where CNN models need to learn from
very small numbers of training examples and predict ILD labels
on unseen patients.
In the publicly available ILD dataset, very few CT slices are

labeled as normal or healthy. The remaining CT slices cannot
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Fig. 3. Some examples of CT image patches for (a) NM, (b) EM,
(c) GG, (d) FB, (e) MN (f) CD.

TABLE I
AVERAGE NUMBER OF IMAGES IN EACH FOLD FOR DISEASE CLASSES,

WHEN DIVIDING THE DATASET IN 5-FOLD PATIENT SETS

be simply classified as normal, because many ILD disease re-
gions or slices have not yet been labeled. ILD [37] is a partially
labeled database; this is one of its main limitations. Research
is being conducted to address this issue. In particular, [47] has
proposed to fully label the ILD dataset pixel-wise via proposed
segmentation label propagation.
To leverage the CNN architectures designed for color images

and to transfer CNN parameters pre-trained on ImageNet,
we transform all gray-scale axial CT slice images via three
CT window ranges: lung window range ,
high-attenuation range , and low-attenuation
range . We then encode the transformed
images into RGB channels (to be aligned with the input chan-
nels of CNN models [4], [33] pre-trained from natural image
datasets [1]). The low-attenuation CT window is useful for
visualizing certain texture patterns of lung diseases (especially
emphysema). The usage of different CT attenuation channels
improves classification results over the usage of a single CT
windowing channel, as demonstrated in [40]. More impor-
tantly, these CT windowing processes do not depend on the
lung segmentation, which instead is directly defined in the
CT HU space. Fig. 4 shows a representative example of lung,
high-attenuation, and low-attenuation CT windowing for an
axis lung CT slice.
As observed in [40], lung segmentation is crucial to holistic

slice-level ILD classification. We empirically compare perfor-
mance in two scenarios with a rough lung segmentation.1 There
is no significant difference between two setups. Due to the high
precision of CNN based image processing, highly accurate lung
segmentation is not necessary. The localization of ILD regions
within the lung is simultaneously learned through selectively

1This can be achieved by segmenting the lung using simple label-fusion
methods [48] In the first case, we overlay the target image slice with the
average lung mask among the training folds. In the second, we perform
simple morphology operations to obtain the lung boundary. In order to retain
information from the inside of the lung, we apply Gaussian smoothing to the
regions outside of the lung boundary.

Fig. 4. An example of lung/high-attenuation/low-attenuation CT windowing
for an axis lung CT slice. We encode the lung/high-attenuation/low-attenuation
CT windowing into red/green/blue channels.

weighted CNN reception fields in the deepest convolutional
layers during the classification based CNN training [49], [50].
Some areas outside of the lung appear in both healthy or
diseased images. CNN training learns to ignore them by setting
very small filter weights around the corresponding regions
(Fig. 13). This observation is validated by [40].

III. METHODS

In this study, we explore, evaluate and analyze the influence
of various CNN Architectures, dataset characteristics (when we
need more training data or better models for object detection
[51]) and CNN transfer learning from non-medical to medical
image domains. These three key elements of building effective
deep CNN models for CADe problems are described below.

A. Convolutional Neural Network Architectures
We mainly explore three convolutional neural network ar-

chitectures (CifarNet [5], [22], AlexNet [4] and GoogLeNet
[33]) with different model training parameter values. The cur-
rent deep learning models [22], [52], [53] in medical image
tasks are at least orders of magnitude smaller than even
AlexNet [4]. More complex CNN models [22], [52] have only
about 150 K or 15 K parameters. Roth et al. [22] adopt the CNN
architecture tailored to the Cifar-10 dataset [5] and operate on
image windows of for lymph node detec-
tion, while the simplest CNN in [54] has only one convolutional,
pooling, and FC layer, respectively.
We use CifarNet [5] as used in [22] as a baseline for the LN

detection. AlexNet [4] and GoogLeNet [33] are also modified to
evaluate these state-of-the-art CNN architecture from ImageNet
classification task [2] to our CADe problems and datasets. A
simplified illustration of three CNN architectures exploited is
shown in Fig. 5. CifarNet always takes image
patches as input while AlexNet and GoogLeNet are originally
designed for the fixed image dimension of .
We also reduced the filter size, stride and pooling parameters
of AlexNet and GoogLeNet to accommodate a smaller input
size of . We do so to produce and evaluate
“simplified” AlexNet and GoogLeNet versions that are better
suited to the smaller scale training datasets common in CADe
problems. Throughout the paper, we refer to the models as
CifarNet (32 32) or CifarNet (dropping 32 32); AlexNet
(256 256) or AlexNet-H (high resolution); AlexNet (64 64)
or AlexNet-L (low resolution); GoogLeNet (256 256) or
GoogLeNet-H and GoogLeNet (64 64) or GoogLeNet-L
(dropping 3 since all image inputs are three channels).

CifarNet: CifarNet, introduced in [5], was the state-of-
the-art model for object recognition on the Cifar10 dataset,
which consists of 32 32 images of 10 object classes. The
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Fig. 5. A simplified illustration of the CNN architectures used. GoogLeNet [33] contains two convolution layers, three pooling layers, and nine inception layers.
Each of the inception layer of GoogLeNet consists of six convolution layers and one pooling layer.

Fig. 6. Illustration of layer of GoogLeNet. Inception layers of
GoogLeNet consist of six convolution layers with different kernel sizes and one
pooling layer.

Fig. 7. Some examples of Cifar10 dataset and some images of “tennis ball”
class from ImageNet dataset. Images of Cifar10 dataset are small (32 32) im-
ages with object of the image class category in the center. Images of ImageNet
dataset are larger (256 256), where object of the image class category can be
small, obscure, partial, and sometimes in a cluttered environment.

objects are normally centered in the images. Some example
images and class categories from the Cifar10 dataset are shown
in Fig. 7. CifarNet has three convolution layers, three pooling
layers, and one fully-connected layer. This CNN architecture,
also used in [22] has about 0.15 million free parameters. We
adopt it as a baseline model for the LN detection.

AlexNet: The AlexNet architecture was published in [4],
achieved significantly improved performance over the other
non-deep learning methods for ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012. This success has
revived the interest in CNNs [3] in computer vision. ImageNet
consists of 1.2 million 256 256 images belonging to 1000
categories. At times, the objects in the image are small and ob-
scure, and thus pose more challenges for learning a successful
classification model. More details about the ImageNet dataset
will be discussed in Section III-B. AlexNet has five convolution
layers, three pooling layers, and two fully-connected layers
with approximately 60 million free parameters. AlexNet is our
default CNN architecture for evaluation and analysis in the
remainder of the paper.

GoogLeNet: The GoogLeNet model proposed in [33], is
significantly more complex and deep than all previous CNN ar-
chitectures. More importantly, it also introduces a new module
called “Inception”, which concatenates filters of different sizes
and dimensions into a single new filter (refer to Fig. 6). Overall,
GoogLeNet has two convolution layers, two pooling layers, and
nine “Inception” layers. Each “Inception” layer consists of six
convolution layers and one pooling layer. An illustration of an
“Inception” layer from GoogLeNet is shown
in Fig. 6. GoogLeNet is the current state-of-the-art CNN ar-
chitecture for the ILSVRC challenge, where it achieved 5.5%
top-5 classification error on the ImageNet challenge, compared
to AlexNet's 15.3% top-5 classification error.

B. ImageNet: Large Scale Annotated Natural Image Dataset

ImageNet [1] has more than 1.2 million 256 256 images
categorized under 1000 object class categories. There are more
than 1000 training images per class. The database is organized
according to the WordNet [55] hierarchy, which currently
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contains only nouns in 1000 object categories. The image-ob-
ject labels are obtained largely through crowd-sourcing, e.g.,
Amazon Mechanical Turk, and human inspection. Some ex-
amples of object categories in ImageNet are “sea snake”,
“sandwich”, “vase”, “leopard”, etc. ImageNet is currently the
largest image dataset among other standard datasets for visual
recognition. Indeed, the Caltech101, Caltech256 and Cifar10
dataset merely contain images and 10 object
classes. Furthermore, due to the large number (1000+) of
object classes, the objects belonging to each ImageNet class
category can be occluded, partial and small, relative to those in
the previous public image datasets. This significant intra-class
variation poses greater challenges to any data-driven learning
system that builds a classifier to fit given data and generalize to
unseen data. For comparison, some example images of Cifar10
dataset and ImageNet images in the “tennis ball” class category
are shown in Fig. 7. The ImageNet dataset is publicly available,
and the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) has become the standard benchmark for large-scale
object recognition.

C. Training Protocols and Transfer Learning

When learned from scratch, all the parameters of CNN
models are initialized with random Gaussian distributions and
trained for 30 epochs with the mini-batch size of 50 image
instances. Training convergence can be observed within 30
epochs. The other hyperparameters are momentum: 0.9; weight
decay: 0.0005; (base) learning rate: 0.01, decreased by a factor
of 10 at every 10 epochs. We use the Caffe framework [56] and
NVidia K40 GPUs to train the CNNs.
AlexNet and GoogLeNet CNN models can be either learned

from scratch or fine-tuned from pre-trained models. Girshick
et al. [6] find that, by applying ImageNet pre-trained AlexNet
to PASCAL dataset [8], performances of semantic 20-class ob-
ject detection and segmentation tasks significantly improve over
previous methods that use no deep CNNs. AlexNet can be fine-
tuned on the PASCAL dataset to surpass the performance of the
ImageNet pre-trained AlexNet, although the difference is not
as significant as that between the CNN and non-CNN methods.
Similarly, [57], [58] also demonstrate that better performing
deep models are learned via CNN transfer learning from Im-
ageNet to other datasets of limited scales.
Our hypothesis on CNN parameter transfer learning is the fol-

lowing: despite the disparity between natural images and nat-
ural images, CNNs comprehensively trained on the large scale
well-annotated ImageNet may still be transferred to make med-
ical image recognition tasks more effective. Collecting and an-
notating large numbers of medical images still poses significant
challenges. On the other hand, the mainstream deep CNN archi-
tectures (e.g., AlexNet and GoogLeNet) contain tens of millions
of free parameters to train, and thus require sufficiently large
numbers of labeled medical images.
For transfer learning, we follow the approach of [57], [6]

where all CNN layers except the last are fine-tuned at a learning
rate 10 times smaller than the default learning rate. The last
fully-connected layer is random initialized and freshly trained,
in order to accommodate the new object categories in our CADe

applications. Its learning rate is kept at the original 0.01. We de-
note the models with random initialization or transfer learning
as AlexNet-RI and AlexNet-TL, and GoogLeNet-RI and
GoogLeNet-TL. We found that the transfer learning strategy
yields the best performance results. Determining the optimal
learning rate for different layers is challenging, especially for
very deep networks such as GoogLeNet.
We also perform experiments using “off-the-shelf”CNN fea-

tures of AlexNet pre-trained on ImageNet and training only
the final classifier layer to complete the new CADe classifica-
tion tasks. Parameters in the convolutional and fully connected
layers are fixed and are used as deep image extractors, as in
[10], [9], [12]. We refer to this model as AlexNet-ImNet in the
remainder of the paper. Note that [10], [9], [12] train support
vector machines and random forest classifiers using ImageNet
pre-trained CNN features. Our simplified implementation is in-
tended to determine whether fine-tuning the “end-to-end” CNN
network is necessary to improve performance, as opposed to
merely training the final classification layer. This is a slight
modification from the method described in [10], [9], [12].
Finally, transfer learning in CNN representation, as empir-

ically verified in previous literature [59]–[61], [11], [62] can
be effective in various cross-modality imaging settings (RGB
images to depth images [59], [60], natural images to general
CT and MRI images [11], and natural images to neuroimaging
[61] or ultrasound [62] data). More thorough theoretical studies
on cross-modality imaging statistics and transferability will be
needed for future studies.

IV. EVALUATIONS AND DISCUSSIONS

In this section, we evaluate and compare the performances
of nine CNN model configurations (CifarNet, AlexNet-ImNet,
AlexNet-RI-H, AlexNet-TL-H, AlexNet-RI-L, GoogLeNet-
RI-H, GoogLeNet-TL-H, GoogLeNet-RI-L and combined)
on two important CADe problems using publicly available
datasets [22], [41], [37].

A. Thoracoabdominal Lymph Node Detection
We train and evaluate CNNs using three-fold cross-validation

(folds are split into disjoint sets of patients), with the different
CNN architectures described above. In testing, each LN candi-
date has multiple random 2.5D views tested by CNN classifiers
to generate LN class probability scores. We follow the random
view aggregation by averaging probabilities, as in [22].
We first sample the LN image patches at a res-

olution. We then up-sample the LN images via
bi-linear interpolation to , in order to accom-
modate AlexNet-RI-L, AlexNet-TL-H, GoogLeNet-RI-H and
GoogLeNet-TL-H. For the modified AlexNet-RI-L at (64 64)
pixel resolution, we reduce the number of first layer convolution
filters from 96 to 64 and reduce the stride from 4 to 2. For the
modified GoogLeNet-RI (64 64), we decrease the number of
first layer convolution filters from 64 to 32, the pad size from 3
to 2, the kernel size from 7 to 5, stride from 2 to 1 and the stride
of the subsequent pooling layer from 2 to 1. We slightly reduce
the number of convolutional filters in order to accommodate the
smaller input image sizes of target medical image datasets [22],
[37], while preventing over-fitting. This eventually improves
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Fig. 8. FROC curves averaged on three-fold CV for the abdominal (left) and mediastinal (right) lymph nodes using different CNN models.

performance on patch-based classification. CifarNet is used in
[22] to detect LN samples of images. For consistency
purposes, we down-sample resolution LN sample
images to the dimension of .
Results for lymph node detection in the mediastinum and ab-

domen are reported in Table II. FROC curves are illustrated in
Fig. 8. The area-under-the-FROC-curve (AUC) and true pos-
itive rate (TPR, recall or sensitivity) at three false positives
per patient (TPR/3FP) are used as performance metrics. Of the
nine investigated CNN models, CifarNet, AlexNet-ImNet and
GoogLeNet-RI-H generally yielded the least competitive de-
tection accuracy results. Our LN datasets are significantly more
complex (i.e., display much larger within-class appearance vari-
ations), especially due to the extracted fields-of-view (FOVs)
of (35 mm-128 mm) compared to (30 mm-45 mm) in [22],
where CifarNet is also employed. In this experiment, CifarNet
is under-trained with respect to our enhanced LN datasets, due
to its limited input resolution and parameter complexity. The
inferior performance of AlexNet-ImNet implies that using the
pre-trained ImageNet CNNs alone as “off-the-shelf” deep image
feature extractors may not be optimal or adequate for medi-
astinal and abdominal LN detection tasks. To complement “off-
the-shelf” CNN features, [10], [9], [12] all add and integrate var-
ious other hand-crafted image features as hybrid inputs for the
final CADe classification.
GoogLeNet-RI-H performs poorly, as it is susceptible to

over-fitting. No sufficient data samples are available to train
GoogLeNet-RI-H with random initialization. Indeed, due
to GoogLeNet-RI-H's complexity and 22-layer depth, mil-
lion-image datasets may be required to properly train this
model. However, GoogLeNet-TL-H significantly improves
upon GoogLeNet-RI-H (0.81 versus 0.61 TPR/3FP in me-
diastinum; 0.70 versus 0.48 TPR/3FP in abdomen). This
indicates that transfer learning offers a much better initializa-
tion of CNN parameters than random initialization. Likewise,
AlexNet-TL-H consistently outperforms AlexNet-RI-H, though
by smaller margins (0.81 versus 0.79 TPR/3FP in mediastinum;
0.69 versus 0.67 TPR/3FP in abdomen). This is also consistent

TABLE II
COMPARISON OF MEDIASTINAL AND ABDOMINAL LN DETECTION RESULTS
USING VARIOUS CNN MODELS. NUMBERS IN BOLD INDICATE THE BEST

PERFORMANCE VALUES ON CLASSIFICATION ACCURACY

Fig. 9. Examples of misclassified lymph nodes (in axial view) of both false
negatives (Left) and false positives (Right).Mediastinal LN examples are shown
in the upper row, and abdominal LN examples in the bottom row.

with the findings reported for ILD detection in Table III and
Fig. 11.
GoogLeNet-TL-H yields results similar to AlexNet-TL-H's

for the mediastinal LN detection, and slightly outperforms
Alex-Net-H for abdominal LN detection. AlexNet-RI-H ex-
hibits less severe over-fitting than GoogLeNet-RI-H. We
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Fig. 10. Visual examples of misclassified ILD 64 64 patches (in axial view), with their ground truth labels and inaccurately classified labels.

Fig. 11. Traces of training and validation loss (blue and green lines) and validation accuracy (orange lines) during (a) training AlexNet from random initialization
and (b) fine-tuning from ImageNet pre-trained CNN, for ILD classification.

also evaluate a simple ensemble by averaging the proba-
bility scores from five CNNs: AlexNet-RI-H, AlexNet-TL-H,
AlexNet-RI-H, GoogLeNet-TL-H and GoogLeNet-RI-L.
This combined ensemble outputs the classification accuracies
matching or slightly exceeding the best performing individual
CNN models on the mediastinal or abdominal LN detection
tasks, respectively.
Many of our CNN models achieve notably better

(FROC-AUC and TPR/3FP) results than the previous
state-of-the-art models [36] for mediastinal LN detection:
GoogLeNet-RI-L obtains an and 0.85 TPR/3FP,
versus and 0.70 TPR/3FP [22] and 0.78 TPR/3FP
[36] which uses stacked shallow learning. This difference lies
in the fact that annotated lymph node segmentation masks are
required to learn a mid-level semantic boundary detector [36],
whereas CNN approaches only need LN locations for training
[22]. In abdominal LN detection, [22] obtains the best trade-off
between its CNN model complexity and sampled data config-
uration. Our best performing CNN model is GoogLeNet-TL
(256 256) which obtains an and 0.70 TPR/3FP.

The main difference between our dataset preparation pro-
tocol and that from [22] is a more aggressive extraction of
random views within a much larger range of FOVs. The
usage of larger FOVs to capture more image spatial context
is inspired by deep zoom-out features [44] that improve
semantic segmentation. This image sampling scheme con-
tributes to our best reported performance results in both
mediastinal LN detection (in this paper) and automated
pancreas segmentation [45]. As shown in Fig. 1, abdominal
LNs are surrounded by many other similar looking objects.
Meanwhile, mediastinal LNs are more easily distinguishable,
due to the images' larger spatial contexts. Finally, from the
perspective of the data-model trade-off: “Do We Need More
Training Data or Better Models?” [51], more abdomen CT
scans from distinct patient populations need to be acquired
and annotated, in order to take full advantage of deep CNN
models of high capacity. Nevertheless, deeper and wider
CNN models (e.g., GoogLeNet-RI-L and GoogLeNet-TL-H
versus Cifar-10 [22]) have shown improved results in the
mediastinal LN detection.
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TABLE III
COMPARISON OF INTERSTITIAL LUNG DISEASE CLASSIFICATION ACCURACIES ON BOTH SLICE-LEVEL (SLICE-CV5) AND PATCH-BASED (PATCH-CV5)

CLASSIFICATION USING FIVE-FOLD CV. BOLD NUMBERS INDICATE THE BEST PERFORMANCE VALUES ON CLASSIFICATION ACCURACY

Fig. 9 provides examples of misclassified lymph nodes
(in axial view) (both false negatives (Left) and false posi-
tives(Right)), from the Abdomen and Mediastinum datasets.
The overall reported LN detection results are clinically signifi-
cant, as indicated in [63].

B. Interstitial Lung Disease Classification

The CNN models evaluated in this experiment are 1)
AlexNet-RI (training from scratch on the ILD dataset with
random initialization); 2) AlexNet-TL (with transfer learning
from [4]); 3) AlexNet-ImNet: pre-trained ImageNet-CNN
model [4] with only the last cost function layer retrained from
random initialization, according to the six ILD classes (similar
to [9] but without using additional hand-crafted non-deep fea-
ture descriptors, such as GIST and BoVW); 4) GoogLeNet-RI
(random initialization); 5) GoogLeNet-TL (GoogLeNet with
transfer learning from [33]). All ILD images (patches of 64 64
and CT axial slices of 512 512) are re-sampled to a fixed
dimension of .
We evaluate the ILD classification task with five-fold CV

on patient-level split, as it is more informative for real clin-
ical performance than LOO. The classification accuracy rates
for interstitial lung disease detection are shown in Table III.
Two sub-tasks on ILD patch and slice classifications are con-
ducted. In general, patch-level ILD classification is less chal-
lenging than slice-level classification, as far more data samples
can be sampled from the manually annotated ROIs (up to 100
image patches per ROI), available from [37]. From Table III,
all five deep models evaluated obtain comparable results within
the range of classification accuracy rates . Their av-
eraged model achieves a slightly better accuracy of 0.79.
F1-scores [38], [39], [54] and the confusion matrix (Table V)

for patch-level ILD classification using GoogLeNet-TL under
five-fold cross-validation (we denote as Patch-CV5) are also
computed. F1-scores are reported on patch classification only
( patches extracted from manual ROIs) [38], [39],
[54], as shown in Table IV. Both [38] and [39] use the evalu-
ation protocol of “leave-one-patient-out” (LOO), which is ar-
guably much easier and not directly comparable to 10-fold CV
[54] or our Patch-CV5. In this study, we classify six ILD classes
by adding a consolidation (CD) class to five classes of healthy
(normal—NM), emphysema (EM), ground glass (GG), fibrosis
(FB), and micronodules (MN) in [38], [39], [54]. Patch-CV10
[54] and Patch-CV5 report similar medium to high F-scores.
This implies that the ILD dataset (although one of the main-
stream public medical image datasets) may not adequately rep-
resent ILD disease CT lung imaging patterns, over a population
of only 120 patients. Patch-CV5 yields higher F-scores than [54]
and classifies the extra consolidation (CD) class. At present, the

TABLE IV
COMPARISON OF INTERSTITIAL LUNG DISEASE CLASSIFICATION
RESULTS USING F-SCORES: NM, EM, GG, FB, MN AND CD

TABLE V
CONFUSION MATRIX FOR ILD CLASSIFICATION (PATCH-LEVEL)

WITH FIVE-FOLD CV USING GOOGLENET-TL

most pressing task is to drastically expand the dataset or to ex-
plore across-dataset deep learning on the combined ILD and
LTRC datasets [64].
Recently, Gao et al. [40] have argued that a new CADe pro-

tocol on holistic classification of ILD diseases directly, using
axial CT slice attenuation patterns and CNN, may be more re-
alistic for clinical applications. We refer to this as slice-level
classification, as image patch sampling from manual ROIs can
be completely avoided (hence, no manual ROI inputs will be
provided). The experimental results in [40] are conducted with
a patient-level hard split of 100 (training) and 20 (testing). The
method's testing F-scores (i.e., Slice-Test) are given in Table IV.
Note that the F-scores in [40] are not directly comparable to our
results, due to different evaluation criteria. Only Slice-Test is
evaluated and reported in [40], and we find that F-scores can
change drastically from different rounds of the five-fold CV.
While it is a more practical CADe scheme, slice-level CNN

learning [40] is very challenging, as it is restricted to only 905
CT image slices with tagged ILD labels. We only benchmark
the slice-level ILD classification results in this section. Even
with the help of data augmentation (described in Section II), the
classification accuracy of GoogLeNet-TL from Table III is only
0.57. However, transfer learning from ImageNet pre-trained
model is consistently beneficial, as evidenced by AlexNet-TL
(0.46) versus AlexNet-RI (0.44), and GoogLeNet-TL (0.57)
versus GoogLeNet-RI (0.41). It especially prevents GoogLeNet
from over-fitting on the limited CADe datasets. Finally, when
the cross-validation is conducted by randomly splitting the
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set of all 905 CT axial slices into five folds, markedly higher
F-scores are obtained (Slice-Random in Table IV). This further
validates the claim that the dataset poorly generalizes ILDs
for different patients. Fig. 10 shows examples of misclassified
ILD patches (in axial view), with their ground truth labels and
inaccurately classified labels.
No existing work has reached the performance requirements

for a realistic clinical setting [40], in which simple ROI-guided
image patch extraction and classification (which requires
manual ROI selection by clinicians) is implemented. The main
goal of this paper is to investigate the three factors (CNN archi-
tectures, dataset characteristics and transfer learning) that affect
performance on a specific medical image analysis problem
and to ultimately deliver clinically relevant results. For ILD
classification, the most critical performance bottlenecks are
the challenge of cross-dataset learning and the limited patient
population size. We attempt to overcome these obstacles by
merging the ILD [37] and LTRC datasets. Although the ILD
[37] and LTRC datasets [64] (used in [19]) were generated
and annotated separately, they contain many common disease
labels. For instance, the ILD disease classes emphysema (EM),
ground glass (GG), fibrosis (FB), and micronodules (MN)
belong to both datasets, and thus can be jointly trained/tested
to form a larger and unified dataset.
Adapting fully convolutional CNN or FCNN to parse every

pixel location in the ILD lung CT images or slices, or adapting
other methods from CNN based semantic image segmentation
using PASCAL or ImageNet, may improve accuracy and effi-
ciency. However, current FCNN approaches [65], [66] lack ad-
equate spatial resolution in their directly output label space. A
segmentation label propagation method was recently proposed
[47] to provide full pixel-wise labeling of the ILD data images.
In this work, we sample image patches from the slice using the
ROIs for the ILD provided in the dataset, in order to be consis-
tent with previous methods in patch-level [38], [39], [54] and
slice-level classification [40].

C. Evaluation of Five CNN Models Using ILD Classification

In this work, we mainly focus on AlexNet and GoogLeNet.
AlexNet is the first notably successful CNN architecture on the
ImageNet challenge and has rekindled significant research in-
terests on CNN. GoogLeNet is the state-of-the-art deep model,
which has outperformed other notable models, such as AlexNet,
OverFeat, and VGGNet [67], [68] in various computer vision
benchmarks. Likewise, a reasonable assumption is that Over-
Feat and VGGNet may generate quantitative performance re-
sults ranked between AlexNet's and GoogLeNet's. For com-
pleteness, we include the Overfeat andVGGNet in the following
evaluations, to bolster our hypothesis.

Overfeat: OverFeat is described in [67] as an integrated
framework for using CNN for classification, localization and
detection. Its architecture is similar to that of AlexNet, but con-
tains far more parameters (e.g., 1024 convolution filters in both
“conv4” and “conv5” layers compared to 384 and 256 convolu-
tion kernels in the “conv4” and “conv5” layers of AlexNet), and
operates more densely (e.g., smaller kernel size of 2 in “pool2”
layer “pool5” compared to the kernel size 3 in “pool2” and

TABLE VI
CLASSIFICATION RESULTS ON ILD AND LN DETECTION WITH LOO

“pool5” of AlexNet) on the input image. Overfeat is the win-
ning model of the ILSVRC 2013 in detection and classification
tasks.

VGGNet: The VGGNet architecture is introduced in [68],
where it is designed to significantly increase the depth of the ex-
isting CNN architectures with 16 or 19 layers. Very small 3 3
size convolutional filters are used in all convolution layers with
a convolutional stride of size 1, in order to reduce the number of
parameters in deeper networks. Since VGGNet is substantially
deeper than the other CNN models, VGGNet is more suscep-
tible to the vanishing gradient problem [69]–[71]. Hence, the
network may be more difficult to train. Training the network re-
quires far more memory and computation time than AlexNet.
We use the 16 layer variant as our default VGGNet model in
our study.
The classification accuracy results for ILD slice and patch

level classification of five CNN architectures (CifarNet,
AlexNet, Overfeat, VGGNet and GoogLeNet) are shown in
Table VI. Based on the analysis in Section IV-B, transfer
learning is only used for the slice level classification task. From
Table VI, quantitative classification accuracy rates increase as
the CNN model becomes more complex (CifarNet, AlexNet,
Overfeat, VGGNet and GoogLeNet, in ascending order), for
both ILD slice and patch level classification problems. The
reported results validate our assumption that OverFeat's and
VGGNet's performance levels fall between AlexNet's and
GoogLeNet's (this observation is consistent with the computer
vision findings). CifarNet is designed for images with smaller
dimensions (32 32 images), and thus is not catered to classifi-
cation tasks involving 256 256 images.
To investigate the performance difference between five-fold

cross-validation (CV) in Section IV-B and leave-one-pa-
tient-out (LOO) validation, this experiment is performed under
the LOO protocol. By comparing results in Table III (CV-5) to
those in Table VI (LOO), one can see that LOO's quantitative
performances are remarkably better than CV-5's. For example,
in ILD slice-level classification, the accuracy level drastically
increases from 0.46 to 0.867 using AlexNet-TL, and from 0.57
to 0.902 for GoogLeNet-TL.
CNN training is implemented with the Caffe [56] deep

learning framework, using a NVidia K40 GPU on Ubuntu 14.04
Linux OS. All models are trained for up to 90 epochs with early
stopping criteria, where a model snapshot with low validation
loss is taken for the final model. Other hyper-parameters are
fixed as follows: momentum: 0.9; weight decay: 0.0005; and
a step learning rate schedule with base learning rate of 0.01,
decreased by a factor of 10 every 30 epochs. The image batch
size is set to 128, except for GoogLeNet's (64) and VGG-16's
(32), which are the maximum batch sizes that can fit in the
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Fig. 12. Visualization of first layer convolution filters of CNNs trained on abdominal and mediastinal LNs in RGB color, from random initialization (AlexNet-RI
(256 256), AlexNet-RI (64 64), GoogLeNet-RI (256 256) and GoogLeNet-RI (64 64)) and with transfer learning (AlexNet-TL (256 256)).

TABLE VII
TRAINING TIME AND MEMORY REQUIREMENTS OF THE FIVE CNN

ARCHITECTURES ON ILD PATCH-BASED CLASSIFICATION UP TO 90 EPOCHS

TABLE VIII
CLASSIFICATION ACCURACIES FOR ILD SLICE AND LN PATCH-LEVEL
DETECTION WITH “EQUAL PRIOR” AND “BIASED PRIOR”, USING

GOOGLENET-TL

NVidia K40 GPU with 12GB of memory capacity. Table VII
illustrates the training time and memory requirements of the
five CNN architectures on ILD patch-based classification up to
90 epochs.

D. Training With “Equal Prior” vs. “Biased Prior”

Medical datasets are often “biased”, in that the number of
healthy samples is much larger than the number of diseased in-
stances, or that the numbers of images per class are uneven. In
ILD dataset, the number of fibrosis samples is about 3.5 times
greater than the number of emphysema samples. The number
of non-LNs is times greater than the number of LNs in
lymph node detection. Different sampling or resampling rates
are routinely applied to both ILD and LN detection to balance
the data sample number or scale per class, as in [22]. We refer
this as “Equal Prior”. If we use the same sampling rate, that will
lead to a “Biased Prior” across different classes.
Without loss of generality, after GoogLeNet is trained on

the training sets under “Equal” or “Biased” priors, we com-
pare its classification results on the balanced validation sets.
Evaluating a classifier on a biased validation set will cause un-
fair assessment of its performance. For instance, a classifier
that predicts every image patch as “non-LN” will still achieve
a 70% accuracy rate on a biased set with 3.5 times as many
non-LN samples as LN samples. The classification accuracy re-
sults of GoogLeNet trained under two configurations are shown
in Table VIII. Overall, it achieves lower accuracy results when
trained with a “biased prior” in both tasks, and the accuracy dif-
ference for ILD patch-based classification is small.

V. ANALYSIS VIA CNN LEARNING TRACES
AND LULVISUALIZATION

In this section, we determine and analyze, via CNN visual-
ization, the reasons for which transfer learning is beneficial to
achieve better performance on CAD applications.

A. Thoracoabdominal LN Detection
In Fig. 12, the first layer convolution filters from five

different CNN architectures are visualized. We notice that
without transfer learning [57], [6], somewhat blurry filters
are learned (AlexNet-RI (256 256), AlexNet-RI (64 64),
GoogLeNet-RI (256 256) and GoogLeNet-RI (64 64)).
However, in AlexNet-TL (256 256), many higher orders of
contrast- or edge-preserving patterns (that enable capturing
image appearance details) are evidently learned through
fine-tuning from ImageNet. With a smaller input resolution,
AlexNet-RI (64 64) and GoogLeNet-RI (64 64) can learn
image contrast filters to some degree; whereas, GoogLeNet-RI
(256 256) and AlexNet-RI (256 256) have over-smooth
low-level filters throughout.

B. ILD Classification
We focus on analyzing visual CNN optimization traces

and activations from the ILD dataset, as its slice-level set-
ting is most similar to ImageNet's. Indeed, both datasets use
full-size images. The traces of the training loss, validation loss
and validation accuracy of AlexNet-RI and AlexNet-TL, are
shown in Fig. 11. For AlexNet-RI in Fig. 11(a), the training
loss significantly decreases as the number of training epochs
increases, while the validation loss notably increases and the
validation accuracy does not improve much before reaching a
plateau. With transfer learning and fine-tuning, much better and
consistent performances of training loss, validation loss and val-
idation accuracy traces are obtained (see Fig. 11(b)). We begin
the optimization problem—that of fine-tuning the ImageNet
pre-trained CNN to classify a comprehensive set of images—by
initializing the parameters close to an optimal solution. One
could compare this process to making adults learn to classify
ILDs, as opposed to babies. During the process, the validation
loss, having remained at lower values throughout, achieves
higher final accuracy levels than the validation loss on a similar
problem with random initialization. Meanwhile, the training
losses in both cases decrease to values near zero. This indicates
that both AlexNet-RI and AlexNet-TL over-fit on the ILD
dataset, due to its small instance size. The quantitative results



1296 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016

Fig. 13. Visualization of the last pooling layer (pool-5) activations (top). Pooling units where the relative image location of the disease region is located in the
image are highlighted with green boxes. The original images reconstructed from the units are shown in the bottom [72]. The examples in (a) and (b) are computed
from the input ILD images in Figs. 2(b) and 2(c), respectively.

in Table III indicate that AlexNet-TL and GoogLeNet-TL have
consistently better classification accuracies than AlexNet-RI
and GoogLeNet-RI, respectively.
The last pooling layer (pool-5) activation maps of the Ima-

geNet pre-trained AlexNet [4] (analogical to AlexNet-ImNet)
and AlexNet-TL, obtained by processing two input images
of Figs. 2(b), 2(c), are shown in Figs. 13(a), 13(b). The last
pooling layer activation map summarizes the entire input image
by highlighting which relative locations or neural reception
fields relative to the image are activated. There are a total of
256 (6 6) reception fields in AlexNet [4]. Pooling units where
the relative image location of the disease region is present in the
image are highlighted with green boxes. Next, we reconstruct
the original ILD images using the process of de-convolution,
back-propagating with convolution and un-pooling from the
activation maps of the chosen pooling units [72]. From the
reconstructed images (Fig. 13 bottom), we observe that with
fine-tuning, AlexNet-TL detects and localizes objects of in-
terest (ILD disease regions depicted in in Figs. 2(b) and 2(c))
better than AlexNet-ImNet. The filters shown in Fig. 13 that
better localize regions on the input images (Figs. 2(b) and 2(c))
respectively, produce relatively higher activations (in the top
5%) among all 512 reception field responses in the fine-tuned
AlexNet-TL model. As observed in [73], the final CNN clas-
sification score can not be driven solely by a single strong
activation in the receptions fields, but often by a sparse set of
high activations (i.e., varying selective or sparse activations per
input image).

VI. FINDINGS AND FUTURE DIRECTIONS

We summarize our findings as follows.

• Deep CNN architectures with 8, even 22 layers [4], [33],
can be useful even for CADe problems where the available
training datasets are limited. Previously, CNNmodels used
inmedical image analysis applications have often been
orders of magnitude smaller.

• The trade-off between using better learning models and
using more training data [51] should be carefully consid-
ered when searching for an optimal solution to any CADe
problem (e.g., mediastinal and abdominal LN detection).

• Limited datasets can be a bottleneck to further advance-
ment of CADe. Building progressively growing (in scale),
well annotated datasets is at least as crucial as devel-
oping new algorithms. This has been accomplished, for
instance, in the field of computer vision. The well-known
scene recognition problem has made tremendous progress,
thanks to the steady and continuous development of
Scene-15, MIT Indoor-67, SUN-397 and Place datasets
[58].

• Transfer learning from the large scale annotated natural
image datasets (ImageNet) to CADe problems has been
consistently beneficial in our experiments. This sheds some
light on cross-dataset CNN learning in the medical image
domain, e.g., the union of the ILD [37] and LTRC datasets
[64], as suggested in this paper.

• Finally, applications of off-the-shelf deep CNN image
features to CADe problems can be improved by either
exploring the performance-complementary properties of
hand-crafted features [10], [9], [12], or by training CNNs
from scratch and better fine-tuning CNNs on the target
medical image dataset, as evaluated in this paper.
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VII. CONCLUSION
In this paper, we exploit and extensively evaluate three im-

portant, previously under-studied factors on deep convolutional
neural networks (CNN) architecture, dataset characteristics, and
transfer learning. We evaluate CNN performance on two dif-
ferent computer-aided diagnosis applications: thoraco-abdom-
inal lymph node detection and interstitial lung disease classifica-
tion. The empirical evaluation, CNN model visualization, CNN
performance analysis, and conclusive insights can be general-
ized to the design of high performance CAD systems for other
medical imaging tasks.
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