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Surface Fitting

Moving Least Squares

Preliminaries (Algebra & Calculus)

Gradients

If F is a function assigning a real value to 
a 3D point, the gradient of F is the vector:
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Preliminaries (Algebra & Calculus)

Extrema

If F is a function assigning a real value to 
a 3D point, then p is an extremum of F
only if the gradient of F at p is zero:
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Preliminaries (Algebra & Calculus)

Dot Products

If F has the form:

for some fixed q, then:�
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Dot Products
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Preliminaries (Algebra & Calculus)

Dot Products

If F has the form:
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Preliminaries (Algebra & Calculus)

Lagrangians

The extrema of F, subject to the constraint 
G(p)=c, can be found by solving:

(i.e. At p, the function F should only be 
changing in a direction that is 
perpendicular to the constraint.)
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Preliminaries (Algebra & Calculus)

Lagrangians and Symmetric Matrices

If M is a symmetric matrix, p is an 
extremum of:

subject to the constraint ||p||=1 if and only 
if p is an eigen-vector of M.
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McLain (1974)

Challenge:
Given a discrete sampling of a function

McLain (1974)

Challenge:
Given a discrete sampling of a function, 
complete the function to all of space.

?

Constant

For each point in space, we can find the 
closest sample point and use its value.

The reconstruction is piecewise constant
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Challenge

Given a set of 2D points {pi}, with 
associated real values φi, define a function 
Φ, defined over all of 2D space, that 
fits/approximates the sample data.

Weighted Averaging

Given a set of 2D points {pi=(xi,yi)}, with 
associated real values φi, for any point 
p=(x,y), set: ( )
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Properties of the weight function Θ(r):
• It should drop off with distance
• Drop off too slow � blurring
• Drop off too sharp � numerical instability

Key Idea (McLain 1974)

This type of fitting can be viewed as 
function optimization:

Generalized Framework

This type of fitting can be viewed as 
function optimization:

Let L be a space of functions, at each point 
p, find φp∈L, minimizing the weighted error:

and set:
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Generalized Framework

In the case that L is the space of constant 
order polynomials, this reduces to solving 
for the real value φp that minimizes:
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Generalized Framework

In the case that L is the space of constant 
order polynomials, this reduces to solving 
for the real value φp that minimizes:

Thus:
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Quadratic Framework

Example:
We can let L be the six-dimensional space 
of second order polynomials:

L ={c00+c10x+c01y+c11xy+c20x
2+c02y

2}

Quadratic Framework

Example:
We can let L be the six-dimensional space 
of second order polynomials:

L ={c00+c10x+c01y+c11xy+c20x
2+c02y

2}

Then we would like to solve for the 
polynomial φp(x,y) minimizing:
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Quadratic Framework

Solving for φp:

Let Cφ be the vector of coefficients:

And let Vi be vector:
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This lets us write:

Quadratic Framework

Solving for φp:

To solve for φp, we need to find the vector 
Cp, minimizing:
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Quadratic Framework

Solving for φp:

Setting the derivative with respect to Cp

equal to zero gives:
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Quadratic Framework

Solving for φp:

Using the fact that w& u,v ' =wutv gives:

( ) ( ) ( )((
−Θ=)*+,-. −Θ / //// 0/// 12231122     φφ

( ) ( )44
−Θ=−Θ 5 5555 555 67768677    , φφ
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Quadratic Framework

Solving for φp:

Using the fact that w� u,v � =wutv gives:

( ) ( ) ( )((
−Θ=)*+,-. −Θ / //// 0/// 12231122     φφ

( ) ( )44
−Θ=−Θ 5 5555 555 67768677    , φφ
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Quadratic Framework

Solving for φp:

Given the optimal coefficients of the 
polynomial, we can now set the value at 
the point p:
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Using higher order functions gives us
more freedom to better fit the data

MLS vs. Splines

MLS
A continuous set of functions 
glued together with the weight 
function. 

Continuity defined by the 
continuity of the weight 
function.

No structure on the distribution 
of the sample points.

Splines
A discreteset of functions 
designed to glue together at the 
end points.

Continuity defined by the order 
of the polynomial at the joints.

Sample points are distributed 
with a regular grid topology.

What is a What is a manifoldmanifold??
??????????????????????????????????????????????????????
??????????????????????????????????????????????????????
??????????????????????????????????????????????????????
??????????????????????????????????????????????????????
??????????????????????????????????????????????????????
??????????????????????????????????????????????????????
??????????????????????????????????????????????????????

What is a manifold?

A smooth 2-manifold (embedded in 3D) is 
a surface, smoothly stitched together from 
the graphs of functions.

x
f1(x)

x
f 2

(x)

x
f

3 (x)

MLS Approach (Levin)

As in McLain, define a continuous set of 
graphs, and stitch them together using the 
weighting function:
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MLS Approach (Levin)

As in McLain, define a continuous set of 
graphs, and stitch them together using the 
weighting function:

Given a set of points { ri}  and a weighting 
function Θ, for any point r find, a graph that 
locally fits the data points.

MLS Approach (Levin)

As in McLain, define a continuous set of 
graphs, and stitch them together using the 
weighting function:

1. For each point, define locally “best fitting” plane

2. Using the height of the points from the plane as the 
sample value, apply MLS to complete the function.

MLS Approach (Basic Approach)

Given a set of points { ri}  and a weighting 
function Θ, for any point r find, a graph 
that locally fits the data points.

1. Plane fitting: Solve for the plane with normal ar and 
containing the point qr, that minimizes:
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Plane Fitting (Basic Approach)

Solving for qr

Taking the derivative with respect to qr

and setting the result equal to zero gives:
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Plane Fitting (Basic Approach)

Solving for q

Taking the derivative with respect to q
and setting the result equal to zero gives:
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Plane Fitting (Basic Approach)

Solving for ar

Using the fact that w! u,v " =wutv gives:
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Plane Fitting (Basic Approach)

Solving for ar

Since the matrix:

is symmetric, ar must be an eigen-vector.
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MLS Approach (Basic Approach)

2. Function fitting: Fix an orthonormal basis {vr,wr} 
perpendicular to ar, and express ri as the 2D sample:

with value:

Now use the McLain approach to fit a quadratic 
polynomial Pr(x,y) as the graph. 
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MLS Approach (Basic Approach)

Projection:

Given a set of points { ri}  and a weighting 
function Θ, for any point r:

1. Find the fitting plane (ar,qr) at r,

2. Find the fitting polynomial Pr(x,y) at r,

3. Express r as:

Set the “projection” of r to be:
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MLS Approach (Basic Approach)

Advantage:
• Gives a way of sending points to the surface without 

explicitly defining where the surface is.

Limitations:
• The “projection” operator π is not actually a 

projection: π(π(r))≠π(r).

• If r is close to the surface, π(r) will not necessarily 
be mapped onto the approximating surface.

MLS Approach (Levin)

The “projection” operator is not actually a 
projection because:

1. The fitting plane computed for r is not the same f itting 
plane computed for π(r)

2. The graph fitted to r is not the same graph f itted to π(r)

since the weighting coefficients change:
( ) ( ))( @@@@ AA π−Θ≠−Θ

MLS Approach (Levin)

Problem
• The fitting plane computed for r is not the same f itting plane 
computed for π(r)

Observation
The projection π(r) only moves r along the normal direction of 
the plane.



8

MLS Approach (Levin)

Problem
• The fitting plane computed for r is not the same f itting plane 
computed for π(r)

Observation
The projection π(r) only moves r along the normal direction of 
the plane.

Solution
Modify the definition of “best fitting” plane so that it (locally) 
only depends on the line from r in the direction of ar.

MLS Approach (Levin)

Problem
2. The graph fitted to r is not the same graph fitted to π(r)
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MLS Approach (Levin)

Problem
2. The graph fitted to r is not the same graph fitted to π(r)

Solution
Modify the weighting for the “best f itting” function so that it 
only depends on qr and not on r:
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MLS Approach (Basic Approach)

Advantages:
• The “projection” operator π is a projection for 

points sufficiently close to the surface: π(π(r))=π(r)

• If r is close to the surface, π(r) will be mapped onto 
the approximating surface.

MLS Approach (Basic Approach)

Disadvantages:
• By changing the fitting function:

it is now necessary to optimize the fitting plane over 
the weighting functions, which can be very difficult.
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