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Multidimensional curve fitting 
to unorganized data points by 
nonlinear minimization 
Lian Fang and David C Gossard 

Many papers have addressed the problem of fitting curves to 
data points. However, most of the approaches are subject to a 
restriction that the data points must be ordered. The paper 
presents a method for generating a piecewise continuous 
parametric curve from a set of unordered and error-filled data 
points. The resulting curve not only provides a good fit to the 
original data but also possesses good fairness. Excluding the 
endpoints of the curve, none of the connectivity information 
needs to be specified, thus eliminating the necessity of an initial 
parameterization. The standard regularization method for 
univariate functions is modified for multidimensional parametric 
functions and results in a nonlinear minimization problem. 
Successive quadratic programming is applied to find the 
optimal solution. A physical model is also supplied to facilitate 
an intuitive understanding of the mathematical background. 
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minimization 

Fitting a smooth curve to a set of data points is a general 
problem arising in many fields. This problem can be 
stated as ‘given a set of data points Pi, i= 1 N, taken 
from a target curve, reconstruct a curve which approxi- 
mates the original curve to a satisfactory extent and also 
possesses visually good appearance’. This kind of 
problem has many applications in diverse domains, for 
example the following: 

l In reverse engineering in the automobile industry, it 
is necessary to generate curves from digitized data 
points that are taken from a clay model in order to 
blend a surface from the curve network. In such 
applications, generation of fair curves is essential 
since the surface’s quality is influenced consequently. 

l In those curve design systems which are able to create 
curves from a ‘sketch’ provided by the user, the input 
data is assumed to follow a continuous trace of the 

Computer-Aided Design Laboratory, Department of Mechanical 
Engineering, Massachusetts Institute of Technology, 77 Massachusetts 
Avenue, Cambridge, MA 02139, USA 
Paper rem-iced: 30 April 1993. Revised: 6 Augu.rr I993 

input device. Unfortunately, a curve created by one 
continuous sweep motion is generally not satisfactory. 
Most users like to sketch a curve by moving the 
mouse along the curve back and forth repeatedly. In 
such a case, either the order of the data points should 
be inferred from the original unordered data set or 
a fitting procedure that is independent of data point 
ordering should be devised. 

Reconstructing a curve from a set of data points is an 
inverse problem which is generally ill posed because the 
information we have does not uniquely determine the 
solution. Problems of this kind can be broadly categorized 
into interpolation problems and approximation (or 
smoothing) problems in terms of whether the resulting 
curve is required to pass through all the data points 
exactly or not, respectively. Generally, when data points 
are subject to measurement errors, an approximation 
scheme will be preferable to an interpolation scheme since 
the latter would generate a curve with many unwanted 
undulations. Many papers have addressed this problem 
that are based on the assumption that the data points 
are ordered. To the authors’ knowledge, however, little 
has been published on the related problem of fitting a 
curve to unordered data points. This is of particular 
interest because, when a large number of error-filled data 
points need to be fitted, the determination of connectivity 
information of data points becomes a time-consuming 
task. 

This paper reports further research carried out since 
the preliminary research described in Reference 1. In this 
paper, a method which simulates the deformation of a 
perfectly elastic beam under the application of spring 
forces is presented for reconstructing a smooth curve 
from a set of unordered and error-filled data points. 
Curves are represented in parametric form so that the 
developed method is suitable for both single-valued and 
multivalued data. The standard regularization method 
for univariate functions has been modified for multi- 
dimensional parametric functions. The resulting nonlinear 
minimization problem is then solved by successive 
quadratic programming. None of the connectivity 
information except the endpoints of the curve need to be 
specified, thus eliminating the necessity for an initial 
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parameterization. Both cubic and quintic Hermite 
polynomials are implemented as the curve basis. Other 
geometric constraints can be incorporated into the 
minimization process if necessary. Some technical issues 
are also addressed in more detail. 

Throughout this paper, medium italic lower-case 
letters, such as f and f(x), are reserved for scalar values 
or functions, and bold italic lower-case letters, such as w 
and w(u), for vectors or vector functions. Bold upper-case 
letters, such as K, indicate matrices. 

The rest of this paper is organized as follows. In the 
second section, we review the literature related to 
parametric curve fitting including diverse parameteriza- 
tion methods, curve fairing and minimal-energy splines. 
In the third section, we discuss the necessary mathematical 
background for this problem including the standard 
regularization method for univariate functions and 
the modified version for multidimensional parametric 
functions, the physical interpretation and the minimization 
scheme. Curve primitives are introduced in the fourth 
section. Several technical issues are discussed in the fifth 
section. Finally, we present the results and conclude this 
paper in the sixth and seventh sections, respectively. 

LITERATURE REVIEW 

The problem of fitting a parametric curve to a set of data 
points has been addressed for many years. Most methods 
are developed on the basis of the assumption that the 
data points are ordered and methods differ in the way 
that the parameterization is made. The simplest one is 
uniform parameterization. Besides the fact that results 
generated by uniform parameterization are generally 
unsatisfactory, it has also been proved2 that, by using 
uniform parameterization, singularities like comers can 
possibly occur even though the defining equations appear 
to make that impossible. A better choice than uniform 
parameterization is chord length parameterization because 
the effect of data points distribution is incorporated. 
Chord length is actually an approximation of the true 
arc length of the fitted curve. Another alternative is 
circular arc parameterization in which the arc length is 
estimated by fitting a circle through each group of three 
consecutive pointsj. The parameterization can even be 
improved by calculating the arc length of the fitted curve 
and doing the fitting iteratively3*4. Marin proposed a 
method in which the ‘optimal’ parameterization is found 
by mininizing the integral of the squared second 
derivative of the curve5. Lee suggested a ‘centripetal 
model’ parameterization which, in most cases, has better 
results than chord length parameterization6. Hoschek 
proposed a Newton-like iterative approach of intrinsic 
parameterization in which the shortest distances between 
given data points and the approximation curve are 
minimized7. In these methods seeking the ‘optimal 
parameterization, once the parameterization has been 
decided, the curve’s shape is simply determined by a least 
square fit (for approximation cases) or by introducing 
certain boundary conditions (for interpolation cases) to 
solve a set of linear equations. 

Another approach to obtain a curve with good quality 
is to smooth the curve by a process called fairing. The 
given ordered points are interpolated first on the basis 
of a particular parameterization, and data points 
associated with large discontinuities in the first and 

second derivatives are adjusted so that a curve with better 
fairness is achieved. This approach generally requires 
users to decide which data points should be moved by 
interactively detecting the ‘unpleasant’ regions. Readers 
are pointed to References 8-10 for more details. 

In addition to methods finding the ‘optimal’ 
parameterization, the minimal-energy spline has been 
used widely to obtain the ‘optimal’ shape directly based 
on a specific parameterization. Data interpolation using 
minimal energy splines can date back to Schweikert’s 
spline under tension’ ’ in which the curve’s shape is 
determined by minimizing a function representing the 
potential energy stored in the curve. The following work 
differs in the form of energy function to be minimized, 
to name a few, the v-spline proposed by Nielson” and 
the r-spline proposed by Hagen13. Some other research 
falling in this category is described in References 14-16. 
It is interesting to note that the published references for 
data smoothing using minimal energy splines are fewer 
than those for data interpolation. We refer to References 
17-19 for interested readers. In these references, the 
function includes not only the curve’s potential energy 
but also an error term measuring the closeness between 
the approximating curve and the data. This is a more 
general formulation since the error term will vanish for 
data interpolation problems. 

MATHEMATICAL BACKGROUND 

Function to be minimized 

A problem is ‘ill posed’ when the existence, uniqueness 
and stability of the solutions are not guaranteed without 
additional constraints. Reconstructing a curve from a set 
of data points is referred to as an inverse problem which 
is generally ill posed. In fact, given any set of points on 
a curve, there are infinitely many curves interpolating or 
approximating these points. One way to make such a 
problem well posed is to restrict the class of admissible 
solutions, and to provide a method for ranking the 
plausibilities of these solutuions. In this regard, constraints 
such as the smoothness of the solution have been 
introduced to act as a ‘stabilizing term’ in the regulariza- 
tion theory pioneered by Tikhonov and others2’. This 
technique reformulates the original ill posed problem into 
a well posed minimization problem. In Reference 20, the 
function to be minimized is concerned with univariate 
solutions which represent single-valued planar curves. 
For representing curves in higher dimensions, the 
parametric form is obviously a better choice. The function 
is hence rewritten for a multidimensional parametric 
solution as 

AilJPi-w(u)(/2 (1) 

where w(u) =(x1(4, x,(u), . . ., x&4), 

d”x,(u) -= 
du” > 

CI,(U) are prespecified, nonnegative weighting functions, 
Izi are positive weighting factors, and d is the dimension 
of the curve. 
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The first term in Equation 1 is a smoothness 
measurement of the solution. It is also referred to as the 
stabilizing term in regularization theory. The second term 
will be referred to as the error term since it measures 
how close the solution is to the given data points. 

There are reasons why it is necessary to modify the 
function in Equation 1. First of all, calculation of the 
error term requires a parameterization of the data points 
which is not available a priori. (Consequently, diverse 
parameterization methods are developed based on the 
assumption that the data points are ordered). Second, 
even if the parameterization is known, using lip,- W(Ui)il 
as a measurement of error is also somewhat inappropriate 
since it could cause nonzero measurements even though 
all the points already lie exactly on the curve. Further- 
more, for most applications in geometric modelling and 
aesthetic design, there is no need to use high-order 
derivatives in the stabilizing term since discontinuity of 
high-order derivatives is almost unrecognizable by 
human perception. It can be said that, if the human’s 
visual system can only recognize discontinuities up to 
the mth order derivatives, only the solutions with 
continuous derivatives up the the (m + l)th order need to 
be considered. Experiences show that discontinuities of 
Co and C’ can be easily detected by the human visual 
system, and C* discontinuity can be recognized by 
experienced users. Hence, derivatives will be taken up to 
the third order in this paper. Higher order derivatives 
can be included whenever they are necessary for 
particular applications at the cost of raising the degree 
of the polynomial used as the curve basis. 

approximating curve and the data. In the above- 
mentioned references, the error term is taken as the sum 
of the squared vector differences of the data points and 
nodes’ defining the curve. This kind of formulation still 
requires the data points to be ordered. Defining the 
closeness measurement as the sum of the shortest 
Euclidean distances between data points and the curve 
eliminates the requirement for the data points’ connectivity 
information at the cost of increasing computing time. 

Physical analogy 

A physical model of the function in Equation 2 is 
illustrated in Figure 1. A perfectly elastic beam is 
deformed under the application of spring forces which 
are proportional to the shortest distance between the 
force sources, the data points, and the deflected shape, 
the curve. Each spring is assumed to have one end 
anchored at a data point and the other end slides along 
the curve so that the shortest distance is maintained. The 
squared first derivative term in the function stands for 
the strain energy due to stretching of the beam and the 
squared second derivative term stands for the strain 
energy due to bending. The error term corresponds to 
the strain energy stored in the springs. Since there exists 
such an analogy between the function to be minimized 
and the strain energy in material mechanics, we 
sometimes also refer to it as an ‘energy function’. 

From these considerations, we modified the function 
as follows: 

Although the squared third derivative term in the 
energy function does not correspond to any physical 
meaning, it does have some geometric meaning. The 
magnitude of the second derivative (I w” (( is actually an 
approximation of the curvature K when II w’ll is assumed 
to be small. Similarly, the third derivative term is treated 
as a rough estimate of the rate of change of curvature, 
dk-/ds. Since the integral of the squared magnitude of the 
derivative of curvature evaluates to zero for circular arcs 
and straight lines, while minimizing the integral of the 
squared magnitude of the first and second derivatives 
makes the curve stretch and bend as little as possible, 
introducing the third derivative term enables the curve 
to form a circular arc (approximately) when constraints 
allow. 

E(W)= (altw’~~~+Bll~“ll~+lilll~“‘ll~~ du i 
JC 

.v 

+ c i$(Pi, w(u))2 
i=l 

(2) 

where w(u) = (x 1(u), x,(4, . , x,(41, 

dw 
w’=- 

du 

d2w WI’=- 
du2 

d3w w”’ = - 
du3 

and X, b and 7 are prespecified, nonnegative weighting 
functions. D(Pi, w(u)) is a distance metric which is defined 
as the shortest Euclidean distance from P, to w(u). The 
evaluation of D(P,, w(u)) would result in a constrained 
single variable minimization problem which will be 
discussed later. 

Compared with the energy functions used in References 
17 and 18, our potential energy of the curve includes not 
only the squared second derivative but also the first and 
the third derivatives. By choosing different weighting 
values, the shapes obtained from the minimization are 
more capable of fitting the given data points. Another 
significant difference resides in the formulation of the 
error term which measures the closeness between the 

Finite element solution and nonlinear minimization 

Continuous models are made by approximating the 
desired minimum energy shape as a superposition of a 

Figure 1 Physical model of function to be minimized -__ . . . 
LNotethat thesprmgsareattached to thecurveby theshortest route.J 
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finite series of weighted continuous basis functions, This 
approximation for w(u) is 

We ~ qi~i(u)=QT~ 
i=l 

(3) 

where qi is a set of vectors representing the degrees of 
freedom of the curve, ~Ju) is a set of known functions, 
n is the number of degrees of freedom, Q = [ql, q2, . . ., 

qnlT and @=Ch, by . . ., &IT. 
Substituting Equation 3 into Equation 2, we obtain 

E(Q) = Q’KQ + $ W;(Q) (4) 
i=l 

where K=K, +K, +K, is called the system matrix or 
system stiffness matrix owing to the analogy with 
material mechanics, and 

K, = c+WD’T)du 
s c 

K, = /?(W’W’T)dU 
s c 

K, = y(@“‘W”T)du 
s c 

It can be shown from regularization theory that, if the 
stabilizing term consists of only one squared derivative 
of order m, at least m constraints must be applied so that 
a stable solution can be found. This can be interpreted 
more easily by the analogy of material mechanics 
mentioned above. If only stretch energy is included in 
the stabilizing term, the case is like a beam under 
axial deformation which requires at least one position 
constraint. If only bending energy is included in the 
stabilizing term, a beam under the transverse deformation 
is simulated which requires at least two position 
constraints (simply supported beam) or one position and 
one slope constraint (cantilever beam). If the stabilizing 
term is a hybrid of the squared derivatives of different 
orders, the number of constraints should be at least the 
same as the highest order used in stabilizing term. 

There are n x d variables (n degrees of freedom each of 
which is d dimensional) involved in this nonlinear 
problem. Inspired by the fact that the first term is 
quadratic, successive quadratic programming (SQP) is 
used to seek the solution. The original objective function 
is replaced by its local quadratic approximation at the 
solution estimate and the resulting approximate sub- 
problem is solved. This replacement is repeated and the 
solution estimate is improved during iterations until a 
certain convergence criterion is achieved (as illustrated 
in Figure 2). The advantage of using local quadratic 
approximation is that the solution of the subproblem in 
each iteration can be easily obtained by solving a linear 
equation set if we restrict the constraints to be linear 
combinations of the explicit variables. Thus, solving the 
original nonlinear constrained minimization problem 
with n x d variables is converted into iteratively solving 
a linear equation set of n degrees of freedom subject to 
linear constraints. Following is the algorithm using SQP 
to find the optimal solution: 

(2) Formulate the subproblem as minimizing 

(5) 

subject to linear geometric constraints. 

Solve the subproblem with the reduced trans- 
formation method for enforcing the linear 
geometric constraints, update Q(“) by Q(“+ ‘)= 
Q(“) +d, and calculate the corresponding value 
of the energy function. 

Carry out a convergence check. If energy 
function’s value converges and the error term 
is smaller than the prespecified tolerance, stop. 
Otherwise, go to Step 2. 

It is easier to consider the minimization process using 
SQP as a simulation of the deforming process of an elastic 
beam under the application of spring forces. Starting with 
an initial shape which has a large energy function value, 
in each iteration, springs anchored on the fixed data 
points apply restoring forces on the curve, and the curve 
will deform to a more appropriate shape with a smaller 
energy function value. 

CURVE PRIMITIVES 

The basis functions of the parametric curve can be either 
global or local, but local support functions are preferable 
in the computer-aided design community since they result 
in a banded system matrix K, thus speeding up the 
calculation and easing the imposition of complicated 
geometric constraints. In this work, Hermite polynomials 
were adopted as the curve basis although Bernstein 
polynomial and B-splines could also serve as the basis. 
A piecewise Hermite polynomial curve is determined by 
its geometric properties at a set of nodes. Parametric 
values are assigned to each node monotonically. The 
shape of the curve between two nodes, often called an 
element, is solely determined by the information at the 

Figure 2 Successive quadratic programming 
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two nodes. Both cubic and quintic Hermite polynomials 
were implemented. The shape functions of a cubic/quintic 
Hermite element are given in Table 1. 

By using the piecewise Hermite curve, calculation of 
the system matrix K can be simplified into evaluating 
4 x 4 (or 6 x 6 for a quintic Hermite curve) submatrices 
of integrals for each curve element and assembling them 
together properly. When the weighting functions a, /I and 
y are constant over each element, the evaluation of these 
element matrices is simply an exercise in calculus and it 
can be done easily by software such as MACSYMA which 
performs symbolic mathematical manipulations. The 
matrices are given in Table 2. 

Table 1 Shape functions for cubic and quintic Hermite elements 

i Cubic elements (cpp) 

SOME TECHNICAL ISSUES 

Shortest distance computation 

Mathematically, to find the minimum distance between 
a given point and a piecewise continuous curve, the 
minimum distances between the given point and each 
curve element, defined as being between 0 and h, should 
be calculated first. Then compare them to obtain the 
global minimum. This will raise the following constrained 
single variable minimization problem. Minimize 

G(u)= lJP-w(u)ll’ O<udh (6) 

Quintic elements ((~4) 

I 

3 

4 

5 h(-4(;\)+7($-3(;$) 

6 h'(O.5($-($+0.5($) 

[h is the element’s parametric length.] 

Table 2 Element matrices for cubic and quintic Hermite elements 

Element matrix Cubicelements Quintic elements 

s h 

K; = Y’rY’du 
0 

s h 

K;= ‘YT’f”‘du 
0 

30h 

12 6h m-12 6h 

1 6h 4h' --6h 2hZ 

F - 12 -6h 12 - 6h 

6h 2hZ --- 611 4h' 

36 

h5 

r 

1 

70h3 

1800 270h 15h’ -1800 

288h' 21h3 - 270h 

2h4 - 15h’ 

symm. 1800 

270h -15h’ 

-1Xh’ 6h3 

-6h' hJ 

270h 15h' 

288h2 -21h3 

2h4 

1200 600h 30h' -1200 

384h* 22h3 -600h 

6h4 -30h2 

symm. 1200 

240 120h 2Oh' - 240 

4 211 4 211 64h' 12h3 -120h 

2h h' 211 h2 3 3h4 -2Oh' 

-4 - 2/l 4 -2h I G symm. 240 

2h h' ..~ 2h h' 

600h -3Oh' 

216h’ -8h3 

8h" h4 

600h 30h' 

384h2 -22h-' 

6h“ 

120h -2Oh' 

56h= -Xh3 

8h3 -h4 

120h 2Oh* 

64h' - 12h3 

3hJ 1 

c { y = c9’l7 9% 9s. &%I cubic element 

I&> cp’z. (P% CPP. 9% 4% quintic element. 1 
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Using the squared distance rather than the distance itself 
in the object function enables the square root to disappear 
without losing any generality. 

Generally, a constrained minimization problem is 
turned into an unconstrained one by using the penalty 
functions which prescribe a penalty whenever the solution 
estimate falls in infeasible regions. Fortunately, in our 
case the inequality constraints posed above are just the 
upper and lower bounds of the variable. This simplifies 
the problem significantly. Typically, it can be solved by 
finding the roots of g(u), the gradient of G(u), selecting 
those falling in the interval of interest and comparing the 
corresponding objective function values. There may be 
none, one or multiple roots in the interval [0, h]. Hence, 
the minimum point might fall in [O, h] or exactly on the 
endpoint. It should be noted that some point-curve 
relationships can produce solutions to g(u) that are 
maximum distances in the interval. Thus all extrema must 
be examined, and those that are maxima eliminated. 

So far this problem seems to be converted into a 
problem of finding roots of g(u) in the range [0, h]. 
However, this is still not an easy task. Problems still exist, 
such as those of how many roots exist in this interval 
and how to bracket these roots so that other algorithms 
such as the Newton-Raphson method can be applied. 
Many methods can be used to find roots bracketed by 
an interval of a general single variable function. However, 
some of them are not able to identify whether roots exist 
in the interval, or they fail to extract all the roots in the 
interval. Since the root finding has to be performed with 
respect to each curve element for each data point, a fast 
and robust root-finding algorithm is required. 

One of the beauties of using polynomials as the curve 
basis is that this also gives polynomial functions in 
Equation 6. For a cubic (quintic) Hermite element, G(u) 
is a 6th (10th) degree polynomial function. The number 
of real roots of a polynomial function cannot exceed the 
function’s degree. Another advantage is that a polynomial 
function represented in the power basis can be converted 
to the Bernstein basis and all the nice properties of the 
Bernstein basis can be applied to further locate the roots 
more efficiently and robustly. The following paragraphs 
will introduce this method. 

The portion of a polynomial of degree M, g(u)= 
CEO aiui, inside [0, h] can be represented by a set of the 
Bernstein basis of degree M by using the following 
identity: 

Bezier curve: 

(9) 

Now, finding the roots of a univariate polynomial 
function g(u) inside the range [0, h] is equivalent to the 
problem of finding roots of g(t) inside [0, 11. The latter 
can then be converted into a problem of finding the 
intersection of the Bezier curve g(t) with the parameter 
axis. Thanks to the variation diminishing property of 
Bezier curves, the number of roots falling in [0, h] cannot 
exceed the number of sign changes of the BCzier ordinates. 
If all the control points are at one side of the axis, namely; 
the gis are all positive or all negative, then there are no 
roots inside [0, h] and the minimum will occur at either 
u =0 or u = h. If the number of sign changes of BCzier 
ordinates is larger than zero, we can subdivide the curve 
using the recursive de Casteljau algorithm to locate the 
subintervals in which the roots exist, and then use the 
Newton-Raphson method to obtain the roots. 

Geometric constraints enforcement 

General geometric constraints can be imposed by 
augmenting the original energy function with Lagrange 
multipliers. The resulting equations often lose the 
linearity and complicate the problem. However, if we 
restrict the class of constraints by considering those only 
composed of a linear combination of the degrees of 
freedom of the problem, the constraint imposition can 
be achieved easily by the reduced transformation 
technique. The most common linear geometric constraint 
is to fix some degrees of freedom at known locations. 
Imposing a linear relationship on some degrees of 
freedom is another common linear constraint. In 
the following, we will briefly discuss the reduced 
transformation technique. 

The reduced transformation method is a technique 
used to enforce linear equality constraints in solving 
the following quadratic programming (QP) problem. 
Minimize 
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fk’ E bi,kBi,M(t) 
i=O 

bi.k=g 

k 

F=; QTKQ+FTQ (10) 

subject to 

where bi,k = 0 if i < k, and then 
hk(Q)=O.O; k= 1, . . ., m 

M .._ 
g(U)= 1 UiUi= 5 ait’= 2 3i F bj,iBj,M(t) 

i=O i=O i=O j=O 

where Q is a column vector containing n variables, and 
h,, k=l, . . . . m, are equality constraints composed of a 
linear combination of the variables. These linear equality 
constraints can be written in matrix form as AQ = B. 

where t = u/h, L& = aihi and gj = ci” o &bj,i are the Bezier 
ordinates. 

Once the original polynomial has been transformed 
into the Bezier form, we can rewrite g(u) as an explicit 

Since each linear constraint equation will reduce the 
problem’s dimension by 1, the first step in solving this 
problem by the reduced transformation technique is to 
select the independent variables and represent the 
dependent variables by the selected independent variables. 
By premultiplying a proper permutation matrix, we can 
rearrange Q so that the dependent and independent 
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variables are separate: 

or 

where P is a permutation matrix such that PQ =p= 

CQ6;ep 1 ?deplT. 

rndep IS a reduced column vector containing only 
(n-m) independent variables. Qdep is a column vector of 
dimension m containing dependent variables. The depend- 
ent variables can be represented by the independent 
variables as 

Qdep=A;lB_A;‘A1Qindep=DO+D1Qindep (12) 

Now, the original column vector Q can be represented 
by the independent variables only as 

= D3Qindep + DZ (13) 

in which I is an identity matrix and Z is a zero vector. 
Substituting Equation 13 into the objective function in 
Equation 10 and taking dF/8Qindep = 0, we get a reduced 
set of unconstrained linear equations of number n-m: 

(D;KDJQindep = D;F - D;KD, (14) 

which automatically enforce the linear constraints while 
the solution is found which minimizes the quadratic 
function of the subproblem. The new system matrix 
DTKD, retains the symmetry and the positive definiteness 
of the original matrix K and usually remains banded. In 
practice, when the constraints only fix some degrees of 
freedom at known values, generating the new system 
matrix can be achieved by deleting some rows and 
columns from the original system matrix instead of 
performing the full matrix multiplication twice. 

How many elements should be used? 

The choice of how many elements to use to reconstruct 
the curve from a set of error-embedding data is not a 
trivial problem. While using too few elements will fail to 
represent the characteristics of the target curve, using too 
many elements will make the curve follow the noise and 
possess many unwanted undulations. Speaking more 
specifically, raising the number of elements will reduce 
the error between data points and the solution, but will 
not necessarily mean that the solution is a better one. 
One thing we can state is that we would prefer using as 
few elements as possible to represent the resulting curve 
as long as the error between the data points and the 
curve is within some prespecified tolerance. In our work, 
the number of elements starts from one. If the curve’s 
shape obtained after convergence does not satisfy the 
tolerance requirement, the curve is broken into two 
elements and the iteration resumes. This process is 

repeated until the tolerance requirement is satisfied and 
guarantees that the number of elements used is minimal. 

Effect of introducing squared third derivative 

The stabilizing term in Equation 2 is actually a general 
form of the energy functions used in many minimal- 

I 

d 

Figure 3 Effect of third derivative term (curves interpolating 1 1 Dada 
points taken from half circle with different weighting values); (a) C’ 
cubic Hermite curve with a,= 1.0, fii=yt=O.O, (b) C’ cubic Hermite 
curve with pi= 1.0, a,=y,=O.O, (c) C’ cubic Hermite curve with 
x,=/I, = I.O,yj=O.l,(d)CZ cubic Hermitecurve with q=/II, = l.O,;‘, =O.l 
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energy splines. The many different energy functions used 
for the splines under tension, the (weighted) v-splines, and 
the (weighted) r-splines emerge by the weighting functions 
being properly chosen. While most people are familiar 
with the effect of minimizing the squared first and second 
derivatives, the effect of the squared third derivative is 
relatively unclear. In this section, we will use a simple 
example to show how the presence of the third derivative 
term affects the curve’s shape. 

We fit a set of data points taken from a half circle with 
radius 1. No error was inserted in the data. Different 
results based on different weighting values are shown in 
Figure 3. The curves shown are cubic Hermite curves 
which interpolate the data points assuming the con- 
nectivity information is known. Without the curvature 
plot, these curves have no visible differences. We can see 
that minimizing only the stretching energy certainly does 
not give us a pleasant curvature distribution (see Figure 
3~). When only the bending energy is minimized (see 
Figure 34, the curvature distribution is much better, but 
the curvature almost vanishes at the two ends, which is 
far from what it should be. The curvature plots in Figures 
3c and d reveal that introducing the squared third 
derivative term makes the curve behave more like a 
circular arc. The large curvature discontinuity shown in 
Figure 3c is due to the fact that the cubic Hermite curve 

\ 
\ 
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Figure 4 Fitting curves from Z-shaped distributed data points; 
(a) interpolating curve (12 elements), (b) approximating curve (9 
elements) 

C 

d 

e 
Figure 5 Sine curve (open curve fitted from 60 data points using five 
quintic Hermite elements); (a) input unordered, error-filled data, (b) 
deforming curve, (c) final curve, (d) final curve with curvature comb, 
(e) distribution of curvature and curvature variation 

has C2 discontinuity at the junctions, and the presence 
of the y term tends to minimize the curvature variation 
of each element, but controversially enlarges the dis- 
continuity at the junctions. This enlarged discontinuity 
can be eliminated by using a C2 continuous curve as 
shown in Figure 3d. 

When only positional information is available for 
constraining the curve, minimizing the bending energy 
only would result in a curve with zero curvature at its 
ends. Although this is obviously not always acceptable 
for all applications, the choice of when we should 
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introduce the squared third derivative term to ‘regulate’ 
the curvature distribution is still hard to judge from pure 
positional data and will be left to the user’s intention. 

EXAMPLES 

All of the figures we present here have been generated 
on a Silicon Graphics 4D GT/70 workstation. Data 
points are shown as small solid dots and nodes as open 
squares. All the figures are accompanied by curvature 
plots (drawn opposite to the direction of the normal 
vector) to show the fairness of the curve. Figure 4 shows 
the interpolation and approximation curves for a set of 
Z-shaped distributed data points. While the curve shown 
in Figure 4a interpolates all data points, the curve 
shown in Figure 4b only approximates them. The curve 
is expected to be straight everywhere except at the two 
corners with large curvature. We can see that, even 
though fewer curve elements are used in the approxima- 
tion case, the outwards propagation of the unwanted 
undulations from the corners diminishes faster in the 
approximation case and results in better shape. 

Some other examples generated from error-filled data 

a 

points are shown in Figures 5-7. Data points were 
randomly generated from analytic target curves with 
random perturbations of 5% maximum error. In Figure 
5. 60 data points were generated randomly from a sine 
curve with errors in the y direction only. In Figure 6, 50 
data points were taken from a 4th order B-spline with 
errors in the normal direction. Data in Figures 5 and 6 
were also used in Reference 1. However, instead of cubic 
Hermite curves, quintic Hermite curves with fewer 
elements are used. In Figure 7, data points were 
generated from a curve described in polar coordinates 
by r = 1 -to.25 sin 30. Errors were taken in the radial 
direction only. All examples presented here are at least 
subject to two position constraints at the two ends of the 
curve. While the sine curve is constrained at its two ends 
at different positions, the aerofoil is constrained at its 
trailing edge. A compatibility equation which equates the 
tangent vectors at two ends was used to guarantee the 
continuous closed curve shown in Figure 7. 

Since this algorithm does not assume connectivity 
information, the initial estimate in the minimization 
process is often a straight line connecting the two 
endpoints specified by the user. This ‘universal’ initial 
guess works quite well for most cases, but, for data points 

. . . I. . % 

l *. 9 
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. .’ l .- . * 
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: 
’ . . c . . 
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e 
Figure 6 Aerofoil (closed curve with cusp fitted from 50 data points using ten quintic Hermite elements); (a) original curve defined by B-spline, 
(b) input unordered, error-filled data, (c) final curve, (d) final curve with curvature comb, (e) distribution of curvature and curvature variation 
[(a) Control points are represented by open squares.] 
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Figure 7 3-leaves rose (continuous closed curve fitted from 60 data points using 20 quintic Hermite elements); (a) input unordered, error-filled 
data, (b) final curve, (c) final curve with curvature comb, (d) distribution of curvature and curvature variation 

taken from a helix-like curve or a self-intersecting curve, 
it often causes the solution to be trapped by a local 
minimum and results in a bad fit. If the characteristic of 
a curve can be captured by some means to generate a 
good initial estimate, it is believed that a good fit with 
satisfactory fairness is still achievable. This issue is 
currently under study. 

CONCLUSIONS 

We present a method for generating a smooth parametric 
curve which approximates a set of error-filled, unordered 
data points. Users only need to specify the endpoints of 
the curve. The resulting curve generally has very good 
fairness. Compared to the existing data point inter- 
polation or approximation schemes, this method 
obviously has the advantage that no connectivity 
information other than the endpoints is required. The 
interpolation problem could also be treated as a special 
case in our method in which the data points to be 
interpolated are considered as constraints in the mini- 
mization process. On the other hand, this method also 
suffers from some limitations that are mainly due to 
the assumption of unknown connectivity information. 
Although only 2D examples are presented, the proposed 
method can be applied to higher dimensional curves 
without any modification. Furthermore, this technique 
can be extended to parametric surface fitting from 
scattered data points. 
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