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Fast and Exact (Poisson) Solvers on Symmetric Geometries
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Figure 1: Applications of our solver: (top) spherical image stitching, followed by Laplacian sharpening, (middle) successive
frames of incompressible fluid simulation on a surface of revolution, and (bottom) successive frames of wave propagation on a
surface of revolution with angular boundary.

Abstract

In computer graphics, numerous geometry processing applications reduce to the solution of a Poisson equation.
When considering geometries with symmetry, a natural question to consider is whether and how the symmetry can
be leveraged to derive an efficient solver for the underlying system of linear equations. In this work we provide
a simple representation-theoretic analysis that demonstrates how symmetries of the geometry translate into block
diagonalization of the linear operators and we show how this results in efficient linear solvers for surfaces of
revolution with and without angular boundaries.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
languages, and systems—Fluid Simulation
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1. Introduction

Solving the Poisson equation is an essential step in many
graphics applications. For example, it enables gradient do-
main image processing, it provides the Hodge decomposi-
tion that supports fluid simulation, and it describes the oscil-
lation of a membrane governed by the wave equation (Fig-
ure 1). As such, there has been a large body of research fo-
cused on efficiently finding exact or approximate solutions.

In this work, we consider the problem of solving Poisson-
like systems on symmetric geometries. On the one hand,
these geometries contain sufficient regularity to enable the
design of an efficient exact solver. On the other, they in-
clude surfaces with varying curvature – so an efficient solver
makes it possible to interactively explore how the surface
metric interacts with the Laplace-Beltrami operator.

The key to our approach derives from the observation that
when a linear operator commutes with the symmetry group
of the geometry, the linear operator becomes block diagonal
in the irreducible representations of the group, with (at least)
one block associated with each class of irreducible represen-
tations. Thus, rather than having to solve one large linear
system of equations, we can obtain the solution to the linear
system by solving a set of smaller ones.

Taking a representation-theoretic perspective allows us
to generalize earlier work in the area. Considering di-
hedral symmetry, our work explains Hockney’s [Hoc65]
FFT/tridiagonal solver for Poisson equations on rectangu-
lar domains with Neumann/Dirichlet boundaries and pro-
vides an extension to surfaces of revolution. And, using the
spherical harmonic decomposition, we show how existing
approaches for processing surfaces of revolution using the
structure of circulant matrices [Dav79,BB06] extends to 3D
volumes with full rotational symmetry.

We begin our discussion with a brief description of earlier
work on Poisson solvers on Euclidean and non-Euclidean
domains (§2). Next, we review some basic results from
representation theory and show how these imply block-
diagonalizability (§3). We then look in detail at the impli-
cations for surfaces of revolution (§4) and also consider the
case of volumes with rotational symmetry (§5). We moti-
vate the utility of our approach by considering applications
in spherical image processing, as well as stable fluid simu-
lation, and wave propagation on surfaces of revolution (§6)
and conclude by summarizing our work and discussing po-
tential directions for future research (§7).

2. Related Work

The ubiquity of the Poisson equation has made it well-
studied across numerous communities. While a comprehen-
sive survey of related methods is beyond the scope of the pa-
per, we briefly review some of the key approaches for solv-
ing the system of equations.

In general, approaches for solving the Poisson equation
can be categorized as either iterative or direct depending on
whether an approximate or exact solution is returned.

Iterative Solvers

This class of approaches is categorized by algorithms that
iteratively improve an estimate of the solution. For general
formulations of the Poisson equation, greedy techniques like
Jacobi and Gauss-Seidel [Saa03] relaxation have been used.
While these methods are only guaranteed to improve the so-
lution, other methods like conjugate gradients [She94] return
the exact solution in a finite number of iterations.

On their own, these methods are often inefficient because
they take too many iterations to produce a reasonable so-
lution. However, these approaches can be integrated with a
hierarchical multigrid solver to produce accurate answers in
linear time [BHM00]. Though multigrid was initially used
for planar lattices, where a hierarchical representation is nat-
urally obtained by coarsening the grid, extensions to other
regular geometries [KH10], as well as extensions to triangle
meshes [KCVS98,AKS05,SYBF06,CLB∗09] and graphs in
general [RS87, CFH∗00] have also been proposed.

Direct Solvers

Leveraging the fact that the Laplacian is a (semi-)definite
systems makes it possible to apply methods like Cholesky
factorization [GL96] to express the system as the product of
upper and lower triangular matrices. Then a solution can be
obtained using forward and backward substitution. A chal-
lenge of using this type of approach is that even though the
discretization of the Laplacian is often sparse, its inverse
does not need to be, and computing/storing the Cholesky fac-
torization can become prohibitively expensive. For a recent
survey of direct solvers in geometry-processing applications,
we refer the reader to [BBK05].

Spectral solvers the fact that the cosine and sine functions
are eigenvectors of the planar Laplace operator. Thus, a solu-
tion to the planar Poisson problem can be obtained by com-
puting the Fourier transform, scaling the Fourier coefficients
by the reciprocal of their associated frequency, and then ap-
plying the inverse Fourier transform [SS88]. As the Fourier
decomposition on a planar grid can be obtained quickly us-
ing the FFT [CT65], this algorithm is quite efficient in prac-
tice. Although spectral decompositions of the Laplace opera-
tor has also been used for signal processing on more general
geometries [VL08], this is not a practical method for solv-
ing the Poisson system, as computing the spectral decompo-
sition is significantly more expensive than solving the sys-
tem (e.g. the shift-invert implementation requires solving the
Poisson equation to compute the spectral decomposition).

In [Hoc65], Hockney describes an approach that is a hy-
brid of spectral and direct solvers: Computing the Fourier
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transform of along just the rows of a planar grid, the Pois-
son system reduces to a set of tridiagonal systems of equa-
tions – one for each column of Fourier coefficients. This is
generalized in [Dav79] which describes how the FFT can be
used to diagonalize (block-)circulant matrices and has been
used for finding the modes of vibration of surfaces of revo-
lution [BB06]. Taking a representation theoretic perspective,
we extend this approach to general symmetry groups.

3. Representation Theory and Block Diagonalization

We begin by briefly reviewing some basic representation the-
ory ([Ser77,FH91]). Using this theory, we show that if a lin-
ear operator commutes with the symmetry group, the linear
operator can be expressed in block-diagonal form.

3.1. Representation Theory Review

Definition Given a finite/compact group G and a complex
vector space V , a representation of G on V is a map ρ from
G into the automorphisms of V satisfying:

ρ(e) = Id.

ρ(g ·h) = ρ(g) ·ρ(h) ∀g,h ∈ G

where e is the identity element in G.

Definition Given a representation (ρ,V ) of G, a subspace
W ⊂V is a sub-representation if ρ(g)(W )⊂W for all g∈G.
Theorem (Maschke). Given a representation (ρ,V ), if
W1 ⊂ V is a sub-representation, then there exists W2 ⊂ V ,
with V =W1

⊕
W2 such that W2 is also a sub-representation.

Definition A representation (ρ,V ) is irreducible if the only
sub-representations of V are {0} and V itself.

Definition Given two representations (ρ1,V1) and (ρ2,V2),
a linear map L : V1→V2 is said to be G-linear if:

L◦ρ1(g) = ρ2(g)◦L ∀g ∈ G.

If L is an isomorphism, then the irreducible representations
are said to be isomorphic.
Lemma (Schur). If L is a G-linear map between irreducible
representations then L = 0 or L is an isomorphism.
Corollary (Schur). The only G-linear maps from an irre-
ducible representation into itself are multiples of the identity.
Theorem (Canonical Decomposition). Given a representa-
tion (ρ,V ), V can be decomposed as the direct sum of irre-
ducible representations (with multiplicity):

V =
⊕
ω∈Ω

V ω with V ω =
mω⊕
k=1

V ω
k

where V ω
k are irreducible representations and V ω

k is isomor-
phic to V ω̃

k̃
if and only if ω = ω̃ .

Remark While the isomorphism between V ω and the direct
sum of V ω

k is not unique, the decomposition of V into the
direct sum of V ω is.

3.2. Block Diagonalization

Lemma 3.1. Given a representation (ρ,V ), if L is a G-
linear map then L(V ω )⊂V ω for all ω .

Proof Let W ⊂ V ω be an irreducible sub-representations.
By Schur’s Lemma it follows that L(W ) must also be an ir-
reducible sub-representation. However, if L(W ) 6⊂ V ω then,
using Mashke’s Theorem, we can obtain a different decom-
position of V into irreducible components, contradicting the
uniqueness of the decomposition. �
Corollary 3.2. If L is G-linear and {vω

1 , . . . ,v
ω
dω
} is a

basis for V ω , then L is block diagonal in the basis
{vω

1 , . . . ,v
ω
dω
}ω∈Ω. In particular, solving the system Lx = b

can be done by solving |Ω| systems each of size dω × dω ,
rather than solving a single system of size ∑dω ×∑dω .

At first glance, Corollary 3.2 seems counter-intuitive. On
the one hand, it suggests that as the symmetry group gets
more complicated and the dimensions of the irreducible rep-
resentations grow, the diagonal blocks become larger and the
solver becomes less efficient. On the other hand, we would
expect that as the linear system has more symmetries, there
should be more opportunity for designing an efficient solver.
We show that this is in fact the case.

Notation For simplicity, we assume that V = V ω (as a G-
linear map must send each V ω back into itself). We write:

V =
m⊕

k=1

Vk

where the Vk are isomorphic irreducible representations. We
set n to be the dimension of Vk. And we set ιk : V1 → Vk to
be the isomorphism between the irreducible representations.

Definition We say that a basis {v1
1, · · · ,v1

n, · · · ,vm
1 , · · · ,v

m
n },

with vk
i ∈Vk for all 1≤ i≤ n and 1≤ k≤m, is consistent if:

vk
i = ιk(v

1
i ).

Lemma 3.3. Given a G-linear map L : V → V and given a
consistent basis for V , the matrix representation of L in this
basis consists of m×m blocks where each block is a multiple
of the identity.

Proof It suffices to show that if π j : V →V j is the projection
onto V j then in a consistent basis the matrix expression for:

π j ◦L : Vi→V j

is a multiple of the identity.

Using Maschke’s theorem, it follows that π j is G-linear.
Since L and {ιk} are also G-linear, and since G-linearity is
preserved under composition and inversion, the map:

ι
−1
j ◦π j ◦L◦ ιi : V1→V1

must be G-linear as well.

Finally, since V1 is irreducible, the corollary to Schur’s
Lemma implies that the map is a multiple of the identity.
Thus, π j ◦ L : Vi → V j is a multiple of the identity matrix
when expressed in the consistent basis. �
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Figure 2: The four topologies our method supports (top),
and the corresponding surfaces obtained by sweeping the
generating curve by less than 360◦ (bottom).

Corollary 3.4. If we choose a consistent basis, then each
dim(V ω )× dim(V ω ) block of the matrix representation of
L further decomposes into a block diagonal matrix with
dim(V ω

1 ) identical blocks, each of size mω ×mω .

4. Surfaces of Revolution

We now consider the specific case of solving the Poisson
equation on surfaces of revolution.

Our approach applies to four different topologies of sur-
faces of revolution, as well as “incomplete” surfaces of revo-
lution obtained by rotating a generating curve about the axis
of revolution by an angle smaller than 360◦. These are visu-
alized in Figure 2 and include geometries that are:

• Toroidal: Obtained by sweeping a closed curve that does
not intersect the y-axis.

• Spherical: Obtained by sweeping an open curve, both of
whose end-points lie on the y-axis.

• Hemispherical: Obtained by sweeping an open curve,
one of whose end-points lies on the y-axis.

• Cylindrical: Obtained by sweeping an open curve, both
of whose end-points lie off the y-axis.

4.1. Preliminaries

We assume that we are given a surface of revolution, repre-
sented by a 2D generating curve, comprised of the N points
(uk,vk) ⊂ R2, with vk ≥ 0 and equality only at the poles of
spherical topologies. The surface is then represented by the
M×N grid of points:

V j,k =

(
uk · cos

(
2 jπ
M

)
,vk,uk · sin

(
2 jπ
M

))
.

[For spheres the parallels at the poles collapse to a single
point and the dimension is (N−2)×M+2.]

In our indexing, we assume that that the first index (cor-
responding to the angle of revolution) is taken modulo M,

(e.g. V j,k = V j±M,k). [For spheres, the indexing at the poles
is taken modulo 1 (e.g. V0,0 = V j,0 and V0,N−1 = V j,N−1).]

Notation We denote the vertex set of the grid by V and the
edge set by E .

Notation We denote the space of discrete functions on the
surface by F ≈C|V |, which associates a value to every ver-
tex of the grid. We will write elements of the function space
in bold capitals, F,G ∈F .

Notation We set θM = 2π/M and set ζM to be the M-th
complex root of unity, ζM = cos(θM)+ isin(θM).

4.2. Cyclic Symmetry

Taking G =CM to be the cyclic group with M elements, we
obtain a decomposition of F with respect to the irreducible
representations of G:

F =

M/2−1⊕
ω=−M/2

F ω
C

where Fω ∈F ω
C is a function which, restricted to any paral-

lel, is a complex exponential of frequency ω:

(Fω ) j,k = f̂ω

k ·ζ
jω

M .

Here, f̂ω
is the vector in CN giving the ω-th Fourier coeffi-

cient of F along each of the N parallels and the multiplicity
mω is equal to N – the number of parallels. [For spheres we
have m0 = N and mω = N−2 for ω 6= 0.]

By Corollary 3.2, taking {Eω,1, · · · ,Eω,N} as a basis with:

(Eω,n) j,k = δn,k ·ζ
jω

M with δn,k =

{
1 if n = k
0 otherwise

,

if L is a linear operator commuting with discrete rotation
of the surface about the axis of revolution, then the matrix
expression for L in this basis becomes block-diagonal, with
an N×N block for each frequency ω .

This reproduces the approach of [BB06] which uses the
FFT to diagonalize systems of linear equations defined by
circulant matrices [Dav79], providing an efficient solver by:

1. Computing the Fourier Transform along each row of G to
get the frequency decomposition of G along the parallels:

G =
N

∑
n=1

M/2−1

∑
ω=−M/2

Ĝω,n ·Eω,n.

2. Solving M distinct linear systems of size N×N to get the
coefficients of F in the basis {Eω,n}.

3. Computing the inverse Fourier Transform to get the val-
ues of F at the grid points.

In addition, if L is local then each N ×N linear system
will be diagonally banded and can be solved in O(N) time,
giving an overall running time of O(NM logM) for solving
the system L(F) = G.

c© 2015 The Author(s)
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4.3. Dihedral Symmetry

Taking G = D2M to be the dihedral group with 2M elements,
we obtain a decomposition of F with respect to the irre-
ducible representations of G:

F =

M/2⊕
ω=0

F ω
D with F ω

D =


F 0

C if ω = 0
F
−M/2
C if ω = M/2

F ω
C ⊕F−ω

C otherwise.

As above, taking {Cω,1, · · · ,Cω,N ,Sω,1, · · · ,Sω,N} to be a
basis for F ω

D , with:

(Cω,n) j,k = δn,k · cos( jωθM)

(Sω,n) j,k = δn,k · sin( jωθM),

if L is a linear operator that commutes with discrete rota-
tion of the surface about the axis of revolution and reflection
through the xy-plane, then L is block-diagonal in this basis.

Furthermore, because this basis is consistent, Corol-
lary 3.4 guarantees that the 2N × 2N block is itself block-
diagonal, composed of two N × N blocks, and the linear
map L must take the span of {Cω,1, · · · ,Cω,N} (respectively
{Sω,1, · · · ,Sω,N}) back into itself.

Surfaces with Angular Boundaries

One significant distinction between the analysis we describe
above and the original formulation of Hockney [Hoc65] is
that our description is targeted at surfaces of revolution,
which have a significant amount of symmetry, while the
method of Hockney (though restricted to planar signals) also
applies to domains with boundaries.

Interestingly, the formulation we propose for surface of
revolution can be extended to support surfaces of revolu-
tion with angular boundaries – obtained by sweeping the
generating curve around the axis of revolution by an angle
smaller than 360◦. (Boundaries resulting from sweeping an
open generating curve by 360◦ do not require special treat-
ment as they do not affect the symmetry of the surface.) To
do this, we imbue the domain with the requisite symmetry
by considering the periodic extension. Specifically, to sup-
port angular boundaries, we first make the domain periodic
by taking a double-covering of the surface where we attach
a second copy of the domain at the angular boundaries. This
takes us back to the scenario of surfaces of revolution with-
out angular boundaries.

We can then decompose the space of functions on this
double-covering into even/odd functions (functions which
have the same/negative values on the two pre-images of a
point). These spaces correspond to the spaces of functions on
the original surface satisfying Neumann/Dirichlet boundary
constraints. Although the dihedral group does not map these
functions back into themselves, we know that if a linear op-
erator L on the double-covering commutes with the dihedral
symmetry group, then it will map the even/odd subspaces

back into themselves, giving a block diagonalization of the
corresponding linear operator on the surface with boundary.

In particular, since the Laplace operator is isometry in-
variant, any discretization of the operator over a surface of
revolution that preserves the (discrete) cyclic/dihedral sym-
metry will necessarily be block-diagonal in the Fourier ba-
sis. The explicit characterization of the condition that needs
to be satisfied for a linear operator commute with the action
of the cyclic/dihedral group, as well as the equations giving
the entries in the diagonal blocks, are given in Appendix A

5. Volumes of Rotation

Though this work is motivated by applications to surfaces
of revolution, this section considers the example of solving
a Poisson equation over the unit ball. This application high-
lights the generality of the representation-theoretic formula-
tion by demonstrating how SO(3) symmetry can be used to
design an efficient solver.

To this end, we consider the case when we are given a
function g : B3→C and we would like to solve for the func-
tion f : B3→ C such that:

∆ f = g.

For simplicity, we assume trivial Dirichlet boundaries and a
homogeneous metric, though the discussion applies to gen-
eral Dirichlet/Neumann boundary constraints and applies to
any radially parameterized metric.

Using the fact that the space of spherical harmonics of
frequency l are an irreducible representation for SO(3), we
decompose F as:

F =
∞⊕

l=0

F l

where F l is the space of functions whose restriction to a
fixed radius is a linear sum of degree-l spherical harmonics:

F l =

{
f ∈F

∣∣∣ f (θ ,φ ,r) = l

∑
m=−l

f̂ m
l (r) ·Y m

l (θ ,φ)

}
(with Y m

l (θ ,φ) the spherical harmonic of frequency l and
index m).

Furthermore, by Corollary 3.4, for each frequency l there
exists a linear operator Ll : B1→ B1 such that:

f (θ ,φ ,r) =
∞

∑
l=0

l

∑
m=−l

f̂ m
l (r) ·Y m

l (θ ,φ)

⇓

∆ f (θ ,φ ,r) =
∞

∑
l=0

l

∑
m=−l

Ll
(

f̂ m
l (r)

)
·Y m

l (θ ,φ).

Discretizing over an O(N×N×N) grid, this gives a block
diagonalization of the Laplace operator into O(N2) blocks
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where the (l,m)-th block is of size O(N×N). As with sur-
faces of revolution, the locality of the Laplace operator im-
plies that the linear operator defined on each block will be
diagonally banded, so the Poisson system can be solved by:

1. Computing the spherical harmonic decomposition for
each of O(N) radii.

2. Solving a diagonally banded N×N system of equations
for each of O(N2) pairs of spherical frequency and index.

3. Computing the inverse spherical harmonic decomposi-
tion for each radius.

Since the discretized Laplacian is diagonally banded, the
complexity of solving a Poisson system on the unit ball, dis-
cretized on an N×N×N grid is O(N3 log2 N) using the fast
spherical harmonic transform [HRKM03].

Remark When the systems is not diagonally banded,
Corollary 3.4 still guarantees that a consistent basis results
in only O(N) different linear systems that need to be solver.
Thus, each N×N system will be solved O(N) times and the
cost of Cholesky pre-factorization can be amortized.

6. Results and Discussion

We implement our approach using the FFTW [FJ05] to per-
form the forward and backward Fourier transforms. (When
extending to surfaces with angular boundary, we use the
DCT-I transform for Neumann boundary conditions and
DST-I transform for Dirichlet boundary conditions.) The
tridiagonal solve is implemented using the Thomas Algo-
rithm (extended with the Sherman-Morrison Formula for
toroidal geometry) [Saa03]. Additionally, the implementa-
tion is trivially parallelized using OpenMP [DM98] as the
Fourier transforms of the parallels can be performed simul-
taneously, as can the solution of the tridiagonal systems for
the different frequency components. All experiments were
obtained using an Intel Core i7-4710MQ processor with 16
GB of RAM, parallelized across eight (hyper) threads.

Our implementation requires the discretization of the
space of functions and associated differential operators.
These include: M0 – the 0-form mass matrix; M1 – the 1-
form mass matrix; S – the stiffness matrix; D – the diver-
gence operator; G – the finite-difference gradient operator;
{Bv}v∈V – the 0-form basis; {~Be}e∈E – the 1-form basis;
and {~H1,~H2} – the harmonic vector field basis, with ~H1 the
gradient of the function giving the angle about the axis of
revolution and ~H2 its rotation by 90◦. Details of the dis-
cretization are provided in Appendix B. For the results in
this section, we used the conical interpretation to define the
metric, though we found the visual quality and running time
for the trapezoidal interpretation to be similar.

6.1. Image Stitching and Contrast Enhancement

Image Stitching

In image stitching, the problem is to composite multiple
registered images so as to remove discontinuity artifacts.

Running Time Memory
Stitching Sharpening Stitching Sharpening

[KH10]
148.6 (s) 150.0 (s) 106 (MB) 106 (MB)

(out-of-core)

[KH10]
35.0 (s) 35.1 (s) 10987 (MB) 10299 (MB)

(in-core)

Our Solver 4.6 (s) 4.7 (s) 5402 (MB) 5402 (MB)

Table 1: Solver time and memory usage for processing the
spherical 16K× 8K panorama in Figure 1(top), comparing
the proposed hybrid FFT-tridiagonal solver with the stream-
ing multigrid solver of Kazhdan et al. [KH10].

The general approach for solving this problem [PGB03,
ADA∗04, LZPW04] proceeds in two steps. First, a target
gradient field ~G is generated by compositing the gradients
from the individual images and setting seam-crossing gradi-
ents to zero. Then a least-squares system is solved to obtain
the function F whose gradients best match the target. This
corresponds to the linear system:

S(F) = D(~G)

with S and D the stiffness and divergence matrices.

Contrast Enhancement

In contrast enhancement, the problem is to accentuate the
edges in an image while preserving the overall content. As
shown by Bhat et al. [BCCZ08] the solution can be charac-
terized by the system:

(αM0 +S)
(
Fnew)= (αM0 +βS)

(
Fold

)
with M0 and S the (0-form) mass and stiffness matrices,
α > 0 the fidelity term, characterizing how similar the pro-
cessed image should be to the original, and β ≥ 0 the gra-
dient modulation term which indicates how strongly edges
should be enhanced. For β < 1 edges are dampened and a
smoothed image is obtained. For β > 1 edges are amplified
and a sharpened image is obtained.

Results Figure 1 (top) shows an example of first stitching a
16384×8192 spherical panorama and then performing con-
trast enhancement to exaggerate the detail (β > 1). (Visu-
alizations are obtained by looking down at the North pole,
with back/front-face culling enabled.) We compare the per-
formance of our approach to both the in-core and out-of-core
streaming multigrid spherical solvers [KH10] in Table 1.
(For the streaming multigrid solver we used a single V-cycle
with 5 Gauss-Seidel iterations per level.)

As the table shows, our approach outperforms the in-core
implementation of the streaming multigrid solver, provid-
ing a solution in less time and comparable memory. As our
solver is strictly in-core, its memory usage is proportional to
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the size of the image. In contrast, the out-of-core implemen-
tation of the multigrid solver only requires that a few rows
of the image reside in memory at any time.

6.2. Fluid Simulation

Unconditionally Stable Fluids

In simulating incompressible fluids, the goal is to solve for
the temporally evolving vector field describing the velocity
of the fluid. As demonstrated by Stam [Sta99, Sta01, Sta03]
a stable solution can be implemented as follows:

1. Adding external forces.
2. Advecting the velocity by back-tracing along flow lines.
3. Diffusing the flow field to capture the effects of viscosity.
4. Projecting onto the divergence-free vector fields.

We represent the velocity field in the basis {~B⊥e }e∈E , ob-
tained by rotating the 1-form basis {~Be}e∈E by 90◦.

Projection Given the coefficients, ~W, of the velocity field in
this basis we obtain (most of) the divergence-free component
by computing the curl of the velocity field, solving for the
scalar potential P, computing the gradient, and rotating by
90◦ in the tangent plane:

πdiv-free(~W) = G(P) with S(P) = D(~W).

(Since we are working with the rotated basis, D(~W) becomes
the curl and G(P) becomes the 90◦ rotation of the gradient.)

Diffusion Since diffusion commutes with the gradient oper-
ator we implement this step by diffusing the scalar potential
P prior to taking its gradient. This is accomplished by solv-
ing the (screened) Poisson equation:(

1
δν

M0 +S
)(

Pdiffused
)
=

1
δν

M0(P)

where δ is the step-size for the time integration and ν is
the viscosity coefficient. (This is the same equation as for
contrast enhancement, with α = 1/(δ ·ν) and β = 0.)

Because diffusion and projection are performed in se-
quence, our implementation only performs one set of for-
ward Fourier transforms before the diffusion phase and one
set of inverse Fourier transforms after the projection phase.

Harmonic Vector Fields While the above discussion can
be used to simulate vector fields on simply connected do-
mains, it ignores the harmonic vector fields – vector fields
for which both the divergence and curl operator vanish (since
taking the curl annihilates the harmonic component.)

To address this we first project the vector field ~W onto the
(at most) two-dimensional space of harmonic vector fields
using the 1-form mass-matrix, M1, and then add the pro-
jected component back into the divergence-free vector field
after projection. (Harmonic vector fields are fixed under the
diffusion operator, so we do not need to incorporate them in
the diffusion phase.)

Boundaries For surfaces of revolution with boundaries, we
use free-slip boundary conditions. In general, this corre-
sponds to using a basis satisfying Neumann boundary con-
straints (so that the normal derivative vanishes at the bound-
ary). However, since we are rotating the vector field by 90◦,
we obtain a free-slip boundary by using a basis satisfying
Dirichlet boundary constraints.

In this case the space of harmonic vector fields is spanned
by ~H2 when sweeping an open curve completely around the
axis of revolution and ~H1 when sweeping a closed curve by
less than 360◦. Note that these vectors fields are normal to
the boundary, so their rotation by 90◦ becomes tangent, con-
forming to the desired free-slip boundary conditions.

Results Figure 1(middle) shows an example of our interac-
tive fluid simulation for a surface of revolution with hemi-
spherical topology, sampled on a grid with M = N = 1024.
The figure shows successive snapshots of the fluid flow, vi-
sualized by seeding “ink” in the fluid and visualizing the ad-
vection of the ink under the flow.

We compare the performance of our solver to the perfor-
mance of a direct solver using CHOLMOD’s, MKL-backed
Cholesky factorization [CDHR08, Int13] with default re-
ordering. (Though we do not pursue it in this work, we be-
lieve that it would also be valuable to evaluate the sparsity
and run-time performance for more advanced, geometry-
driven sparsity-preserving reorderings [BBK05].)

The results of these experiments are shown in Table 2. Our
solver is two orders of magnitude faster than Cholesky fac-
torization. Furthermore, using a Cholesky factorization in-
curs a significant cost in pre-processing time and memory,
due to the computational complexity of LU factorization. In
contrast, our solver requires very little pre-processing (dom-
inated by setting up the FFTW planner) and has a smaller
memory footprint.

As illustrated by the table, our Poisson solver is suffi-
ciently fast that it is no longer the bottleneck in the stable
fluid simulation. Indeed, in our interactive simulation we
found that most of the computational cost was incurred in
the advection phase, where the tracing of flow-lines over the
geometry requires repeated sampling of the vector field and
unfolding of adjacent faces into a common plane.

For the specific case of spherical geometry, we also com-
pare our solver to the fully spectral solution obtained using
the fast spherical harmonic decomposition [HRKM03]. For
similar experiments, we found that our solver was roughly
five times faster on a 1024×1024 grid. This conforms with
the theoretical complexities – for an N×N grid our solver
has run-time complexity O(N2 logN) while the spherical
harmonic decomposition has complexity O(N2 log2 N).

Vorticity Advection

An alternate stable fluid formulation was proposed by El-
cott et al. [ETK∗07] which describes an implementation that
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Resolution Solver Initialization Projection + Diffusion Advection Memory Frame-Rate

256×256
Direct 0.2 (s) 0.03 (s)

<0.01
200 (MB) 26 (fps)

Ours 0.2 (s) <0.01 (s) 46 (MB) 145 (fps)

512×512
Direct 1.8 (s) 0.13 (s)

0.02
588 (MB) 7 (fps)

Ours 0.6 (s) <0.01 (s) 96 (MB) 38 (fps)

1024×1024
Direct 8.0 (s) 0.50 (s)

0.07
2436 (MB) 1.7 (fps)

Ours 1.2 (s) 0.01 (s) 293 (MB) 10 (fps)

2048×2048
Direct 37.0 (s) 1.79 (s)

0.26
10474 (MB) 0.5 (fps)

Ours 2.4 (s) 0.05 (s) 1177 (MB) 2.1 (fps)

Table 2: Initialization time, projection time, advection time, memory usage, and frame-rate for fluid simulation on a surface of
revolution at different resolutions, comparing the proposed hybrid FFT-tridiagonal solver with a direct solver.

advects vorticity rather than velocity. A Poisson equation is
then solved to compute the flux, and the (rotated by 90◦)
gradient of the flux gives the velocity.

Results Figure 3 shows results for flow on a 1024× 1024
surface of revolution (with angular boundaries). The figure
shows vorticity, with counter-clockwise vorticity drawn in
blue and clockwise vorticity in red. The top row shows re-
sults for similarly oriented vortices placed next to each other
– the vortices orbit each other and then merge. The bottom
row shows results when the vortices are oppositely oriented
– the vortices move in parallel until they reach the boundary
and then traverse the boundary in opposite directions.

For these examples, the frame-rate was similar to the
frame-rate achieved in implementing Stam’s method, and
again the computational bottle-neck is advection. (In our
implementation we used a simple version of the advection,
transforming the vorticity into a 0-form, advecting the 0-
form by back-sampling, and then transforming back to a 2-
form. This does not guarantee exact circulation preservation
as in [ETK∗07], but provides the correct limit behavior as
the flow is assumed to be divergence-free, so that areas are
preserved under advection.)

6.3. Wave Propagation

Lastly, we consider the simulation of waves propagating on
a surface of revolution, governed by the PDE:

∂ 2u
∂ t2 = a∆u−b

∂u
∂ t

+ f

where 1/
√

a is the speed of the wave, b is the damping co-
efficient, and f is the (time-varying) external force. Using
implicit integration gives a sequence of solutions {Ut} with:(

(1+bδ )M0 +aδ
2S
)(

Ut+1
)

= M0
(
(2−bδ )Ut −Ut−1 +δ

2Ft+1
)

with δ the step-size of the time integration and Ft+1 the dis-
cretized external forces at time t +1.

Results Figure 1(bottom) shows a visualization of the wave
propagation enabled by our system, showing successive
time-frames of a simulation with two point sources, on a do-
main with Dirichlet boundary constraints along the meridi-
ans and Neumann boundary constraints along the parallels.
The visualization is obtained by rendering the normal-offset
surface, with U taken as the height of the offset. At the bot-
tom we use an instantaneous source, achieved by adding an
impulse in both time and space. At the top, we use a spa-
tial impulse, modulated temporally by a cosine function to
create a temporally oscillating source.

Table 3 gives the performance of our solver for surfaces
of revolution at different resolutions, with different boundary
conditions. The solver has similar performance as the fluid
simulation solver, though the frame-rate is improved because
we no longer need to perform advection and the simulation
now bottle-necks on the rendering of the offset surface.

With Neumann/Dirichlet angular boundaries, running
time and memory usage deteriorate slightly. We believe that
this is due to the slower implementation of the DCT-I and
DST-I transforms in FFTW, as well as the fact that when us-
ing boundary conditions we have twice as many tridiagonal
systems to solve. (For periodic boundaries we solve M/2 dif-
ferent systems for the complex coefficients of the Fourier de-
composition. For Neumann/Dirichlet boundaries we solve M
different systems for the real coefficients of the sine/cosine
decomposition.)

7. Conclusion

We presented a representation theoretic analysis of how
symmetry can be leveraged in defining efficient linear
solvers. We use this to define an efficient Poisson solver on
surfaces of revolution, with and without angular boundaries,
demonstrating applications in image processing, fluid simu-
lation, and wave propagation.

In the future, we would like to explore several extensions.

From a practical perspective, we would like to explore
both out-of-core and GPU implementations of the solver.
For planar domains, an out-of-core solver has already been
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Resolution Angular Boundary Solver Memory Frame-Rate

256×256
Periodic <0.01 (s) 55 (MB) 162.6 (fps)

Neumann <0.01 (s) 56 (MB) 157.5 (fps)
Dirichlet <0.01 (s) 56 (MB) 155.0 (fps)

512×512
Periodic <0.01 (s) 135 (MB) 89.7 (fps)

Neumann <0.01 (s) 143 (MB) 76.3 (fps)
Dirichlet <0.01 (s) 144 (MB) 80.3 (fps)

1024×1024
Periodic 0.01 (s) 444 (MB) 23.0 (fps)

Neumann 0.02 (s) 464 (MB) 20.6 (fps)
Dirichlet 0.02 (s) 463 (MB) 20.8 (fps)

2048×2048
Periodic 0.15 (s) 1682 (MB) 2.4 (fps)

Neumann 0.25 (s) 1767 (MB) 2.0 (fps)
Dirichlet 0.29 (s) 1764 (MB) 1.9 (fps)

Table 3: Solver time, memory usage, and frame-rate for wave-propagation on a surface of revolution discretized at different
resolutions, with and without boundaries.

Figure 3: Vorticity evolving under incompressible flow: Showing the results when starting with two adjacent vortices that are
consistently oriented (top) and oppositely oriented (bottom). Regions with counter-clockwise vorticity are drawn in blue and
regions with negative clockwise vorticity are drawn in red.

proposed by McCann [McC08] and we believe a similar ap-
proach would work for surfaces of revolution. For a GPU
implementation we would like to leverage the CUDA imple-
mentation of the FFTW [NBGS08].

From a theoretical perspective, we would also like to ex-
tend our implementation to the dual formulation, where ba-
sis functions are associated with the faces of the discretiza-
tion, rather than the vertices. This would enable the use of
more accurate, second-order, B-splines for discretization and
should be realizable using a basis analogous to the one used
in the spherical multigrid implementation [KH10].

Finally, we would also like to explore extensions of the
approach to other symmetries, taking advantage of efficient
implementations of the FFT for other groups [MR96].

Acknowledgements The author would like to express sin-
cere gratitude to the members of the “Discrete Differential
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Appendix A: Characterizing Commuting Linear Operators

We describe the conditions that need to be satisfied for a
linear operator to commute with the cyclic/dihedral group
on a surface of revolution and provide an explicit formula for
the block diagonal matrices. As in Section 4, we assume that
the surface is sampled on an M×N grid, with M representing
the number of meridians and N the number of parallels.

Notation We denote by 〈·, ·〉 Hermitian inner-product:

〈F,G〉=
M−1

∑
j=0

N−1

∑
k=0

F j,k ·G j,k.

Notation We denote by Rm the (unitary) operator shifting
the signal by m positions along the parallel (i.e. rotation by
mθM around the y-axis) and by R the operator negating the
angular index (i.e. reflection through the xy-plane):

(Rm(F)) j,k = F j−m,k
(R(F)) j,k = F− j,k

∀F ∈F .

Proposition A.1. A linear operator L commutes with the
action of the cyclic group if and only if there exist functions
(stencils) L0, . . . ,LN−1 ∈F such that for all F ∈F :

(L(F)) j,k = 〈F,R j(Lk)〉.

That is, restricted to the k-th parallel L can be implemented
as a circular correlation with the filter Lk.

Proof Define Lk ∈F to be the function such that:

(L(F))0,k = 〈F,L
k〉.

On the one hand, we have:

(L(F)) j,k =
(
R− j(L(F))

)
0,k .

On the other, we have:

〈F,R j(Lk)〉= 〈F,R− j(Lk)〉=
(
L(R− j(F))

)
0,k .
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Since this is true for all F, we have (L(F)) j,k = 〈F,R j(Lk)〉
if and only if Rm ◦L = L ◦Rm for all m. That is, if and only
if L commutes with rotation. �

[For spheres, this implies that the stencils have the property
that L0

j,k = L0
0,k and LN−1

j,k = LN−1
0,k .]

Proposition A.2. The linear operator L commutes with the
action of the dihedral group if and only if the stencils satisfy
R(Lk) = Lk for all k ∈ [0,N).

Proof Since L commutes with rotation, we have:

〈F,R j(Lk)〉= (L(F)) j,k = R(L(F))− j,k.

On the other hand, we also have:

〈F,R j(R(Lk))〉= 〈F,R(R− j(Lk))〉

= 〈R(F,R− j(Lk))〉= (L(R(F)))− j,k .

Since this is true for all F it follows that R(Lk) = Lk if and
only if L◦R = R◦L. �

Defining the Diagonal Blocks

Representing a linear operator L that commutes with the
cyclic group in terms of the stencils L0, . . . ,LN−1 ∈F and
considering each frequency in turn, for Fω ∈F ω we get:

(L(Fω )) j,k = 〈Fω ,R j(Lk)〉= ζ
jω

M 〈F
ω ,Lk〉

= ζ
jω

M

M−1

∑
j̃=0

N−1

∑
k̃=0

Lk
j̃,k̃

(
ζ

j̃ω
M · f̂

ω

k̃

)

That is, if f̂ω
is the set of ω-th Fourier coefficients along the

different parallels, then the linear operator L takes these to a
new set of ω-th Fourier coefficients, ĝω , defined by:

ĝω = L̂ω f̂ω
with L̂ω

k,k̃ =
M−1

∑
j̃=0

Lk
j̃,k̃ζ

j̃ω
M . (1)

In general, the entries of L̂ω need not be real, as they are
the weighted sum of (complex) roots of unity. However, if
L also commutes with the action of the dihedral group then
Equation 1 becomes:

L̂ω

k,k̃ = Lk
0,k̃ +

1
2

M−1

∑
j̃=1

Lk
j̃,k̃

(
ζ

j̃ω
M +ζ

− j̃ω
M

)

= Lk
0,k̃ +

M−1

∑
j̃=1

Lk
j̃,β cos

(
j̃ωθM

)
. (2)

Thus, when the stencil is reflectively symmetric, the coeffi-
cients of L̂ω are real, and the operator L preserves not only
the frequency decomposition, but also the real/imaginary de-
composition. Hence the cosine (respectively sine) compo-
nents map to themselves. (As expected, this agrees with the
formula derived by Hockney [Hoc65] for the specific case of
the finite-differences Laplacian in the plane.)

Domains with Angular Boundaries

Given stencils L0, . . . ,LN−1 ∈F satisfying the property that
R(Lk) = Lk, we can use these to define a linear operator
L that satisfies Neumann/Dirichlet angular boundary con-
straints and also supports a fast solver.

For both boundary types we proceed by treating the M×N
grid with angular boundaries as a (2M− 2)×N grid with
periodic boundaries.

Neumann Boundary Constraints In this case, the linear
operator LN is defined by reflection across the boundaries:(

LN (F)
)

j,k
=

M/2

∑
j̃=−M/2

N−1

∑
k̃=0

Lk
j̃,k̃F

ρM( j+ j̃),k̃

where the reflection map, ρM , is defined as:

ρM(m) =

{
m mod (2M−2) if m < M

(2M−m) mod (2M−2) otherwise
.

Dirichlet Boundary Constraints In this case, the linear op-
erator LD is defined by anti-reflection across the boundaries:(

LD (F)
)

j,k
=

M/2

∑
j̃=−M/2

N−1

∑
k̃=0

σ( j+ j̃)Lk
j̃, j̃FπM( j+ j̃),k̃

where the sign function, σM , is defined as:

σM(m) =


1 if 0 < m mod (2M−2)< M−1
0 if m mod (M−1) = 0
−1 otherwise

.

Remark As expected, the values of LD (F) does not depend
on the value of F j,k when j = 0 or j = M. This reflects the
fact that in implementing Dirichlet boundary conditions the
values on the angular boundaries are fixed at zero.

Appendix B: Discretizing the Poisson System

To define the Laplacian system, we need to make two
choices. First, we need to choose a function basis. Second,
we need to define a metric on the surface.

In what follows, the functions and the metric will take
values in the domain R = [0,M)× [0,N) ⊂ R2 for toroidal
geometry and R = [0,M)× [0,N−1] otherwise.

Choosing a Basis

To define the space of functions, we use the standard finite-
elements discretization, representing functions as a linear
combination of B-splines [Höl03].

The Space of Scalar-Valued Functions

To span the space of scalar-valued function, we use first or-
der B-splines, denoting by B1

i (x) the piecewise linear “hat”
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function at position i:

B1
j(x) =


(x− j+1) if x ∈ [ j−1, j]
( j+1− x) if x ∈ [ j, j+1]

0 otherwise.

There are three types of vertices to consider.

Away From Poles Most vertices of the grid will be adjacent
to four quadrilateral faces. For such a vertex v = ( j,k), we
use the bilinear hat function:

Bv(x,y) = B1
j(x) ·B1

k(y).

Indexing is cyclic, with the first index taken modulo M and
the second modulo N.

Near Poles For spherical domains, we have vertices in par-
allels k = 1 and k = N−2. These vertices are adjacent to two
quadrilateral faces and two triangular faces. Treating the tri-
angles as degenerate quads, we can use the same bilinear
basis functions as for vertices that are away from the poles.

At Poles For spherical domains, we also have pole vertices
v = ( j,k) with k = 0 and k = N− 1. For these we use basis
functions that are linear “hat” functions in y alone:

Bv(x,y) = B1
k(y).

The Space of (Cotangent) Vector Fields

The choice of B-spline basis makes it possible to represent
the gradient of a function by assigning a scalar value to each
edge in the grid. In particular, if we let B0

j(x) denote the zero-
th order B-spline:

B0
j(x) =

{
1 if x ∈ [ j, j+1)
0 otherwise

we can express the gradient of Bv, with v = ( j,k), as the
mixed tensor-product of zero-th and first order B-splines:

∇Bv(x,y) =

=
((

B0
j−1−B0

j

)
(x) ·B1

k(y),B
1
j(x) ·

(
B0

k−1−B0
k

)
(y)
)
.

Thus, the gradient resides in the span:

Span
{(

B0
j(x) ·B1

k(y),0
)
,
(

0,B1
j(x) ·B0

k(y)
)}

.

These functions can be indexed by the edges of the grid and
for each edge e we set:

~Be =


(

B0
j(x) ·B1

k(y),0
)

if e = ( j,k)→ ( j+1,k)(
0,B1

j(x) ·B0
k(y)

)
if e = ( j,k)→ ( j,k+1)

In this basis, the gradient operator can be represented by
the finite-differencing matrix, G ∈ R|V |×|E | with:

Gv,e =


1 if v = end(e)
−1 if v = start(e)

0 otherwise

Figure 4: Conical (left) and trapezoidal (right) parameter-
izations for surfaces of revolution defined by the same gen-
erating curve (highlighted in blue).

Choosing a Metric

To define differentiation and integration, we need to define
a metric over R. This can be thought of as a 2×2 symmet-
ric positive definite matrix associated to each point in the
domain that describes how area is stretched as it is mapped
from R to the surface of revolution. Using the metric, we
obtain discretizations of the standard differential operators,
allowing us to define the discrete mass, Laplace, and diver-
gence operators, as well as compute harmonic vector fields.

In practice, the metric is defined by choosing a parameter-
ization Φ : R→ R3 that maps the 2D domain to the surface
of revolution. Then, the metric is defined as the product of
the differential of the map and its transpose:

µ(x,y) =
(

dΦ
∣∣
(x,y)

)t
·
(

dΦ
∣∣
(x,y)

)
.

Conical

We define this parameterization so that [0,M)× [k,k + 1]
maps to a section of a cone. We do this by trigonometri-
cally interpolating across parallels and linearly interpolating
between them. Specifically, denoting δy = y−byc, we set:

Φ(x,y) =
(

u(y) · cos
(

2xπ

M

)
,v(y),u(y) · sin

(
2xπ

M

))
where u(y) and v(y) are the linear interpolants of the points
on the generating curve of the surface of revolution:

u(y) = ubyc · (1−δy)+udye ·δy

v(y) = ubyc · (1−δy)+vdye ·δy.

Computing the differential of this map, we get:

µ(x,y) =
(

µ
1/2(x,y)

)t
·
(

µ
1/2(x,y)

)
where

µ
1/2(x,y) =

(
r1 ·θ +(r2− r1) ·θ ·δy 0

0 r2− r1

)
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with ri is the distance from a point on the parallel at byc+ i
to the apex of the cone and θ is the angle of the cone.

Trapezoidal

We define this parameterization so that [ j, j+ 1]× [k,k+ 1]
maps to an isosceles trapezoid. We do this by linearly inter-
polating across and between parallels. Specifically, denoting
δx = x−bxc and δy = y−byc, we set:

Φ(x,y) =
(

Vbxc,byc · (1−δx)+Vdxe,byc ·δx

)
· ( δy)

+
(

Vbxc,dye · (1−δx)+Vdxe,dye ·δx

)
· (1−δy).

Computing the differential of this map, we get:

µ(x,y) =
(

µ
1/2(x,y)

)t
·
(

µ
1/2(x,y)

)
where

µ
1/2(x,y) =

(
b0 +db ·δy − 1

2 ·db +db ·δx
0 h

)
with bi the widths of the bases, h the height, and db the dif-
ference in base widths:

bi = |Φ(dxe,byc+ i)−Φ(bxc,byc+ i)|
h = |Φ(bxc+0.5,dye)−Φ(bxc+0.5,byc)|

db = b1−b0.

Figure 4 shows the two surfaces of revolution obtained by
using conical (left) and trapezoidal (right) parameterizations
defined by the same generating curve (shown in blue). Note
that the trapezoidal interpretation of a surface of revolution
is only discretely rotationally symmetric, while the conical
interpretation is continuously rotationally symmetric. And,
the metric defined by the trapezoidal parameterization is not
diagonal (visualized by the fact that the network of curves
is not orthogonal) while the metric defined by the conical
parameterization is. None-the-less, both define Poisson sys-
tems that can be efficiently solved with our approach.

Computing the System

To discretize the operators, we compute the entries of the 0-
form and 1-form mass matrices M0 and M1, as well as the
stiffness S, and (negative) divergence D, matrices:

M0
v,w =

∫
R

Bv ·Bw · |µ|1/2 dxdy

Sv,w =
∫
R
(∇Bv)

t
µ
−1 (∇Bw) · |µ|1/2 dxdy

De,v =
∫
R
(∇Bv)

t
µ
−1
(
~Be

)
· |µ|1/2 dxdy

M1
e, f =

∫
R

(
~Be

)t
µ
−1
(
~B f

)
· |µ|1/2 dxdy

where |µ| is the determinant of µ .

For the 0-form mass matrix, we observe that the integrand

is the product of piecewise polynomial terms, and hence is
integrable in closed form over the rectangle R.

For the 1-form mass, divergence, and stiffness matrices,
the integrand is the quotient of a piecewise polynomial and
the determinant of µ1/2. (The inversion of µ introduces the
square of the determinant in the denominator, one of which
is canceled out.) However, since the determinant of µ1/2 is
a piecewise linear function in y, we can still compute the
integral in closed form, requiring the evaluation of the log
function in the definite integral.

One can show that this formulation works even at the
poles of spherical domains. The concern could be that the
the metric µ is singular at the poles and hence its inverse
is not well-defined. However, because the pole basis func-
tions are purely functions of y and the basis functions in the
adjacent parallels vanish at the poles, the integral remains
well-defined.

Harmonic Vector Fields

Using the discrete Laplacian, divergence, and gradient, we
can also compute a basis for the space of harmonic (cotan-
gent) vector fields – vector fields that are divergence-free and
can be locally defined as the gradient of a scalar function.

Toroidal Domains For toroidal domains, the space of har-
monic vector fields is two-dimensional, which we express as
the span of vector fields ~H1 and ~H2, with ~H1 the gradient of
the function giving the angle about the axis of revolution and
~H2 its rotation by 90◦.

To define ~H1 we start with the vector field ~G1 that has
a coefficient of one along parallel edges and a coefficient of
zero along meridian edges. Locally, this is the gradient of the
angle of revolution (up to a constant) and is therefore curl-
free. To make it divergence-free, we project out the compo-
nent of ~G1 that diverges by solving a Poisson equation:

~H1 = ~G1−G(S−1(D(~G1))).

~H2 is defined similarly, this time starting with the vector
field ~G2 that has a coefficient of one along meridian edges
and a coefficient of zero along parallel edges.

We make these orthonormal using Gram-Schmidt orthog-
onalization with respect to the 1-form mass-matrix.

Cylindrical Domains When the surface of revolution is
a topological cylinder, either because we are sweeping an
open curve completely around the axis of revolution, or be-
cause we are sweeping a closed curve by an angle smaller
than 360◦, the space of harmonic vector fields is one-
dimensional. The choice between ~H1 and ~H2 as the spanner
of the space of harmonic vector fields depends on the type
of boundary (open curve vs. angular boundary) and the type
of boundary constraints (Neumann vs. Dirichlet):

~H =

{
~H1 if NEUMANN xor ANGULAR
~H2 otherwise.
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