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Abstract—The problem of tracking Euclidean motion is formu-
lated as a sequential learning of rotations and translations. For
tracking modalities such as radar and sonar, this approach avoids
a fundamental mismatch that arises with standard trackers
that model motion dynamics in Cartesian coordinates but track
based on measurements whose noise is best modeled in polar
coordinates. By considering motion in terms of rotations and
translations and using group-theoretic estimation, the proposed
tracker enjoys the advantage of unbiased averaging on the
rotation group, in accordance with the geometry of the measure-
ments. We demonstrate the proposed method with illustrative
preliminary experiments. The stability and convergence of the
proposed algorithm is established, extending known convergence
results for online learning of rotations.

I. INTRODUCTION

The problem of tracking in applications like radar and sonar
is a non-linear estimation problem since the target dynamics
are modeled in Cartesian coordinates whereas the measure-
ments are in spherical or polar coordinates. The classical
Kalman filter is optimal only if the dynamical system as
well as the observation model are linear, the state evolution
is Markovian and the noise in observations is additive with
Gaussian statistics [1].

For many practical sensing systems that take bearing and
range measurements, the linearity assumption does not hold
because of the nonlinear mapping between the measurements
(in spherical coordinate system) and the states of the system
(in Cartesian coordinates). Furthermore, the additive Gaussian
modeling assumption is not valid because the noise in bearing
(elevation and azimuth angles) measurements is on a 3D
sphere which when transformed to Cartesian coordinates does
not exhibit Gaussian statistics. To alleviate these problems,
various extensions of the Kalman filter have been proposed
that indirectly address these issues [2]–[4]. However, these
methods still result in suboptimal performance due to inac-
curate modeling and estimation of statistics of measurement
noise. In particular, bearing measurement errors should be
modeled as samples from a distribution on the unit sphere.
Therefore, averaging them with respect to the Lebesgue mea-
sure on the Euclidean space (rather than the Haar measure
on the rotation group) results in a biased estimator. Further,
the noise in the two bearing angle measurements is typically
assumed to be un-correlated, but this has not been confirmed

experimentally.
Any Euclidean motion can be specified in terms of a

rotation and a translation. However, this representation is not
unique. In this paper, we choose the rotation to represent
differential bearing with respect to the receiver, and translation
to represent the change in the range. This representation
matches the geometry of noise for applications like sonar
and radar and allows native modeling of the measurement
noise statistics. Specifically, we model noise in bearing mea-
surements (azimuth and elevation angles) using a spherical
probability distribution (Kent distribution [5]), which can also
incorporate correlation between bearing angles’ noise. Based
on this model, we present a sequential filtering approach which
alternates between estimating rotation and translation.

The presented approach leverages recent advances in online
learning of rotations [6]–[8]. Note that any motion in Eu-
clidean space can be represented by a rotation and translation,
in fact one can move from one point to another by multiple
choices of a rotation and translation. We formulate the rotation
to be differential bearing with respect to the receiver, and
translation to be the change in the range, which matches the
usual geometry of noise for applications like sonar and radar.

The paper is organized as follows. First, we discuss some
related work in Section II. Then we overview our approach
in Section III, and present the algorithm for simplified cases
before presenting a general algorithm for tracking in Section
IV. Finally, we present analysis of our algorithm in Section V,
discuss experimental results in Section VI and conclude with
an outline of future directions.

II. PRIOR WORK

The most relevant prior work is a state-of-the-art radar track-
ing method called converted measurements Kalman filtering
(CMKF), which converts the observations from spherical co-
ordinates to Cartesian coordinates and employs sequential non-
linear filtering [4]. The main idea is to track the mean and co-
variance of the error of converted measurements in an extended
Kalman filtering framework. Much of the recent research in
this area has focused on making converted measurement error
unbiased and improving estimates of covariance. Consider the
following dynamic model for state-evolution:

Xk+1 = ΦkXk +GkUk + ΓkWk, (1)



where Xk is the state vector with three components each for
position, velocity, and acceleration, Φk is the state-transition
matrix, Gk and Γk are coefficient or gain matrices, Uk is the
control and Wk is additive observation noise with distribution
N (0, Qk). The observation model can be written as

Zmk = f(Xk) + V mk , (2)

where Zmk = [rmk βmk θmk ṙmk ]T are the measurements,
f(Xk) = [rk βk θk ṙk]T are the true values and V mk =
[r̃k β̃k θ̃k ˜̇rk]T represents the noise. The function f is the
Cartesian-to-spherical coordinate transformation map

rk =
√
x2
k + y2

k + z2
k,

ṙmk =
xkẋk + ykẏk + zkżk

rk
,

βk = tan−1

(
zk√

x2
k + y2

k

)
,

θk = tan−1

(
yk
xk

)
.

The converted position measurements xck, y
c
k and zck are given

by spherical-to-Cartesian coordinate transform:

xck = rmk cos(βmk ) cos(θmk ),
yck = rmk cos(βmk ) sin(θmk ),
zck = rmk sin(βmk ).

However, the conversion of Doppler measurements is highly
non-linear and it is common to introduce a pseudo-
measurement (denoted ηck) formed from the product of the
Doppler and range measurements, ηck = rmk ṙmk = xkẋk +
ykẏk + zkżk + η̃k. In compact notation, the converted mea-
surement can be written as,

Zck = hk(Xk) + V ck (3)

where Zck = [xck y
c
k z

c
k η

c
k]T denotes converted measurements,

hk(Xk) = [xk yk zk (xkẋk+ykẏk+zkżk)]T are the true values
and V ck = [x̃k ỹk z̃k η̃k]T is the additive noise in converted
measurements. Kalman filtering then proceeds with estimated
bias and variance of error of converted measurements. Denote
the true bias and covariance of the converted measurement
errors conditioned on the true position and range-rate of
the target by µk,t = E[ V ck | rk, βk, θk, ṙk ], Rk,t =
cov( V ck , V

c
k | rk, βk, θk, ṙk ]. Since the true values are

not observed, in practice, the expected value of the true bias
and covariance are evaluated conditioned on the measured
position and range-rate: µk,a = E[ µk,t | rmk , βmk , θmk , ṙmk ],
Rk,a = E[ Rk,t | rmk , βmk , θmk , ṙmk ].

Given the estimates µk,a and Rk,a, the position and pseudo-
measurements are first de-correlated. Then estimation proceeds
via sequential filtering where (a) target state is updated first
using Kalman filter and converted position measurement and

(b) target state is updated via an extended Kalman filter (EKF)
using pseudo-measurement.

There are several shortcomings of the approach described
above. Firstly, the measurement errors in range, bearing and
Doppler are typically assumed un-correlated although there
is evidence of statistical correlations between bearing angles
and between range and Doppler measurements. Secondly, the
Gaussian statistics for measurement errors are not manifested
as Gaussian in converted measurement errors. Finally, incon-
sistent statistics are obtained by the linearization of pseudo-
measurements when using EKF.

III. PROPOSED APPROACH

We formulate the problem of tracking as sequential estima-
tion of rotations and translations. The rotations are estimated
using an approach designed for online-learning of rotations [7],
[8]. We observe that a suitable choice of step-size sequence
for the online algorithm results in averaging over the rotation
group. This handles the noise in bearing measurements by
averaging it on the sphere. Correlations between errors in
bearing measurements are modeled directly on the unit sphere
using the Kent distribution. The translations are tracked using
a gradient descent algorithm.

Although our approach is quite general and extends to spe-
cial Euclidean motion group SE(n), we focus on applications
like radar and SONAR for 3D tracking, and we take the
receiver location to be the origin of the space.

Any Euclidean motion can be described as a composition of
a rotation and translation, that is, any two points p1, p2 ∈ Rn,
are related via the linear transformation

p2 = Rp1 + t, (4)

where R is a n×n rotation matrix and t ∈ Rn. The pair (R, t)
for a given pair of points is not unique. We choose rotation to
represent differential bearing with respect to the receiver, and
translation to represent the change in the range. This matches
the geometry of noise for applications like sonar and radar.

In the next subsections we begin with a simplified motion
model of constant rotation and no translation to introduce the
ideas and notation (Case I). We then extend to the case of
changing rotation but no translation (Case II). Finally, we treat
the practical case of changing rotations and translations (Case
III). The notation we use in the rest of the paper is summarized
in Table I.

A. Case I: Constant Rotation, No Translation
We begin with a simplified problem: learning a constant

rotation from a series of bearing measurements. This scenario
corresponds to a constant-curvature turn-maneuver of the
target with respect to the observer, such as tracking the motion
of an airplane flying at a constant altitude. Figure 1 shows an
example of motion, measurements, and our estimates for this
case.

Consider a sequence of state-vectors xn ∈ R3 on the unit
sphere S2 that evolve as

xn = R∗xn−1, (5)



Table I: Notation

Symbols Description

xn ∈ R3 state variable corresponding to bearing
yn ∈ R3 bearing observations expressed in Cartesian coordinates
SO(3) 3D rotation group
Rn ∈ SO(3) state corresponding to differential rotation of xn

tn ∈ R state corresponding to range
sn ∈ R range observations
ṫn ∈ R state corresponding to the Doppler or range-rate
ṡn ∈ R Doppler or range-rate measurement
(x̂n, R̂n, t̂n,

ˆ̇tn) estimates of the state vector (xn, Rn, tn, ṫn)
zn ∈ R3 position of target in Cartesian coordinates
ẑn ∈ R3 estimated position of target in Cartesian coordinates
(α, β, γ) Euler angles
(ηR, ηt, ηṫ) step-sizes
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Figure 1: Example Simulation of Case I: object moving on
sphere of radius 2 units (no translation) from observer at
origin. True motion is shown in green; the noisy bearing
measurements are shown in blue; and the track estimated from
these noisy measurements using proposed updates is shown in
red.

where R∗ is the unknown true rotation matrix that describes
the constant rotation of the target about the receiver over a
sampling interval. We assume that the sampling interval is a
known constant. The observations are given as bearing mea-
surements of the moving target and are denoted in Cartesian
coordinates by yn ∈ R3. We assume the following noise model
for our observations:

yn ∼ Kent(xn, γ2, γ3, κ, β), (6)

i.e. yn is sampled from a Kent distribution [5] with mean equal
to the true bearing xn of the target. The parameter κ controls
the concentration of the distribution about the mean (larger
the κ, more concentrated the distribution) and β controls the

ellipticity of equal probability contour (γ2, γ3 ∈ R3 determine
the major and minor axes of the elliptical equal probability
contours). This has the very practical advantage of allowing
one to model the larger uncertainty in bearing angles in the
direction of the motion, and the smaller uncertainty in the
direction orthogonal to the motion. Note that we represent
states and measurements corresponding to the bearing of the
target in Cartesian coordinates.

This problem is similar to the problem of online learning
of rotations [7], [8] where at each time instance one receives
a vector on the unit sphere and its rotated version. In the
tracking problem, the sequence of unit vectors (corresponding
to the true bearing of the target) forms a Markov sequence,
where the unit vector at instance n is the obtained by a rotation
of the unit vector at instance n−1. We employ gradient-based
multiplicative updates [7] for learning the rotation matrix.

Given the observation yn at instance n, and an estimate
R̂n−1 of the constant rotation matrix, the state estimate x̂n is
updated as:

x̂n = R̂n−1x̂n−1, (7)

and the estimate of the rotation matrix is updated as

R̂n = R̂n−1 exp
(
−2η skew

(
R̂Tn−1 (x̂n − yn)x̂Tn−1

))
, (8)

where exp(·) denotes matrix exponential and skew(·) is de-
fined as skew(A) = A − AT for any square matrix A. We
show in Section V-A that these gradient updates with a suitable
choice of step-size (see [7]) correctly average out zero-mean
bearing noise. Convergence analysis for learning rotations is
given in Theorem 2 in Section V-C.

B. Case II: Changing Rotation, No Translation

Next we extend our formulation to the scenario where
the target is accelerating or slowing down while navigating
a constant-curvature turn about the observer. The tracking
problem in this case reduces to tracking rotations. We assume
the following dynamical model:

xn = Rn−1xn−1,

Rn = f(Rn−1, Ṙn−1), (9)

where we have added a new state Rn that captures the first or-
der dynamics of xn. The function f(Rn−1, Ṙn−1) models the
change in the rotation matrix (we assume the rotation matrix
changes smoothly such that the evolution of the rotation matrix
can be captured with the first order derivative of the rotation
matrix). For instance, f(Rn−1, Ṙn−1) = Rn−1 exp(ηṘn−1)
describes an accelerating target that is turning in the direction
given by Ṙn−1 at a rate controlled by η. Note that Ṙn−1

should be a skew-symmetric matrix as explained below. We
will show that the update given in (8) is also optimal for this
case.

We model the trajectory between two sequential bearing
measurements yn−1 and yn as a geodesic (shortest path on
the sphere) which can be described as an element, say A(τ),
of a continuous subgroup of rotation matrices parameterized



by τ ≥ 0, with extreme point A(τ) = I for τ = 0. Recall
that for any rotation matrix R, it holds that RRT = I .
Thus A(τ)A(τ)T = I is a constant function of τ . Hence its
derivative is zero, that is:

d
(
A(τ)A(τ)T

)
dτ

= A′(τ)A(τ)T +A(τ)A′(τ)T = 0. (10)

In the limit as τ → 0, (10) reduces to A′(τ) + A′(τ)T = 0,
which implies that A′(τ) is skew-symmetric. Therefore, the
change of the rotation matrix can be described by an element
from the Lie algebra of the rotation group which describes
the tangent direction for the change of the rotation matrix.
This matches the evolution model assumed implicitly in the
derivation of the updates in eqn. (8). Consequently, the online
updates are optimal for tracking rotations given a suitable
choice of step-size sequence (see Sec. V-A).

Let us consider these tracking estimates further, but spe-
cialize the discussion to 3D so that we can employ the Euler
ZY Z parametrization of the rotation group. Any 3×3 rotation
matrix R can be written as R = RZ(α) RY (β) RZ(γ),
where α, γ ∈ [0, 2π], β ∈ [0, π), RZ(α) is the 3 × 3
rotation matrix corresponding to rotation about Z-axis by an
angle α and RY (β) is the 3 × 3 rotation matrix correspond-
ing to rotation about Y -axis by an angle β. The dynamic
model in terms of the Euler parameters can be written as
αn = αn−1 + ηαα̇n−1, βn = βn−1 + ηβ β̇n−1, γn =
γn−1 + ηγ γ̇n−1. Let θn = [αn, βn, γn]T . In this compact
notation, θn = θn−1 + Ψθ̇n−1 where Ψ is a diagonal matrix
with elements [ηα, ηβ , ηγ ]. Also write θ̇n = Φ θ̇n−1 where Φ
models the angular acceleration of the target; Φ = I3 models
constant angular velocity. Then, matrix-exponentiated gradient
updates in (8) track the following transition model,[

θn
θ̇n

]
=
[

I3 Ψ
0 Φ

] [
θn−1

θ̇n−1

]
, (11)

where the observations are sampled from a Kent distribution
as described in (6).

C. Case III: Changing Rotations and Translation

Finally, we consider the practical scenario where movement
is unrestricted. We add another state tn that represents range
of the target; the corresponding observation is denoted as sn.
The state transitions are:

xn = Rn−1xn−1,

Rn = f(Rn−1, Ṙn−1),
tn = tn−1 + ηtṫn−1,

ṫn = ηṫṫn−1, (12)

where ṫn denotes the derivative of tn. We model the bearing
measurement yn and range sn and Doppler ṡn measurements
as:

yn ∼ Kent(xn, γ2, γ3, κ, β),(
sn
ṡn

)
∼ N

((
tn
ṫn

)
,Q
)
, (13)

where N (t,Q) is the bivariate Gaussian distribution with
mean t and covariance Q.

We propose an algorithm in Section IV to track the states.
Convergence analysis of the proposed algorithm for learning
Euclidean motion is given in Theorem 3 in Section V-D.

D. Decoupled State Vector

It is common in tracking for the state vector to be the
Cartesian-coordinate position of the tracked object. Instead,
we are proposing (see Sec. III-C) to independently track the
bearing by learning rotations and range by learning transla-
tions. The state transitions for the bearing and range given by
(12) are de-coupled. For example, for the three-dimensional
case we parameterize the rotation matrix by the Euler angles
θ and (12) can be written in a block-matrix form that makes
the de-coupling explicit:


θn
θ̇n
tn
ṫn

 =


I3 Ψ 0 0
0 Φ 0 0
0 0 1 ηt
0 0 0 ηṫ




θn−1

θ̇n−1

tn−1

ṫn−1

 ,
where Ψ and Φ are appropriate transition matrices for the Euler
angles.

Consider an alternate formulation of the tracking problem
in Case III where the state vector is chosen to be the position
zn of the tracked object in Cartesian coordinates. Then the
state-transition in terms of a rotation and a translation would
be:

zn = R̃n−1zn−1 + t̃n−1, (14)

where R̃n−1 represents the incremental rotation, about the
receiver, relative to the last position zn−1, and t̃n−1 represents
the incremental radially outwards translation. At each step we
would estimate the incremental rotation ˆ̃Rn−1 and ˆ̃tn−1 and
update the state estimate ẑn = ˆ̃Rn−1ẑn−1 + ˆ̃tn−1. We argue
that this formulation, which uses the Cartesian coordinates z
as the state vector, is not a good choice for tracking Euclidean
motion with bearing and range measurements because it leads
to biased estimates. To see this, treat the estimated rotation
and translation as random (due to the randomness from the
measurement noise) and consider the expectation of the esti-
mate Ẑn+1 after two time steps assuming one knew the earlier
true position zn−1:

E
[
Ẑn+1|Ẑn−1 = zn−1

]
= E

[
ˆ̃Rn

ˆ̃Rn−1zn−1 + ˆ̃Rnˆ̃tn−1 + ˆ̃tn
]

= E
[

ˆ̃Rn
ˆ̃Rn−1

]
︸ ︷︷ ︸

rotation

zn−1 + E
[

ˆ̃Rnˆ̃tn−1

]
︸ ︷︷ ︸

coupling drift

+ E[ˆ̃tn]︸ ︷︷ ︸
translation

(15)

= zn+1 +
(

E
[

ˆ̃Rnˆ̃tn−1

]
− R̃nt̃n−1

)
, (16)

where (16) follows from (15) if the estimates of the rota-
tions and translation are unbiased. However, (16) shows that
even with unbiased estimates of the rotation and translation,



the state vector Ẑn+1 is biased by the coupling drift term.
This bias problem motivates our proposed approach given in
Section III-C, which differs from this alternate formulation
in that we treat the bearing and range of the target as the
states rather than the Euclidean position and then learn the
differential rotation (with respect to the current bearing) and
incremental translation (with respect to the current range).

IV. PROPOSED ALGORITHM

We propose tracking the Euclidean motion by alternating
between estimating rotations and translations using a gradient
descent method. Suppose one has the estimate (R̂n−1, t̂n−1)
before contact n. The empirical errors can be expressed as
LR = ‖yn − R̂n−1x̂n−1‖, Lt = ‖sn − t̂n‖22.

We form new estimates for the rotation and translation
by taking a small step in the direction of the corresponding
gradients ∇RLR and ∇tLt. The gradient update for rotations
is given by (8); we use the alternate (and equivalent) form
as given in Theorem 1 in Section V. For translations, the
gradient update is simply: t̂n = t̂n−1 + ηt∇tLt. The resulting
algorithm is given in Algorithm 1.

Input: Old estimates (x̂n−1, R̂n−1, t̂n−1,
ˆ̇tn−1) of

bearing, differential rotation, range and Doppler, step
sizes (ηR, ηt, ηṫ), sampling rate 1

∆ , new observations of
bearing yn, range sn, and Doppler ṡn

Output: New estimates (x̂n, R̂n, t̂n, ˆ̇tn) of bearing,
differential rotation, range and Doppler

Predicted Bearing: x̂n = R̂n−1x̂n−1

Compute Matrix:
S = 2η

(
R̂Tn−1ynx

T
n−1 − xn−1y

T
n R̂n−1

)
Compute eigenvalue of S: λ = 2η

√
1− (yTn x̂n)2

New Rotation Estimate:
R̂n = R̂n−1

(
I + sin(λ)

λ S + 1−cos(λ)
λ2 S2

)
Predicted Translation: t̂n = t̂n−1 + 1

∆
ˆ̇tn−1

Compute Gradient: ∇tLt = −2
(
sn − t̂n

)
New Doppler Estimate:
ˆ̇tn = ˆ̇tn−1 + ηt∇tLt + ηṫ

(
ṡn − ˆ̇tn

)
Algorithm 1: Tracking Updates at Instance n

V. ALGORITHM ANALYSIS

In this section we discuss convergence and stability results
for Algorithm 1.

A. Proposed updates average bearing noise
The updates for learning rotations form a weighted averag-

ing on the rotation group, with weights given by the step-sizes.
In fact, they are a special case of a fixed-point iteration for
computing mean on an arbitrary Lie group [9]. Consider a
collection of i.i.d. samples {g1, . . . , gn−1} from a probability
distribution on the Lie group G with mean g. Many matrix Lie
groups do not form a linear vector space; in other words not
all matrix groups are closed under linear averaging, rotation
group for instance. Consequently, linear combination 1

n

∑
k gk

is not necessarily an element in the group. Fortunately, each
Lie group is associated with a Lie algebra which is the tangent
space to the group at the identity element (e ∈ G) and admits
the structure of a vector space. This inspires the following
recipe for averaging on the Lie group: (a) transport each gk
to δk = g−1 ◦ gk in the neighborhood of e, (b) take the
weighted average of the Lie algebra elements associated with
δk, µg =

∑
k ηklog(δk), (c) retract back to the Lie group:

ḡ = exp(µg). Thus one needs weights ηk and element g that
satisfy the relationship, g = ḡ, i.e.

g = g ◦ exp

(
n−1∑
k=1

ηklog
(
g−1 ◦ gk

))
. (17)

For G = R, the group operation is commutative and the log(·)
and exp(·) maps are identity maps. Thus, the equation above
can be solved for ηk in a closed form giving ηk = 1

n−1 for k =
1, . . . , n− 1 and ḡ = 1

n

∑
k gk. For G = SO(3), however, the

group operation is non-commutative and the retraction and
the lifting map are matrix exponential and matrix logarithm
respectively. Clearly, in this case, we may not solve for step
sizes or the mean in a closed form but the following fixed-
point iteration converges to the true mean for a suitable choice
of step sizes,

gn = gn−1 ◦ exp

(
n−1∑
k=1

ηklog
(
g−1
n−1 ◦ gk

))
. (18)

For the rotation group the equation above reduces to updates in
eqn. (8). Thus the learning-rotations updates yield an unbiased
estimator on the rotation group.

B. Simplified updates
The updates presented in [7] can be written in two equiv-

alent forms. While the matrix-exponentiated-gradient (see
eqn. 8) form of the update is useful for geometrical intuition
of the algorithm and its interpretation as moving averaging
filter, the following simplified updates from [7] are useful for
convergence analysis of the algorithm.

Theorem 1. (Complexity reduction [7]) Let S =
2η

(
R̂Tn−1ynx

T
n−1 − xn−1y

T
n R̂n−1

)
be the skew-symmetric

matrix in (8). The eigenvalues of S are given as ±jλ where

λ = 2η
√

1− (yTn x̂n)2. Then the rotation estimates in (8) can
be written equivalently as

R̂n = R̂n−1

(
I +

sin(λ)
λ

S +
1− cos(λ)

λ2
S2

)
. (19)



C. Convergence result for learning rotations

Assume the set-up of Case I, where there is one constant
rotation R∗ that we wish to estimate. The convergence of the
updates given by (8) in the noiseless setting is given by the
following theorem from [10]. Note that ‖ · ‖F denotes the
Frobenius norm, and ‖ · ‖2 denotes the l2-norm.

Theorem 2 (Stability of rotation estimates [10]). The
function V (R) = ‖R − R∗‖F , is non-increasing for updates
in (8), i.e. V (R̂n) ≤ V (R̂n−1) for all n.

D. Convergence For Euclidean Motion Estimations

Next, consider the set-up of Case III, and assume the special
case that the target is moving with a constant velocity. We
establish here that the algorithm proposed in Algorithm 1
converges to the true Euclidean motion in the noiseless case.
Theorem 3 follows as a corollary to Theorem 2.

Theorem 3 (Stability of Estimating Euclidean Motion). The
function V (R, t) = ‖R−R∗‖F + ‖t− t∗‖2 is non-increasing
for Algorithm 1, i.e. V (R̂n+1, t̂n+1) ≤ V (R̂n, t̂n).

VI. ILLUSTRATIVE EXPERIMENTAL RESULTS

This section presents some preliminary illustrative experi-
mental results for the proposed tracking algorithm with simu-
lated radar data. As a first experiment, consider a target moving
at a constant velocity in a circular motion around the observer
(Case I). A representative example is shown in Fig. 1 along
with noisy measurements and the predicted track. The object
is moving at a constant distance (2 units) from the observer
located at origin. Fig. 2 shows the tracking performance of
the proposed algorithm averaged over 1000 realizations for
different levels of Kent noise specified by parameters κ and
β. Note that the noise level in the bearing measurements
decreases as κ increases. For each experiment in this section,
we chose four different parameter values for Kent distribution:
(κ = 700, β = 300), (κ = 500, β = 200), (κ = 300, β = 100)
and (κ = 100, β = 0); the observation rate was chosen to
be 20 samples per second and the target was tracked for 2
seconds. The tracking performance is evaluated in terms of
the Euclidean distance between the actual and the predicted
position of the object in R3.

For a second experiment, we simulate a speeding target
moving in a circular motion around the observer (Case II).
Fig. 3 shows the tracking performance of the proposed al-
gorithm averaged over 200 realizations for different levels of
Kent noise.

Finally, we illustrate performance for a straight-line tra-
jectory (Case III in Sec. III-C). The initial point is chosen
uniformly randomly and velocity v = [0.1 − 0.1 0.2]T . The
bearing observations y are sampled from a Kent distribution
with mean equal to the true bearing. The range observations,
s, are corrupted with additive white Gaussian noise to give an
SNR of 30 dB. Figure 6 shows tracking performance averaged
over 1000 realizations for various levels of noise in bearing
and range observations.
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Figure 2: Tracking performance with a constant rotation (Case
I) averaged over 1000 realizations. The observation rate is 20
samples per second.
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Figure 3: Tracking performance with a speeding target (chang-
ing rotation, Case II) averaged over 200 realizations. The
observation rate is 20 samples per second.

Figures 1, 4, 5 show illustrations of motion, measurements,
and our estimates for the three cases discussed in Section III.

VII. CONCLUSIONS

This paper presented an algorithm for tracking that alter-
nates between learning rotations and translation in a sequential
fashion. The algorithm leverages recent advances in learning
rotations and separation of the state-space by decomposing the
states in Rk into states on Sk−1×R. This decomposition also
respects the geometry of the observations in the spherical co-
ordinates, namely bearing and range. This allows development
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Figure 4: Example Simulation of Case II: object moving on
sphere of radius 1 units from observer located at origin. The
true motion shown in green involves changing rotation but
no translation. The noisy bearing measurements (with noise
simulated as Kent noise) are shown in blue and the track
estimated from these noisy measurements by proposed updates
is shown in red.
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Figure 5: Example Simulation of Case III: object moving in a
straight line. True motion shown in green, noisy measurements
in blue and estimated track in red.

of unbiased estimators in the respective domains. Preliminary
experimental results illustrate that the proposed method can
work well. Future work will include comparisons to other

trackers and experiments with real data.
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Figure 6: Tracking performance with changing rotation and
translation (Case III) averaged over 1000 realizations. The
observation rate is 20 samples per second.
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