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Abstract

This article presents a novel algorithm for efficiently computing
an interference-free insertion path of a body into a cavity and
shows its practical use in the insertability analysis of custom
orthopedic hip implants. The algorithm is designed to handle
tightly fit, very complex three-dimensional bodies requiring fine,
complex, coupled six-degree-of-freedom motions in a preferred
direction. It provides a practical method for efficiently handling
the geometric complexity of tight-fit insertions. The algorithm
computes an insertion path consisting of small interference-free
body motion steps. It formulates local, linearized configuration
space constraints derived from the shapes and computes suc-
cessive motion steps by solving a series of linear optimization
problems whose solution corresponds to the maximum allowed
displacement in a preferred direction satisfving the constraints.
It either finds a successful insertion path or a stuck configura-
tion. We demonstrate the algorithm with EXTRACT, a program
for unalyzing the insertability of cementless custom orthopedic
hip implants. EXTRACT computes interference-free insertion
paths for tightly fit implant and canal shapes described with
10,000 facets to an accuracy of 0.01 inch in 30 minutes on a
workstation. It has been successfullv tested on 30 real cases
provided by a medical equipment manufacturer.

1. Introduction

This article presents a novel algorithm for efficiently
computing an interference-free insertion path of a body
into a cavity. The problem of computing such paths has
been widely studied in robotics, where it is referred to as
the peg-in-hole problem. Tt is an instance of the general
motion planning problem in which a peg (the moving
body) is to be inserted without interferences into a hole
(the fixed cavity). Typically, the peg and the hole are
tightly fit, so that the clearance between the peg and the
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hole is small; the peg and hole shapes are almost com-
plementary; and a general, preferred insertion direction

is known—the main axis of the hole. Examples of such
fits include simple shapes (e.g., pins and holes, screws
and bolts, fasteners and part covers), and complex shapes,
(e.g., molds and prosthetic implants) (Fig. 1).

Computing interference-free insertion paths is essential
for analyzing the insertability of a body into a cavity. In-
sertability analysis is ubiquitous in a wide variety of tasks
and domains. In robotics and manufacturing assembly,
it is necessary to find and exccute the insertion path of
a robotically guided part into a mating fixture. In engi-
neering design, it is necessary to detect part interferences,
design tightly fit machine parts, and establish tolerances
for assemblability. In molding, it is necessary to verify
that a mold can be removed from the part it shapes once
the part has solidified. In biomedical engineering, it is
necessary to design and validate prosthetic implants. In-
sertability analysis is required to validate shape designs;
identify interferences, blocking surtaces, and stuck con-
figurations; make shape modifications; and explore shape
alternatives.

Computing insertion paths for tight fits requires limited,
localized search of high geometric complexity. Body
motions are highly constrained by the cavity walls, so
compliant motions along the preferred direction are likely
to insert the body into the cavity. However, because the
shapes are complex and the clearance is small, many
interference tests are necessary. When the shapes require
thousands of facets to describe them to guarantee reliable
results, the geometric computation complexity dominates
the search time.

We have developed an insertion algorithm that ef-
fectively addresses the geometric complexity of path
construction. The algorithm is designed to handle tightly
fit, very complex three-dimensional bodies requiring fine,
complex, coupled six-degree-of-freedom motions in a
preferred direction. It emphasizes efficient local geome-
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Fig. 1. Three instances of peg-in-hole problems. (A) A screw in a helical tube. (B) A boor-shaped body in a bended
tube. (C) An orthopedic hip implant in a canal (the dark body is the peg, the translucid body is the hole).

try and motion constraint computation over search. The
algorithm computes an insertion path consisting of small
interference-free body motion steps. It formulates local,
linearized configuration space constraints derived from the
shapes and computes successive motion steps by solving
a series of linear optimization problems whose solution
corresponds to the maximum allowed displacement in a
preferred direction satisfying the constraints. It finds ei-
ther a successful insertion path or a stuck configuration.
The algorithm implements a greedy path finding strategy
with localized backtracking that produces quasi-monotone
insertion paths to any desired resolution.

We demonstrate the practical use of the algorithm with
EXTRACT, a program for computing insertion paths
for cementless custom orthopedic hip implants into a
matching cavity prepared in the patient’s femur (Fig. 2).
EXTRACT computes interference-free insertion paths for
tightly fit implant and canal shapes described with 10,000
facets to an accuracy of 0.01 inch in 30 minutes on a
workstation (Fig. 3). It has been successfully tested on 30
real cases provided by a medical equipment manufacturer.

This article describes the insertion algorithm, its imple-
mentation, and the experimental results. Section 2 reviews
related work in path planning. Section 3 provides an
overview of the solution. Section 4 describes the problem
formulation and introduces assumptions and approxima-
tions. Section 5 describes the insertion algorithm and
discusses related algorithmic issues. Section 6 describes
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EXTRACT, the program implementation, and its use in
the insertability analysis of custom hip implants. Section
7 concludes with a summary and a discussion on possible
extensions and applications. An appendix formalizes the
concepts of tight fit and configuration space approxima-
tion. Readers interested in the medical application can
first go directly to Section 6, read the insertion algorithm
in Section 5, and optionally refer to the configuration
space formulation in Sections 3 and 4.

2. Related Work

Computing an insertion path of a body into a cavity is
an instance of the classic path planning problem where
the goal is to find an interference-free path of one or
more moving objects from an initial to a final configu-
ration amidst fixed obstacles (Latombe 1991). Finding
such a path requires searching the space of object con-
figurations (its configuration space) for a continuous,
nonoverlapping path from the initial to the final config-
uration. There are two main strategies for finding such
paths: global strategies and local strategies. Global strate-
gies first construct and partition the configuration space
into cells, then construct its connectivity graph, and then
search the graph for the desired path. Local strategies
directly search for the path, performing the necessary
geometric computations that guarantee nonoverlapping
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Fig. 2. Hustration of a total hip replacement procedure. A damaged joint connecting the pelvis and the femur (left)
is replaced by an artificial joint formed by a socket implanted in the pelvis and a ball mounted on a metal implant
inserted into a canal carved in the thigh (center). Because of the desired tight fit between the implant and the canal,
the insertion of the implant into the canal fails for certain shapes (right).

Fig. 3. Snapshots of an insertion sequence of an implant stem (dark body) into a canal (translucid body) from the
initial (left) to the final (right) configuration.
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as the search progresses. Global methods are by nature
complete, whereas local methods are heuristic.

Global methods require computing and partitioning the
configuration space, whose complexity is polynomial in
the geometric size of the objects and exponential in their
total number of degrees of freedom. Computing the en-
tire configuration space is feasible only when its size is
manageable, when most of it has to be searched to find
a path, or when simplifications apply. It is impractical
for tight-fit insertion problems with complex 3D shapes
and six degrees of freedom because of the prohibitive
‘number of configuration space cells and because only a
fraction of them needs to be searched when a preferred
insertion direction is known. Moreover, when the shapes
are tightly fit and the insertion requires many small, in-
cremental, coupled six-degree-of-freedom motions, the
complexity of the configuration space cannot be reduced
by approximating or abstracting the configuration space
or by simplifying the shapes. Thus, techniques such as
hierarchical configuration space decomposition (Brooks
and Lozano-Perez 1983; Faverjon 1984), planning in low-
dimensional configuration space projections (Buckley
1990), exploitation of the objects’ geometric regularities
(Giraud and Sidobre 1987), or randomized preprocessing
of the configuration space (Kavraki and Latombe 1994)
are not applicable.

Local strategies depend on the efficiency of the geo-
metric computations and the effectiveness of the search
strategy. Since the main difficulty of local search strate-
gies is avoiding dead ends or local minima, existing lo-
cal strategies emphasize search effectiveness. Donald’s
algorithm (Donald 1987) for a moving six-degree-of-
freedom polyhedron creates a fine-resolution configuration
space grid and uses heuristics based on the local con-
figuration space geometry to search for a path through
grid points. For tight fits, this method requires a high-
resolution grid and, thus, very many small incremental
motions to move even small distances. Potential field
methods (Barraquand and Latombe 1991; Barraquand
et al. 1992) place a potential field function in configu-
ration space and search for an interference-free energy
minimization path. They are applicable to multi-degree-
of-freedom systems with moderate geometric complexity,
as they require frequent object overlap tests or numeri-
cal potential field bitmap representations (Gupta and Zhu
1994). Since these methods rely on the minimization of
a function that includes both the criterion describing the
task (getting to the goal configuration) and the distance
to the obstacles, whose task is to push moving objects
away from them, they work only in relatively simple
environments. In more complex environments this for-
mulation leads to oscillations between opposite obstacle
surfaces and undesired repulsion patterns, and prevents
the moving object from getting arbitrarily close to the
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obstacles. These approaches are clearly impractical for
problems with very complex body geometry and small
clearances because they require many interference tests,
many distance computations, or very high resolution
bitmaps.

In this article we present a local path planning algo-
rithm for the insertion problem that handles very complex
body geometries. The algorithm uses limited, localized
search, thereby exploiting the tight fit and known inser-
tion direction. It efficiently performs local geometric com-
putations to determine the series of small interference-free
motion steps that are required for complex shapes and
tight fit. Our approach is closest to that of Faverjon and
Tournassoud (1987), which separates the noninterference
constraints from the task constraints, thereby removing
the undesired behaviors and providing better control. It
translates the nonoverlap constraints into geometric con-
straints and factors them out of the function to minimize.
The minimization function is formulated in terms of the
task alone. In addition, our approach substitutes the ex-
pensive interference testing and distance computation of
potential field methods with incremental maintenance of
proximity relations that can be computed in worst-case
time linearly proportional to the number of points in the
body surface (Property 1, Section 4.2) and constant time
in average. The algorithm contributes to research in path
planning by providing:

» A practical solution to a well-defined problem: the
insertion of a very complex three-dimensional body
into a cavity with small clearances

= A configuration space cell decomposition based on
neighborhood relations between body and cavity
surface elements

* An efficient cell management method based on the
locality principle

+ A formulation of approximated localized linear
configuration space constraints for small, coupled
six-degree-of-freedom motions

* A formulation of linear programming problems to
find the maximum allowed displacement in a pre-
ferred direction satisfying a set of motion constraints

= An incremental, greedy, path finding strategy with
local backtracking that produces quasi-monotone
insertion paths to any desired resolution

3. Solution Overview

We formulate the insertion problem as a path planning
problem in configuration space. We find a path by incre-
mentally constructing and searching configuration space
cells, using the preferred insertion direction as a guide to
construct cells and move within them. When no progress
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in the preferred direction is possible, we use limited, lo-
calized search to find alternative motions.

Configuration space cells are defined by proximity rela-
tions between body and cavity surface elements. Because
of the tight fit between the body and the cavity, the mo-
tion of any point in the body surface is constrained by
a cavity surface element in its immediate neighborhood.
The pairing between body points and their closest cav-
ity surface elements defines a neighborhood relation. A
neighborhood is a subset of Euclidean space containing a
single pair consisting of a body surface point and its clos-
est cavity surface clement. Small motions that keep each
body point inside its neighborhood are constrained only
by their closest cavity surface elements. The configuration
space cell is the locus of body configurations that keep
the body points in their cavity neighborhoods. The neigh-
borhood relation has two important properties: it defines
configuration space cells with a linear number of local
configuration space constraints, and it provides a sim-
ple, local, cell adjacency criterion based on neighborhood
adjacency in Cartesian space.

To facilitate path planning within a cell and between
adjacent cells, we simplify cell geometry and topology
by introducing shape and motion approximations. We
approximate the body shape with points and the cav-
ity shape with planar facets on their surfaces. We define
neighborhoods with convex polyhedral volumes contain-
ing cavity facets. We linearly approximate small body
motions. With these approximations, we define configu-
ration space cells with local, linear configuration space
constraints for small motions in the neighborhood of an
interference-free configuration. Because the cells are de-
fined by linear constraints, they are singly connected and
convex. Thus, small motions between any two configura-
tion space points within the cell are interference free to
within the approximation.

We find an interference-free insertion path by comput-
ing a sequence of small, interference-free body motion
steps. We compute each step by constructing the con-
figuration space cell in the neighborhood of the current
configuration and finding the maximum allowable dis-
placement in the preferred motion direction. This dis-
placement is computed by solving a linear optimization
problem whose objective function is the preferred mo-
tion direction and the constraints are the cell’s linearized
configuration space constraints. When no progress in the
preferred direction is possible, we search for alternative
motions by modifying the insertion direction. This pro-
cess is repeated with the new body configurations until
either the final inserted body configuration is reached or
until no further progress can be made.

The proposed method is resolution-sound but not com-
plete. It will produce a guaranteed interference-free in-
sertion path up to a prespecified resolution, but will find

such a path only when limited local search and back-
tracking suffice. The algorithm is thus appropriate for
situations in which insertion paths, when they exist, are
quasi-monotone. (A path is monotone in a preferred di-
rection if and only if it always shows progress along that
direction.)

4. Problem Formulation and Properties

We begin by formulating the general path planning prob-
lem and show how this formulation is specialized to the
problem of inserting a complex, tightly fit body into a
cavity. Section 4.1 introduces our notation and presents
the standard path planning problem formulation. Section
4.2 defines a new configuration space cell decomposition
criterion based on proximity relations and neighborhoods.
Section 4.3 introduces approximations that yield a cell
decomposition satisfying two basic properties (Latombe
1991, Chapter 5): (1) the geometry of the cell is simple
enough to make it easy to compute a path between two
configurations in the cell, and (2) cell adjacency test-

ing and path crossing of adjacent cell boundaries can

be computed efficiently. Section 4.4 describes the path
discretization criterion. Section 4.5 formulates the local
search criterion as a function to be maximized, subject to
cell constraints. This yields a formulation similar to the
potential field method (Latombe 1991, Chapter 7).

4.1. General Formulation

We formulate the insertion problem as a motion planning
problem in which the solid body B is a three-dimensional
moving object with six degrees-of-freedom, and the cav-
ity C' is a fixed three-dimensional obstacle. We associate
a body coordinate frame to the origin of the body and a
cavity coordinate frame to the origin of the cavity. The
cavity coordinate frame remains fixed, while the body
coordinate frame moves with the body. The body and
cavity shapes are described with respect to their coor-
dinate frames. The position and orientation of the body,
hereon referred to as the configuration of the body, is de-
fined with respect to the cavity’s fixed coordinate frame.
Let (p.6) be the six configuration variables (three
translations and three rotations) describing the configu-
ration (position and orientation) of the body with respect
to the cavity’s fixed coordinate frame.! Let F(p,0) be
the transformation mapping points in body coordinates to
points in cavity coordinates in body position p and ori-
entation 6. Let b be a body point whose coordinates are

1. Notation conventions: bold lower case letters, X, denote three-
dimensional vectors. Bold lowercase letters with an overbar, X, denote
n-dimensional vectors. 0 is an n-dimensional vector whose entries are all
zero. Bold capital letters, A. denote matrices.
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with respect to the body coordinate frame. The position
v of a body point b in configuration (p.8) with respect to
the cavity’s fixed frame is expressed as:

v=F(p,0)-b= Rot(6)-b+p, (nH

where Rot(0) is the rotation operator specifying the ori-
entation of the body with respect to the cavity’s fixed
coordinate frame.

Let B and C be the sets of three-dimensional points
describing the body and the cavity. Let H(x) be a func-
tion describing the shape of the cavity surface. A point
x lies on or inside the cavity (and outside the cavity sur-
face) when

H(x) <0.

A body point b in configuration (p,8) lies on or inside
the cavity when

H(F(p.6)-b) <0.

This condition, formulated over the set of all body points
b on the surface of B, defines the body configuration
constraints, which must hold for the body not to penetrate
the cavity walls.

The set of body configurations for which the body and
the cavity do not interpenetrate is defined as the set of
positions and orientations for which all the points in the
body surface lie on or outside the cavity surface. This set
of configurations is called the free configuration space:

Ciee = {(p.0) | H(F(p.6)-b) <0, Vb € B}.

The boundary of free configuration space, Ceontact, 1S the
set of configurations in which the body and the cavity are
in contact.

We represent body motions as paths in configuration
space. A path is a continuous function T'(¢) specifying
the position and orientation of the body at time ¢. It is
interference-free if and only if the body does not pene-
trate the cavity at any time during the motion—that is, if
all body configurations in the path are interference free.
An interference-free path defines a mapping from the
continuous unit interval to free configuration space:

T:10,1] — Cfreev

where T(0) = (p,.0) is the initial configuration at
starting time 0 and 7T'(1) = (pf,Of) the final body config-
uration at ending time I.

4.2. The Locality Principle

We now introduce the locality principle, which defines the
partition criterion of the configuration space. It is based
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Fig. 4. Motions of the body point b; in configuration

(p. 0) are constrained by the closest cavity surface h;(x)
in the neighborhood A;j(x). The shaded area corresponds,
to the local configuration constraint h;(x) < 0.

on the proximity relation between body and cavity surface
elements. Because of the tight fit between the body and
the cavity, the motion of any point in the body surface is
constrained by a cavity surface element in its immediate
neighborhood (Fig. 4). The pairing between body points
in a given configuration and their closest cavity surface
elements defines a neighborhood relation. A neighbor-
hood is a subset of Euclidean space containing a single
pair consisting of a body surface point and its closest cav-
ity surface element. Small motions that keep each body
point inside its neighborhood are only constrained by its
closest cavity surface element.

It is important to note that our notion of neighborhood
is based on the space surrounding pairs of elements (a
body point and its closest cavity surface element), not just
a single element, as is customary. For the purposes of the
following discussion, neighborhoods can have any shape
and can overlap, provided that only a single body sur-
face point and a single cavity surface element are inside.
For example, a neighborhood can be a sphere centered at
body point b; (see Fig. 4) and of radius larger than the
distance to its closest cavity surface element hA;(x). As we
will see later, neighborhoods can be approximated (Sec-
tion 4.3) and computed efficiently (Section 5.2). For each
neighborhood, we formulate the local configuration space
constraints of the body point and the cavity surface ele-
ment in it. The conjunction of these constraints over all
body points defines the set of legal body configurations
for which there is no interference and the neighborhood
relations are maintained.

Let /;(x) be a cavity surface element and &; a body
surface point in configuration (p, 8). Let the neighbor-
hood A,;;(x) be a subset of Cartesian space containing
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only the pair consisting of the body surface point b; in
configuration (p, @) and its closest cavity surface element
hi(x) (the neighborhood does not contain any other body
surface points or cavity surface element). The local con-
figuration space constraint imposed by the cavity surface
element on the body point is defined by

hi(F(p.0)-8;) <0 (2)

for F(p,G) . bj < A.ij(X).

A direct consequence of this definition is that the local
configuration space constraint subsumes the configuration
space constraints imposed by all other cavity surface
elements in the neighborhood:

hi(F(p,8)-b;) <0 <= HI(p,0)-b;) <0 3
V(p.8) such that (F(p,8) b;) c A;;(x).

This is because a body point moving in the neighbor-
hood will touch the cavity surface element defining the
neighborhood and the constraint before any other surface
element.

We define the configuration space cell as the locus of
body configurations that keeps all body surface points
inside their neighborhoods:

C={(p.0)| hi(F(p,8)-b;) <0,
(F(p.0)-bj) € Ajj(x), Vb; € B, hilx) € H}

where H is a set of functions h;(x) describing the cavity
surface. The neighborhood relations defining the config-
uration space cells provide, in Latombe’s terminology
(Latombe 1991), the criticality condition of the configura-
tion space partition. They have two important properties:

PROPERTY 1. The configuration space cells are defined
by local configuration space constraints. The number of
constraints is linearly proportional to the number of body
surface points.

This property follows directly from the definition of cell
and from eq. (4).

ProOPERTY 2. Two configuration cells can be adjacent
only if all their neighborhoods are adjacent:

adjacent(Cy,C;)) — Af‘:j(x) M Af-J-(x) # 0,
Vb, € B, hiix)e H

where Af'j(x) and Aij (x) are the neighborhoods defining
cells Cy, and (.

Proof. By definition of cell adjacency, two configuration
space cells are adjacent if and only if there exists a direct
path (a path not going through any other cell) between

any configuration in one cell and any configuration in the

other cell. By definition of cell, all body point configu-
rations in the path belong to either one or the other cell.
Because motions must be continuous, body configurations
on the path continuously move body points from one
neighborhood to the other. However, the motion cannot
occur without discontinuities when two neighborhoods

are not adjacent, as this involves going through a third
configuration space cell. Thus, there is no direct path
between the two original cells. a

These two properties have important computational
advantages. The first defines configuration space cells
with local configuration space constraints and requires
only a number of configuration space constraints linearly
proportional to the number of body points, rather than
the product of the number of body points and cavity sur-
face elements, as would be the case if all pairs had to be
considered. The second provides a simple cell adjacency
criterion based on neighborhood adjacency in Cartesian
space. They both facilitate efficient incremental construc-
tion of adjacent configuration space cells.

4.3. Shape, Neighborhood, and Small Motions
Approximations

To facilitate path planning within a cell and between
adjacent cells, we simplify cell geometry and topology
by introducing shape and motion approximations. These
approximations yield a linear local configuration space
constraint formulation for small motions.

We describe the shape of the body and the cavity by a
finite set of surface elements to any desired resolution ¢.
We discretize the implant shape by sampling its surface
with control points b; such that:

Wb 3b, b, bl <6

We discretize the cavity shape H with a set of planar
facets h;(x) = a; - x — ¢; such that the distance between
the planar facet and the real surface does not exceed &:

vx Jhix) | H@x) —a;-x—¢)| < b

The local configuration space constraint (eq. 2) becomes
a; - (F(p.@)-b;)—c; <0, )

which is a linear expression in the configuration (p, 8)
of body point b;. It guarantees that the body point in
the given configuration will not overlap the exact cavity
surface element by more than &.

To facilitate neighborhood construction and member-
ship testing, we define neighborhoods as convex polyhe-
dral volumes around cavity facets. The neighborhood is
defined by n intersecting planar half spaces:

A,;-x—é,— SO

217

Joskowicz and Taylor



A body surface point b; in configuration (p, 8) is inside
neighborhood A;;(x) if and only if

Ai - (F(p.0)-b;)—¢ <0. &)

Note that when the cavity facet is one of the planes defin-
ing the neighborhood, the local configuration space con-
straint eq. (4), a; - (F(p.8) - b;) — ¢; < 0 is one of the
n inequalities defining the neighborhood. In this case, the
set of inequalities in eq. (5) defines both the conditions
for neighborhood membership and the local configura-
tion space constraint. For simplicity, we will assume in
the rest of this article that the cavity facet is one of the
neighborhood boundaries.

Based on this observation, we can now define the ap-
proximation of the configuration space cell as

C'={(p.0)|A; - (F(p,6)-b;)—T; <0, Vb;cB}.

Note that the cell is defined by a set of linear inequalities
in the configuration of body point b; in configuration
(p.0).

The transformation F'(p, @) introduces a nonlinear term
in the definition of the configuration cell, as it involves
multiplying by a rotation matrix Rot(c) (eq. (1)). Given
an interference-free configuration, we can approximate
small motions from that configuration with a linear trans-
formation and obtain a set of linear inequalities.

Let v; be the position of point b; in configuration
®y.60). The position of vJ of b; after a small motion
(e, ) is given by:

v; = Rot(a)-v, + €

Since (€, o) is a small motion, we can approximate it
with the linear expression

v;-:(axvj)+vj+e

for | € |< €mux and | @ |< aunux. Substituting this
approximation into eq. (5), we obtain:

A; (F(p,8)-b;) -7, <0,
Ai-(laaxvy))+v; +e)—t <0,
(VjXAz‘)'O:‘FAi'E—(E?'—Ai-Vj)So, (6)
where v; = F(p,8) - b;. The result is a set of linear

inequalities in the new motion parameters (e, &), which
correspond to the configuration space parameters:

F(p,8) = F(e,a) - F(p,.0). N

We can now obtain an approximation of the config-
uration space cell with a set of linear constraints. The
approximated configuration space cell describes body con-
figurations with an interference no greater than é (plus the
small error introduced by the small motion linearization)
with the exact body and cavity cells.
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PROPERTY 3. Configuration space cells can be approx-

imated for small motions with a linear approximation of
local configuration space constraints in the neighborhood
of an interference-free configuration:

C={p.0)|;xA) a+A; e
—{¢c; — A, - Vj) <0, Vbj S B},

where v; = F(py,0p) - b; and (pg, 6p) is an interference-
free configuration, {p, @) is obtained from (€, a) by

eq. (7), and | € |< €max and | o |< Omax. This prop-
erty follows directly from eq. (6).

Property 3 has two important advantages. First, be-
cause the cells are defined by linear constraints, they are
convex and singly connected. Thus, motions between
any two configuration space points within the cell are
guaranteed to be interference-free to within the approx-
imation. In particular, the straight line (in configuration
space) connecting any two configurations within a cell is
interference-free. Second, it allows the incremental con-
struction of motion paths by computing a sequence of
small motions from interference-free configurations.

4.4. Path Discretization

We now introduce a discrete formulation of the insertion
path, defining it in terms of a sequence of interference-
free configurations belonging to adjacent configuration
space cells.

An insertion path can be described to any desired
resolution with a finite set of mn interference-free
configurations:

T(k) = (pkvgk)
such that
H(F(p,,0:)-b;)<0, Vb; € B

for 0 < k£ < 1, where T(0) = (py, 6¢) and T(1) = (pf,Gf)
are the initial and final body configurations.

The insertion path can be equivalently specified as a
sequence of interference-free configurations belonging
to adjacent configuration space cells defined by neigh-
borhood relations. By Property 1, we can replace the
configuration space constraint with local configuration
space constraints defined in neighborhoods:

T{k) = Py, 0k)
such that

hil F(py, 0c) - b;) < 0,(F(p,.6:) - b)) € AN (x), Vb; € B

x]

for 0 < k& < 1, where Ai—‘j(x) are the neighborhoods
defined by cavity surface element h;(x) and body point
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b; in configuration (p,., 8;). By Property 2, the insertion
path is guaranteed to be continuous when subsequent
neighborhoods Af) (x) and Afj“(x) are adjacent. This
formulation yields the following important property:

PROPERTY 4. The problem of finding an insertion path
to a desired resolution reduces to finding a discrete se-
quence of interference-free configurations in adjacent con-
figuration space cells defined by neighborhood relations.

Using the shape, neighborhood, and small motion ap-
proximations described in the previous section, we can
use a linear approximation to construct the configura-
tion space cell and search for the next configuration in
the path. By Property 3, the local configuration space
constraints can be replaced by a linear approximation,
yielding the insertion path approximation:

T(k) = (P, Ok)
such that
OF x AF) oy + AY e — (€F - AF VF) <0,
vi=F(p,.0c) b;, Vb, €B

where (p,, 0;) is obtained from (€, ) by eq. (7), and
| €k |< €max and | ag [ < Otmax-

This formulation leads naturally to an incremental
peth construction strategy. Starting from the initial con-
figuration, we first construct the approximation of the
configuration space cell containing it. We then compute
a small motion by finding an interference-free configura-
tion within the cell that satisfies a search objective, such
as bringing the body closer to the final configuration by
moving in a preferred direction. We can repeat this pro-
cedure with the new configuration, until a termination
criterion—the final configuration is reached or no further
progress is possible—is met.

Let (p,.B8%) be an interference-free configuration in
the insertion path. The configuration (p;. .0k ) is
determined by a small motion (e, ax) in the configu-
ration space cell Cy corresponding to the neighborhood of

Py Oc):
Ch = {@ry1Ors) | OF X AF) -y + AR ¢
—k
—(€F —AF v <0, vb; € B}
where
¥ = F(p,0k) - b,
@ryrrOrct1) = Fler, o) - (pr, O)

Because the configuration space cells are convex and sim-
ply connected, the straight line motion (in configuration
space) from (py, 0x) to any (p;,,,0x4,) is guaranteed to
be interference free to within the resolution.
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4.5. Moving in a Preferred Direction

We now specialize the path planning problem to the in-
sertion task. Inserting a body into a cavity typically in-
volves motion along a preferred direction. Although the
precise path is not known, the main insertion direction
is: it is usually defined by the major axis of the cavity
and the body (i.e., the vertical axis in the examples of
Fig. 1). Insertion paths follow this direction, with small,
local corrections along the way. A good heuristic for local
search is thus to move as far as possible along the pre-
ferred direction. Planning an interference free path with a
preferred direction significantly reduces the search com-
ponent of the planning algorithm. The preferred direction
indicates which configuration space cells should be con-
structed and explored and how to move within each cell.

This heuristic strategy matches the incremental path
construction method described in the previous section,
which requires computing small motions in a preferred
direction within a cell. We compute such motions by for-
mulating and solving an optimization problem in which
the objective function is the preferred motion direction
and the constraints are the local configuration space con-
straints defining the cell. The solution to the optimization
problem yields the maximum allowable displacement that
satisfies the local configuration constraints and the neigh-
borhood constraints. The new configuration, computed
from the current configuration and the small motion, is
guaranteed to be interference-free.

Let (p,..8:) be the current interference-free body con-
figuration. Let Afj {x) be the neighborhoods defined
for the (p,, 8;) body configuration. Let 7(p, 8) be
the preferred direction function for step &. The furthest
interference-free body configuration (p, 0) = (P, 0r41)
in the preferred direction is obtained by solving the non-
linear optimization problem:

maximize T,(p, 0)
subject to
hi(F(p,8)-b;) <0
(F(p.0)-b;) € Alx)
Substituting the local configuration space and neighbor-

hood constraints with the approximations introduced in
Section 4.3, we obtain the optimization problem L Fj:

maximize (€, aey) (®)
subject to
OFxAF) o +AF e — (€ - A <0
] € l < €max
| (6.7 l § C¥max

When the objective function is linear, the problem is a
linear optimization problem.
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In this formulation, the objective function provides
the local search criterion. For example, the function for
moving in the preferred direction can be obtained from
the vector difference of the initial and final configurations
and the translational motion parameters:

Ti(€k, Q) = € - (py ‘Pf) )]

where p, and p are the initial and final body positions.
Changing the search criterion to allow for searching in
other directions or for backtracking simply consists in
changing the optimization function to reflect the new
stratcgy.

Insertion paths produced by moving in a preferred
direction are monotone: their subsequent body configura-
tions show steady progress toward the final configuration
by reducing the distance between the current body con-
figuration and the final configuration. Quasi-monotone
paths are obtained by occasionally varying the preferred
direction. Monotone insertion paths have the advantage
that they are easy to execute.

5. Insertion Algorithm

We now present a novel algorithm for computing an
interference-free insertion path of a body into a cavity
and discuss the algorithmic issues related to it. Section
5.1 describes the algorithm and characterizes its scope.
Section 5.2 describes an efficient technique for neigh-
borhood and cell management, a key subroutine of the
insertion algorithm. Section 5.3 describes several search
strategies to escape local minima.

5.1. Insertion Algorithm

Given a geometric description of the shapes of the body
and the cavity, the initial and final configuration of the
body, a desired shape resolution, and bounds on the
maximum extent of small motion steps, the algorithm
produces an interference-free path consisting of a se-
quence of interference-free configurations from the initial
to the final configuration. The path is guaranteed to be
interference free to within the resolution.

The algorithm is based on Property 4, which reduces
the problem of finding an insertion path to a desired res-
olution to finding a discrete sequence of interference-free
configurations in adjacent configuration space cells de-
fined by neighborhood relations. Each new configuration
is computed by formulating and solving an optimization
problem. The algorithm starts with the initial body config-
uration and proceeds as follows:

1. Model the body and cavity shapes with body points
and cavity surface elements.
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2. Find, for each body point in the current configu-
ration, its closest cavity surface and define their
corresponding neighborhood.

3. Formulate an optimization problem with the local
configuration and neighborhood constraints and the
preferred direction of motion.

4. Compute a small motion step by solving the opti-
mization problem.

5. Move the body by the small motion to the new
configuration.

6. If the body has reached its final configuration, return
the path.

7. Else if the body is stuck, modify the preferred di-
rection of motion (if successive modifications have
failed, return the path).

8. Return to Step 2.

The shape, neighborhood, and small motion approxi-
mations from Section 4.3 yield a linear formulation. The
algorithm is described in Table 1. It formulates and solves
a series of linear programming problems LP; (eq. (9))
whose solution yields a small motion step that defines
a new interference-free body configuration in the inser-
tion path. The small motion step, which is a null step,
the largest small step allowable, or an intermediate step,
indicates how to proceed with the search and how to
construct the next problem.

When the motion step is null, the body is stuck in the
current configuration. At least one body point is in con-
tact with a cavity facet, blocking the motion of the body
in the preferred direction. No further motion is possi-
ble because there is no adjacent configuration space cell
in the preferred motion direction. We can either aban-
don the search or attempt to move in another direction
within the same configuration space cell. The new prob-
lem LPy,, is formulated with the same constraints as
L Py, but with a new objective function 754,. When the
motion step is the largest small step allowable, the in-
sertion path can proceed within the current configuration
space cell. The new problem LP,; is formulated with
the same neighborhoods A’fj(x), recomputing the local
configuration and neighborhood constraints approxima-
tions in the new configuration with the new body point
positions, vi‘?*' = F(er, o) - v§ Finally, when the body
motion is neither null nor the largest, at least one body
point has reached the boundary of its neighborhood. Any
further motion of the body in that direction will take that
point outside the neighborhood, thereby violating the
neighborhood constraints. A transition to the adjacent
configuration space cell is necessary to continue the in-
sertion path. The new problem L Py, is formulated by
finding new neighborhoods Aff'f'(x) adjacent to the cur-
rent neighborhoods Afj(x) in the preferred direction of
motion and formulating the corresponding local config-
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Tabie 1. Incremental Insertion Algorithm.

1. Approximate the body surface with body points; approximate the cavity surface with planar cavity

facets
2. Set (py. 6p) to the initial configuration and & to 0
3. Find initial neighborhoods and formulate L F,
4. While body has not reached final configuration do

(a) Solve LP;, to obtain the small motion step (€x, cxy)

(b) if the motion step is null
(1) Declare the body struck and return fail, or

(2) Formulate L Py with the constraints of L P, and a new objective function

(c} if the motion step is the maximum allowable,

formulate L P4, with current neighborhoods Afj(x)

and new body configurations vf*" = Fleg, ) - vf

(d) else

formulate L Py, with new neighborhoods Af;“ I(x) adjacent to Af}(x)
E+1

and new body configurations v;

= Flep, o) - v¥
(e) Compute the new configuration (p | |, &,11) and add it to the path

(f) Increment & by one

5. Return insertion path (p,, 6x)

Joskowicz and Taylor
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uration and neighborhood constraints for the new body
configuration.

The solution of problem L P, determines which sce-
nario occurs and provides the information to formulate
LPyy,. The basis of linear programming problem I P,
indicates which inequality constraints are active (the
equality condition holds). Thus, if one or more of the
small displacement constraints is active, the implant has
moved by the maximum displacement step. If one or
more local configuration constraints are active, the cor-
responding implant control points have reached their
neighborhood boundary. Zero motion parameter val-
ues indicate that no motion in the preferred direction is
possible.

Properties 2, 3, and 4 guarantee that the insertion path
computed by the algorithm is continuous and interfer-
ence free to within the desired resolution. Property |
guarantees that the size of the linear programming prob-
lems L P is linearly proportional to the number of body
points. The number of body configurations in the in-
sertion path, and thus the complexity of the algorithm,
depends on the distance between the initial and final con-
figuration, on the resolution of the body and cavity shape
approximations, on the size of the neighborhoods, and on
the amount of backiracking necessary. The Appendix for-
mally defines a tight-fit measure, and the e-approximation
of path configuration spaces and establishes the relation
between the configuration space complexity and the tight-
fit measure.

The algorithm is resolution sound but not complete: it
will produce a guaranteed interference-free insertion path
up to a prespecified resolution, but will find such a path
only when limited local search and backtracking suffice.
The algorithm is thus appropriate for situations in which
insertion paths, when they exist, are quasi-monotone.
When the object shape approximations are conservative
(i.e., the exact shape of the cavity is a subset of the ap-
proximated cavity shape and the approximate shape of
the body is a subset of the exact cavity shape), the con-
figuration space approximation is also conservative: it
is a subset of the exact configuration space. Thus, if an
approximated insertion path is found, it is guaranteed to
be interference-free for the exact shapes. On the other
hand, failure to find an approximated insertion path at a
given resolution does not mean that one does not exist at
a higher resolution.

5.2. Neighborhood and Cell Management

Key to the efficiency of the algorithm is the incremental
creation and management of cavity neighborhoods and the
configuration space cells they define. The algorithm must
keep track, for every body configuration, of the closest
cavity surface of each body point and its corresponding
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neighborhood. It must find neighborhoods adjacent to
current neighborhoods in a preferred direction of motion.
Neighborhoods can be managed statically or dynamically.

Static management precompuies fixed cavity neighbor-
hoods. Before path computation, it uniformly partitions
the cavity volume by associating a fixed neighborhood
to each cavity element approximated to the prespeci-
fied resolution and recording the adjacencies between
neighborhoods. During path computation, body points
are associated with the neighborhoods they are in. The
body points, their neighborhoods, and the body config-
uration define the cell constraints. Because body points
can only move to adjacent neighborhoods at each step,
the mapping between body points and neighborhoods is
updated in constant time for each body point. Only the
constraints associated with body points that migrated to
new neighborhoods need to be changed to define the new
optimization problem LFjy;.

Figure 5 shows an example of cavity partition into pie
slice—shaped volumes. The neighborhoods are constructed
by creating a regular point mesh on the surface of the
cavity to the desired resolution. Four adjacent points
on the mesh (two up and two down) define a planar
cavity facet. The cavity facet, together with four addi-
tional facets constructed with two additional points on
the axis of the cavity, define a neighborhood described
by a 3x5 matrix A; and a five-dimensional vector
C; suchthat (A; - x —¢; < 0, 1 < ¢ < 5).
Neighborhood adjacencies—up, down, left, and right—
are directly determined from the mesh.

Static management avoids finding and constructing
neighborhoods for all body points at each step. However,
it has two disadvantages. First, because it precomputes
neighborhoods regardless of the distance of the body
point to the cavity surface, it approximates the cav-
ity shape for the worst case, sometimes at a resolution
much smaller than required. Small neighborhoods shorten
the extent of small motion steps, thus requiring more
motion steps to move from the initial to the final con-
figuration. Second, when many body points are close to
their neighborhood boundaries, many neighborhood mi-
grations might be necessary before a significant small step
can be taken. One way of overcoming this drawback is to
have neighborhoods overlap, so that many neighborhood
migrations happen at once for a single motion step.

Dynamic management overcomes these drawbacks
by computing neighborhoods anew at each step. Given
a body configuration, it determines the extent of each
body point’s neighborhood from its nearest cavity walls,
its distance from them, and the required resolution. This
optimizes the size of the neighborhood—and thus the
size of the motion step—at the expense of geometric
computations to determine neighborhood extensions and
adjacencies.
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Fig. 5. Cavity partition into fixed neighborhoods. (A) Partition along the cavity center axis and surface. (B) Planes
defining the neighborhood.
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5.3. Search Strategies

An effective strategy in solving the insertion problem is
to start from the final, inserted configuration and attempt
to extract the body from the cavity until the body is com-
pletely outside the cavity. Although reaching the exact
inserted configuration is important, any starting initial
position above the cavity is acceptable. It is thus simpler
to start from the exact inserted configuration and move in
the preferred direction until, for example, a prespecified
height is reached. The insertton path is directly obtained
from the extraction path by reversing the extraction path.
The insertion motion is simply the extraction backward
in time.

When moving in the preferred direction is no longer
possible, the search strategy must be temporarily changed
by modifying the objective function 7(ey, o) for one or
more steps. Various path search strategies can be approxi-
mated by setting the weights of the six motion parameters
difterently. For example, the default objective function
(eq. (9)) favors translations along the preferred direction
while leaving open the choice of angles by setting the an-
gle coefficients to zero. Reversing the sign of the motion
parameter weights implements backtracking. Strategies
are combined by combining weights. For example. a
“wobbling” effect can be added by varying the weights of
the rotation parameters according to a sine function:

Tel€p. O ) = € - (P() 7pm) + oy
(p* sin(cyy), p * cos(cily), 1),

where p and ¢y are the pitch and angular increment of
the screw motion and ¢ is a constant. Similarly, a “repul-
sive force” effect can be obtained by adding the inverse
weighted sum of the distance between the point and the
wall and the vector normal to the plane. Path search
strategies are problem dependent and are thus best ad-
justed for particular tasks and situations.

6. Insertability Analysis of Custom Hip Im-
plants

We have implemented the insertion algorithm and demon-
strated its use in analyzing the insertability of cementless
custom hip implants (Section (1)). The purpose of inserta-
bility analysis is to determine whether an implant can be
inserted without interferences into a canal carved in the
bone (see Fig. 2). Verifying implant insertability helps
validate shape designs, identify wedging configurations
and interfering surfaces, and support shape modification
and redesign.

About half of the approximately 300,000 total hip
replacement (THR) surgeries performed each year use
cementless implants, in which the stem of the implant
fits tightly into a matching canal carved in the shaft of
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the femur. In an increasing number of cases, custom,
patient-matched imiplants are designed for each patient
from computed tomography (CT) data (Stulberg 1989).
The goal of the design is to obtain the tightest possible fit
in the implant’s final (working) configuration inside the
canal. Tight fit provides mechanical stability and adequate
stress distribution transfer; promotes bone ingrowth onto
the implant; and avoids cement, which occasionally pro-
vides poor fixation and deteriorates over time. To obtain
the desired fit and avoid splitting the femur during inser-
tion, the implant must be insertable without interferences
to its final working position. These requirements often
fead to unique, very complex body and canal shapes with
very small clearances.

Insertability analysis is an important and difficult aspect
of custom implant design. Small clearances (less than
0.01 inch), complex shapes, and high accuracy in im-
plant machining and robot-assisted bone canal preparation
(Paul et al. 1992; Taylor et al. 1994) greatly complicate
the task. Manual shape design validation and wedging
configuration and interfering surfaces identification (as
illustrated in Figures 1c and 3) are impractical. Sim-
ple solutions, such as computing a swept volume for a
straight line insertion path, are either inapplicable or pose
significant constraints on implant design.

The incremental insertion algorithm is especially suited
for preoperative implant insertability analysis. The quasi-
static rigid body geometric model is appropriate because
the implant is made of metal, a significant part of the
canal is hard bone, and the insertion motion is slow
(quasi-static). The implant and canal three-dimensional
shapes are complex, requiring about 10,000 points and
facets to obtain accuracy of 0.0l inch. The fit is tight,
with a clearance of about 0.01 inch. The preferred inser-
tion direction is clearly defined, but because of the tight
fit, small, coupled, six-degree-of-freedom motions are
necessary to insert the implant into the canal. The inser-
tion path should be quasi-monotone and consist of small,
incremental motions to avoid complex, time-consuming
maneuvers and excessive manipulation and search by the
surgeon during manual insertion. Computing an extrac-
tion path is simpler, as any starting implant configuration
above a prespecified height is acceptable.

6.1. EXTRACT: Program Characteristics

The program, called EXTRACT, outputs an interference-
free extraction path to the desired resolution. When the
implant is not extractable, it stops at the stuck configura-
tion and identifies the implant and canal surfaces causing
the interference. It shows a graphical animation of the
extraction and computes path statistics. EXTRACT is
written in C and uses the IBM’s Optimization Subroutine
Library (OSL) to solve the linear optimization programs
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and the Graphics Library (GL) to show color 3D anima-
tion of the extraction.

EXTRACT computes quasi-monotone extraction paths
using static, overlapping neighborhoods (Section 5.2). It
inputs the implant and canal surface shapes designed on
a CAD workstation from CT data and the desired shape
approximation resolutions. The shapes are represented
either as regular surface point meshes or as stacks of
two-dimensional parallel contour slices defined by cubic
splines forming a close contour. The initial configuration
has the implant fit into the canal in its working position.
The program computes first the body points and the pie
slice—shaped canal neighborhoods from the CAD data.

It optimizes body point spacing and neighborhood size,
creating the largest elements with the smallest deviation
between them. It computes the pairing between body
points and cavity neighborhoods for the initial (inserted)
configuration and maintains a data structure that records
the correspondences as the body moves using the neigh-
borhood adjacency relations.

Each linear problem L Py is formulated from the cur-
rent body configuration and the body point and cavity
neighborhood constraints, adding to it the small motion
constraints. Because each neighborhood is defined by five
planes, L Py has 5n + 12 constraints in six variables,
where n is the number of body points. Because the prob-
lem ts highly redundant, we solve the dual problem and
map the results back to the primal formulation. The pro-
gram allows for slight implant and cavity overlap due
to design and approximation errors by relaxing the local
configuration constraints by a user-specified small positive
constant ¢. This amounts to replacing the inequalities:

hi(F(p,8)-b;) <0
with
hi(F(p,8)-b)) <c

for ¢ > 0. This overlap allowance is also used to model
bone compliance.

The program uses a simple resolution-sensitive search
strategy, which adds a “wobble” component to the pre-
ferred direction of motion to avoid local maxima. When
no further progress is possible, the program switches to
the repulsive forces strategy for several steps (determined
by the resolution) to momentarily move the implant away
from the cavity surface and find a more favorable con-
figuration to continue the extraction. Progress along the
preferred direction is monitored over step intervals to
decide when to terminate the search.

6.2. Experiments and Evaluation

EXTRACT has been successfully tested on 34 data sets
at several resolutions. Four are synthetic examples, such

as the screw and the boot in Fig. 1. Thirty are real hip
implant designs provided by a medical equipment manu-
facturer. The synthetic examples were designed to either
have known insertion paths (the screw) or to get stuck at
known configurations. No insertability information was
provided for the implant and canal data sets.

The typical implant and canal height is 4 inches,
with cross-section diameters varying from 0.5 to 2
inches. Their shapes are described with 50 to 100 two-
dimensional contours defined from CT slices spaced
0.025 to 0.1 inches apart. Each contour is described
with 25 to 100 splines forming a closed contour. The
canal and implant shapes are almost complementary,
except for the upper part of the stem (Figure Ic and Fig-
ure 3, rightmost image). The implant and canal have
no clearance in the final inserted configuration (some
cases even have a small interference of up o 0.01 inch).
The clearance is extremely small throughout most of the
extraction path, ranging between 0 and 0.02 inch. The
critical implant configurations near the inserted config-
uration (Figure 3, second from rightmost image). At a
height of about 2.5 inches from the bottom of the canal.
the implants can be directly pulled out of the canal with a
straight vertical motion (Figure 3, leftmost image).

All data sets were tested at several resolutions ranging
from (.005 to 0.05 inch, with overlap allowances ranging
from 0.01 to 0.05 inch. Resolutions of .03 inch were
considered sufficient by the medical equipment manufac-
turer. The resolutions required implant and canal models
with 1,000 to 10,000 implant points and cavity facets.
The facet width, which determined the width of the pie
slice—shaped cavity neighborhoods, ranged from 0.02 to
0.6 inch (average 0.1 inch), for a resolution of 0.05 inch
to 0.003 to 0.2 inch (average, 0.025 inch), for a resolution
of 0.005 inch. The facet height, determined by the spac-
ing between slices, ranged from 0.025 inch to 0.1 inch for
all resolutions.

The small motion limits were set to 0.1 inch for trans-
lations and one degree for rotations. The program stopped
when the implant configuration reached a height of 2.5
inches from the bottom of the canal. Between 50 and
150 steps were required for resolutions of 0.05 inch.
Higher resolutions (0.01 inch) required between 300 and
2,000 steps to either find a path or declare the implant
stuck. Running times ranged from 3 to 45 minutes on
an IBM RS/6000 Model 530 workstation with 64 MB
of main memory, with most of the time spent on path
computation.

In all but two cases, the implant extraction paths were
successful. The successful cases were validated visually
and quantitatively by measuring the maximum amount
of overlap in the path configurations. In no case did
the amount of overlap exceed the specified overlap al-
lowance. Only a couple of paths were monotone; all the
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rest required minor backtracking. For the stuck cases, we
verified that no extraction was possible by manually ex-
ploring alternate preferred motion directions, by manually
choosing possible configurations and measuring overlap,
and by restarting the search at different interference-
free intermediate configurations. None of these strategies
yielded a successful extraction path (Fig. 6). These re-
sults were confirmed by expert implant designers. The
four synthetic cases yiclded the expected results at all
resolutions. Overall, these results provide evidence that
the limited search strategy proved effective for practical
implant insertability analysis.

Table 2 shows a sample of runs on several data sets.
Note that the model size grows roughly linearly with
the resolution, but the running time and the number of
steps grows faster. This is because the neighborhood sizes
shrink, so more cell changes are necessary to cover the
same distance. Furthermore, the complexity of solving
each linear programming problem L F}. grows roughty
quadratically with the number of implant points. Because
there was frequently no clearance (even some overlap
in most path configurations), the value of the maximum
overlap allowance (third column in the table) is greater
than zero. When the actual clearance between the im-
plant and the canal is smaller than the implant and canal
resolution, the approximation can lead to false-negative
results (implant 3/canal 3). However, the results are al-
ways reliable when its value exceeds the amount of initial
overlap.

7. Conclusion and Extensions

We have presented a novel path planning algorithm for
computing an interference-free insertion path of a body
into a cavity to any desired resolution. The algorithm
computes a sequence of interference-free configurations
by incrementally constructing and searching configuration
space cells defined by proximity relations between body
points and cavity facets. It uses a predefined preferred
insertion direction as a guide to construct adjacent cells
and move within them. When no progress in the preferred
direction is possible, limited, localized search is used to
find alternative motions.

The algorithm contributes to research in path planning
by providing a method for practically handling the ge-
ometric complexity of tight-fit insertions. Unlike most
existing path planning methods, the algorithm is designed
to handle very complex three-dimensional bodies requir-
ing fine, complex, coupled six-degree-of-freedom motions
in a preferred direction. It emphasizes local geometry
and motion constraint computation over search. Tight
fits require shape approximations consisting of thousands
of facets to obtain reliable results. Their configuration
space consists of narrow channels that get blocked with
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small shape variations or approximation errors. Moving
through the channels amounts to following its walls (the
configuration space constraints) in the preferred direction.

The algorithm uses shape and small motions approx-
imations to define configuration space cells with local,
linear configuration space constraints for small motions
in the neighborhood of an interference-free configuration.
By keeping track of proximity relations between body
and surface elements, it identifies redundancies and re-
duces the number of local configuration space constraints
in a cell from quadratic to linear (in the number of body
points). Small motions in a preferred direction are com-
puted by formulating and solving a linear optimization
problem whose objective function is the preferred direc-
tion and whose constraints are the cell constraints.

We contemplate several extensions to the insertability
analysis problem. To model slight body compression and
deformation, we allow a small amount of interpenetration
between body points and cavity facets by relaxing the
local configuration constraints with a small user-defined
positive constant. To incorporate user-defined path and
configuration constraints, such as ranges of allowable
body positions and orientations or bounding variations
between consecutive configurations, we formulate the
corresponding linear constraints and add them to each
L P, problem. Both extensions are practically useful and
are readily incorporated into the algorithm. Dynamics
modeling and stress analysis require modeling the forces
between surface elements in contact to derive the stress
distribution and the resultant insertion force. The inser-
tion algorithm is useful to identify the surface elements
in contact at each configuration from solving each LF;
problem and to provide the geometric information to for-
mulate the dynamics problem and add friction (Erdmann
1994).

The insertion algorithm can serve as the basis for many
related insertability analysis tasks, including design vali-
dation, tolerancing, and shape modification and optimiza-
tion. Design validation is performed by computing an
insertion path to within a prespecified resolution. Toler-
ancing is performed by testing the insertability of small
variations of nominal body and cavity shapes. Shape
modification and optimization are performed by identify-
ing the stuck configuration and the surfaces causing the
interference and then locally modifying the shapes around
these surfaces.
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Fig. 6. Snapshots of an extraction sequence of an uninsertable implant stem (dark body) into a canal (translucid body)
from the initial (left) to the final (right) configuration. Local search could not find an extraction sequence.

Table 2. Sample Test Cases.*

Case | Resolution | Overlap | Size | Steps | Time | Extraction
Boot-in/boot-out 0.025 0.01 1122 136 | 2:18 Yes
0.01 0.0 1683 145 1 4:08 Yes
0.005 0.0 3162 | 215 | 641 Yes
Implant 2/canal 2 | 0.05 0.02 1400 81 | 2:58 Yes
0.025 0.015 2296 138 | 3:47 Yes
0.01 0.015 3808 | 602 | 26:04 Yes
Implant 3/canal 3 | 0.05 0.02 1958 38 1:10 | No (0.57)
0.025 0.02 2848 52 | 3:07 | No (0.67)
0.01 0.02 5251 826 | 49:13 Yes
Implant 4/Canal 4 | 0.05 0.015 1840 116 | 3:20 Yes
0.025 0.015 2640 165 | 8:20 Yes
0.01 0.015 4720 | 698 | 38:3] Yes
Implant 5/Canal 5 | 0.05 0.05 2184 192 | 3:22 | No (L.31)
0.025 0.05 3367 187 | 6:35 | No (0.76)
0.01 0.05 6552 ) 562 | 24:11 | No (0.36)

*The columns list the test case, the implant and canal resolution in inches, the maximum overlap allowance, the number of implant points and
cavity facets, the number of steps in the path, the execution time in minutes, and whether the implant was successfully extracted. The numbers
in parentheses indicate how far the implant got before being stuck.
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Appendix: Tight Fit and e-Approximation

This appendix formally defines a tight-fit measure and the
approximation of configuration space and estabiishes

the relation between the approximated configuration
space complexity and the tight-fit measure. Let T be

an interference-free path between the initial body con-
figuration T(0) = g, and the final body configuration
T(1) = q;. We define the clearance of a path configura-
tion 7T'(¢) as the Euclidean distance in configuration space
from the path configuration to the closest point on the
boundary of free space:’

clearance(T(t)) = min
qecconlact

ITt) - gl

We define the path clearance as the smallest path configu-
ration clearance:

path-clearance(T ., q,,, g )= min clearance(T(1)).
i€l0.1]

We define a fit measure between two configurations as
the largest path clearance over all interference-free paths
connecting them:

fit-measure(§y, Gy, Criee) = max  path-clearance(T.q,,q 7k
N Tin Cfree

We can easily extend this definition to sets of initial and
final configurations and to subsets of free configuration
space:

fit-measure( Ry, R;,C) = max path-clearance(T'. 4.9 )
where g, € Fy and qf € Ry, R{),Rf C C C Crree

We say that a body and a cavity fit have a tight-fit in-
sertion path when the fit measure of their configuration
space is much smaller than any of the body or cavity
dimensions (their height, width, or length), or is much
smaller than the distance between the initial and the final
configuration:

Sfit-measure(q,, q I Chree) < dimensions(B)
< || — g4l

To ensure that insertion paths can be computed approx-
imately, the configuration space approximation must be
topologically equivalent and within an e distance of the
exact configuration space. This guarantees that no config-
uration space “channel” is blocked by the approximation.

Let Capprox be an approximation of Cr... We say that
Capprox 1s an e-approximation of Cp.. for paths from an
initial configuration g, to a final configuration § y if and
only if for every interference-free path T(#) € Ciree

2. We can define the clearance with metrics on Cartesian space as well.
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from g, to g, there exists an interference-free path
T'(t) € Capprox from g, to g that is homotopic to it
and whose path configurations are no farther than an
distance from it:

VT(t) € Cree ET,(t) S Capprox ”T(t) - T,(t)” <e

max
te[0.1]
When the object shape approximations are conservative
(i.e., the exact shape is a subset of the approximated
shape), the configuration space approximation is also
conservative (Cree C Capprox). Thus, the approximated path
is guaranteed to be interference free for the exact shapes.
The complexity of the configuration space approxima-
tion (measured as the number of hyperplanes defining it)
is related to the fit measure. A configuration space region
with a fit measure of ¢ requires an approximation with
resolution less than or equal to e. The complexity of the
approximated configuration space grows as ¢ decreases,
since the original configuration space surface boundaries
must be approximated by hyperplanes that are no farther
than e distance from them. Tight fits, which have small
fit measures, require many hyperplanes. For example,
the complexity of each configuration space cell in our
algorithm is proportional to the number of body points
and cavity facets, which ranges from 1,000 to 10,000 for
clearances of 0.01 inch.
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