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Anatomy-Based Registration of CT-Scan
and Intraoperative X-Ray Images

for Guiding a Surgical Robot
A. Guéziec,* P. Kazanzides,Member, IEEE, B. Williamson, and R. H. Taylor

Abstract—We describe new methods for rigid registration
of a preoperative computed tomography (CT)-scan image to
a set of intraoperative X-ray fluoroscopic images, for guiding
a surgical robot to its trajectory planned from CT. Our goal
is to perform the registration, i.e., compute a rotation and
translation of one data set with respect to the other to within
a prescribed accuracy, based upon bony anatomy only, without
external fiducial markers.

With respect to previous approaches, the following aspects
are new: 1) we correct the geometric distortion in fluoroscopic
images and calibrate them directly with respect to the robot by
affixing to it a new calibration device designed as a radiolucent
rod with embedded metallic markers, and by moving the device
along two planes, while radiographs are being acquired at regular
intervals; 2) the registration uses an algorithm for computing the
best transformation between a set of lines in three space, the
(intraoperative) X-ray paths, and a set of points on the surface
of the bone (imaged preoperatively), in a statistically robust
fashion, using the Cayley parameterization of a rotation; and
3) to find corresponding sets of points to the X-ray paths on
the surfaces, our new approach consists of extracting the surface
apparent contoursfor a given viewpoint, as a set of closed three-
dimensional nonplanar curves, before registering the apparent
contours to X-ray paths.

Aside from algorithms, there are a number of major technical
difficulties associated with engineering a clinically viable system
using anatomy and image-based registration. To detect and solve
them, we have so far conducted two experiments with the surgical
robot in an operating room (OR), using CT and fluoroscopic im-
age data of a cadaver bone, and attempting to faithfully simulate
clinical conditions. Such experiments indicate that intraoperative
X-ray-based registration is a promising alternative to marker-
based registration for clinical use with our proposed method.

Index Terms—Anatomy- and image-based registration, CT,
revision total hip replacement surgery, ROBODOC, X-ray
fluoroscopy.

I. INTRODUCTION

W E STUDY the problem of registering computed to-
mography (CT) preoperative data to intraoperative

X-ray data. Such X-ray data is currently acquired via X-ray
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fluoroscopy and image intensification. Our work is part of a
joint study with Integrated Surgical System (ISS), of Davis,
CA, to extend the ROBODOC system from primary total hip
replacement (PTHR) surgery to revision total hip replacement
(RTHR) surgery. RTHR is performed after a patient had PTHR
and the implant failed for some reason; RTHR is a much
more difficult operation, because less bone tissue remains, and
because leftover bone cement must be detected and removed
[46].

For PTHR and RTHR, the surgical robot of the RO-
BODOC system accurately mills the cavity for the femoral
implant. The robot trajectory is planned preoperatively using
the ORTHODOC software, based upon a CT-scan of the hip
and a computer-aided design (CAD) model of an appropriate
femoral implant. To register the surgical robot to its planned
trajectory, the current clinical protocol uses two or three
metallic markers surgically inserted in the femur [1], [2].
These are preoperatively imaged using CT and intraoperatively
exposed and located by the robot. We study the feasibility of
substituting external marker-based registration with anatomy-
based and X-ray-based registration. Our goal is sometimes
referred to as three-dimensional (3-D) to two-dimensional
(2-D) “3-D to 2-D” registration [3]–[7]. Although related
registration methods have been developed in the past, there
are remaining significant challenges as follows.

1) Developing algorithms that work accurately and repeat-
ably with the data that can be acquired clinically.

2) Solving a number of difficult engineering problems
before building a clinically viable system. So far, we
have identified: 1) a timing problem: can the image
acquisition, calibration, segmentation and registration
occur in the operating room (OR) within the allotted time
(a few minutes at most)?; 2) a workspace problem: can
the regions of interest be actually imaged during surgery
(Fig 1: the surgical robot and various equipment take
significant room); 3) a system integration problem: it is
preferable to have a simple registration chain (possibly
avoiding optical tracking systems requiring additional
equipment and skilled personnel); and 4) a radiation dose
problem: can the patient and personnel dose be deter-
mined? Do the benefits of the method justify this dose?

A. Method

Our method works by extracting surface models of the
bone from CT data and contour models from fluoroscopic
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(a) (b)

Fig. 1. Workspace limitations: (a) simulation and (b) actual experiment.

images (in Section III), converting such contours to bundles
of X-ray paths using image calibration and distortion correc-
tion (as explained in Section II), and registering the surface
to the X-ray paths (in Section IV). The fluoroscopic image
geometric distortion correction and calibration of Section II
are performed using a variation of the two-plane calibration
method: the robot and a PC were used for collecting multiple
images of a radiolucent rod. Inspired by the distal markers
used clinically, we exploit the rigid structure of the femur by
collecting images of the knee to perform the registration on
the proximal femur. One advantage of this method is that the
anatomy of the knee is very often intact (unlike the proximal
femur) for patients undergoing THR. Our pose estimation algo-
rithm of Section IV is new, using surface apparent contours for
determining correspondences between lines and surface points.
In Section IV-A, to search for correspondences between X-ray
lines and surface apparent contours, we use an algorithm that
experimentally performs in constant to logarithmic time. In
Section IV-B, we use a robust method for computing the
registration of points to lines.

In principle our method applies to both PTHR and RTHR; It
is maybe better justified for RTHR, because there is less bone
for attaching fiducials or probing for use in a point-to-surface
registration. Also, intraoperative X-rays are routinely used in
RTHR, so our proposed protocol would not require additional
X-ray equipment in the OR. However, successful application
to RTHR requires preoperative CT scan images that are not
too corrupted by metal-induced artifacts in the areas used for
registration [9].

We prototyped and experimented our method on THR
surgery, but there are no major obstacles preventing its ap-
plication to rigid anatomy-based registration for orthopaedics,
neurosurgery or radiotherapy between 3-D preoperative im-
agery and 2-D intraoperative imagery. However, some of our
choices are particular to our application, such as performing
the image calibration and registration directly in the coordinate
system of the robot.

B. Experiments

Based upon two experimental studies using a cadaver bone,
we compare in Section V the accuracy of our method with

the current clinical registration method (using markers), that
represents the ideal, or “ground truth,” registration for this
study. In both experiments, the markers were located by the
robot, providing the ideal position of the CT bone image in
robot coordinates. The CT bone image was also positioned by
applying our registration method to four fluoroscopic views.
(In the first study, two fluoroscopic views were used in
combination with one proximal marker.) With respect to the
ideal position we observed a maximum positional error of
approximately 1–3 mm, measured at the marker locations,
depending on the initial positioning prior to registration. We
tested various initial positions, corresponding to a 5–7
rotation of the ideal position.

II. A CQUISITION AND CALIBRATION

OF FLUOROSCOPICIMAGES

For each pixel of a digital X-ray image collected with our
method, we wish to determine an equation of the straight line
in 3-D space corresponding to the path of the X-rays that
projected to that pixel. We call this line anX-ray path. This
process is generally calledcalibrating the X-ray image, and
is very related to calibrating a camera as is done in computer
vision and related fields (consult [10] and our bibliography
for additional references on this general problem). If the
X-rays are captured on film, the X-ray source being very small
relative to the film size, a good model for the projection is a
perspective, or “pin-hole” projection.

In fluoroscopy, X-ray photons are converted to visible light
photons using a phosphor screen. Then, inside an image in-
tensifier (II) electrons are produced when visible light photons
reach a photocathode, accelerated in a magnetic field and con-
verted to visible light with an output phosphor. In conventional
fluoroscopes marketed at the time this article is written, the
intensified visible light is generally captured using a standard
charge-coupled device (CCD) camera. Two main types of
geometric distortion affect such X-ray images: “pincushion”
distortion caused by the curvature of the photocathode, and
“S-shaped” distortion caused by interactions of stray magnetic
fields with electrons in the II [11].

We are aware of two main approaches for calibrating such
images: 1) correction of distortion [12]–[17] followed by
determination of the parameters of the perspective projection
[4], [18]–[20]; and 2) simultaneous distortion correction and
determination of the projection parameters using multiplane
methods [21]. In the first approach 1), all methods for correct-
ing the distortion that we are aware of compare a known grid
pattern with its X-ray image, and record the displacements
of each relevant grid node caused by distortion. In few
methods, global parametric functions are used to model the
distortion for the entire image (see [12] for the pincushion
component and for the “S” component). In most methods,
however, grid node displacements are interpolated with a
suitable function (linear [11], [13], bilinear [14], spline [21],
or cubic polynomial [23]), and generally stored as a look-
up table. Studies (and our observations) indicate that the
geometric distortion characteristics change significantly when
the fluoroscope changes position or orientation [14], [16].
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Fig. 2. (a) Two-plane calibration method and (b) radiolucent image calibra-
tion rod.

Hence, a new distortion correction map must be determined
for each pose of the fluoroscope. While one solution would
require that a grid of markers be permanently attached to the
fluoroscope, our method does not require this.

We have chosen the second approach using a two plane
calibration method, which is conceptually very simple (see
Fig. 2). We believe that the parameters of the projection
can be obtained at little additional cost during the distortion
calibration, by essentially imaging two grids instead of one
[24]: first, a “near” calibration grid is imaged: for each pixel
representing a grid point the 3-D position of the grid point
is known; in between such pixels a suitable interpolation
method is used to associate a 3-D point to
intermediate pixels. Second, a “far” grid is imaged, and a
similar interpolation is used. Then each image pixel can be
associated to two 3-D points and ,
i.e., a straight line, which is our goal in this section.

Our practical approach is related to the NPBS method [21]
with two important differences. In [21], distortion-induced
marker displacements are interpolated with particular spline
functions termed bicubic pseudo thin plate splines (TPS’s).
Calibration grids are located with an optical tracking system
(OPTOTRAKTM). A first difference is that we interpolate
marker displacements using TPS functions. Invented by J.
Duchon in 1976 [25], TPS functions are the mathematical
model for a infinite thin metallic plate. TPS functions can
interpolate scattered points particularly smoothly. A discussion
on the physical meaning of TPS functions, and a description of
how to implement TPS interpolations of data can be found in
[26]. It is not clear that the bicubic pseudo TPS’s have any ad-
vantage over TPS functions except that they are less expensive
to compute [21]: typical TPS interpolation implementations

involve a singular value decomposition (SVD). We did not
find that this was a limitation, due to considerable progress
in computing power of personal computers in the recent years
and to the availability of high quality software packages for
computing SVD, such as LAPACK [27].

Mathematically, for each plane, we wish to determine two
functions of the pixel coordinates : the robot coordinates

and (see Fig 2: this is more efficient than
determining three separate functions for , and ). It is
sufficient to discuss how is determined: we write

(1)

where is the total number of markers in the calibration
plane, is the TPS function

and the are
unknown coefficients. Sinceis known at the marker locations

, we can obtain the by solving the following linear
system of equations (preferably using SVD, as advocated in
Golub and Van Loan, [28, p. 257]):

where is an “TPS” matrix,
is an identity matrix, is an

matrix,1 is an vector, where the
are known robot coordinates for each marker,is

the vector of unknowns, and is a smoothing parameter
used to alleviate numerical problems: The TPS matrix is nearly
singular, and we have found that using a positive value for,
even very small with respect to one and coordinates, is
helpful (in practice, we have used ). Using SVD, we can
then easily solve the above linear system.

A second difference is that instead of using a physical grid of
markers, we construct a “virtual” grid by moving a radiolucent
(ULTEMTM) rod with embedded radio opaque (stainless steel)
beads along a plane [see Fig 2(b)]. The radiolucent rod is
attached directly to the surgical robot, allowing the calibration
parameters to be directly acquired in the coordinate system
of the robot, and eliminating the need for an OPTOTRAKTM

or similar device in the OR. For each rod position, an image
as in Fig. 3(a) is acquired by digitizing the video output of
the fluoroscope.2 In our current setup, X-rays are continuously
activated. It is also possible to switch X-rays on just before
each individual image is acquired, by altering the fluoroscopy
protocol.

Using a grid of markers instead of a rod would allow
to reduce X-ray exposure. We have chosen this method of
sweeping the rod for the following reasons. Sweeping the rod
simplifies the calibration of the grid with respect to the robot

1ThePT component of the system specifies the behavior of the TPS and
its x andy derivatives at infinity.

2Direct access to the internal digital format used by fluoroscope manufac-
turers will not necessarily be advantageous in the short term because such
formats are likely to be different for each manufacturer, resampling may be
necessary, and individual CCD pixels may be incorrect; since images are
black and white, NTSC and equivalent video formats may be of sufficient
quality. The situation will be different when direct digital acquisition of X-rays
(without image intensifiers) becomes available in future years
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(a) (b)

Fig. 3. (a) Geometrically distorted X-ray fluoroscopic image showing mark-
ers of our calibration rod and (b) taking image differences for extracting
markers and detecting motion.

because it is only necessary to determine the rod position
and orientation (i.e., a point and line) in the robot coordinate
system [1]. In our current system, this simplification was
required because the robot has five degrees of freedom and,
thus, cannot arbitrarily position a plane in space.

Another advantage of our method is that between two
images, only the rod has moved (this takes typically 1 s) and
the detection of markers is greatly facilitated by taking image
differences, as shown in Fig. 3(b). Combined with the fact that
a single row of markers is detected each time (or two rows
at a time) marker detection and identification can be fully
automated. Although this problem is seldom documented, our
experience is that with a conventional grid, identification of
individual markers is error prone, and is sometimes done by
an operator. After suitable system integration, we believe that
our calibration method can be completely automated.

To validate our method, after collecting a series of images
corresponding to two calibration planes, a row of markers was
imaged in a different position and orientation. (Such markers
were not used for calibration.) We computed the distances be-
tween the known 3-D positions of the markers and X-ray paths
obtained by image calibration. Such distances were found to
be between 0.1 and 0.4 mm. Fig. 4 shows the data used for
the validation experiment. A row of markers can be seen on
Fig. 4(a) together with some of the distal femur anatomy (and
pins used by ROBODOC, which are irrelevant here) after
contour extraction from one X-ray image. Further processing
[Fig. 4(b)] allows to extract only the contours corresponding to
the markers (which are approximately circular), and to define
for each contour and coordinates for the marker position
in the image. Using the two-plane calibration information, for
each marker position we can compute the equation of an X-ray
path in three dimensions; such X-ray paths corresponding to
the markers are shown in [Fig. 4(c)]. The distances reported
were computed from the X-ray paths in 3-D to the known 3-D
marker positions (ideally, they should be zero, as the X-ray
path corresponding to a marker must intercept it).

It is not clear what an optimum number and distribution of
markers across the image is. In the literature cited, anywhere

(a) (b)

(c)

Fig. 4. Data used for calibration validation experiment: (a) row of markers,
anatomical contours, and ROBODOC pins after contour extraction from the
image, (b) further processing allows to extract markers from A, and (c) X-ray
paths computed from thex; y coordinates of data in (b) using X-ray image
calibration information.

from four to several hundred markers were used to correct
similar distortion patterns. In our case, we wish to limit the
number of rod positions because of time and X-ray exposure
constraints. We have found that anywhere between 66 and
9 9 markers was a good compromise. Assuming 1 s (or
slightly more) for acquiring an image and moving the rod
under continuous X-ray activation, we plan to collect data
corresponding to one view in between 12 and 18 s. This yields
reasonable X-ray dosages (an estimate of the effective X-ray
dose would be on the order of 40 to 50 mrems/min of fluo-
roscopy assuming a 9-in field of view). Additional experiments
may be required to determine the optimal number and distri-
bution of markers across images for a prescribed accuracy.

Image intensifiers (II) may be gradually abandoned in the
future in favor of direct digital X-ray image capture devices
(using amorphous silicon or selenium for instance), provided
that these technologies become mature for real-time imagery
in the OR. These devices will probably introduce some amount
of geometric distortion, albeit less than II’s. Although our
proposed method would be easily adapted to interface with
these devices, it is unclear at the time this article is written
whether other calibration methods could be more effective.

Aside from our use of the surgical robot to operate the image
calibration device, which allows a very effective simplification
of the registration chain, various aspects of our X-ray calibra-
tion process are general and can be used for other applications,
such as the two-plane calibration, our use of TPS functions,
and the process of collecting multiple images per plane that
simplifies image processing.

III. EXTRACTION OF ANATOMICAL

STRUCTURES FROMCT AND X-RAY DATA

Our goal is to extract a set of “surfaces” from CT represent-
ing anatomical structures of interest as well as “contours” from
X-rays. We believe that the type of computer representation



GUÉZIEC et al.: ANATOMY-BASED REGISTRATION OF CT-SCAN AND INTRAOPERATIVE X-RAY IMAGES 719

used for anatomical structures to be registered influences
the accuracy of the registration. Representations that were
proposed include a collection of scattered points [29] or a
connected set of voxels forming a solid inside a 3-D volume
[3], a middle ground being a piecewise planar surface model
(mesh of triangles or polygons) [30] or a differentiable surface
using splines or other suitable smooth functions.

In this article, we mean by surface a set of vertices together
with a connected set of triangles, each being defined as an
ordered triple of references to vertices. In addition, surfaces
will be consistently oriented and will satisfy the “manifold
property,” i.e., for each vertex, the configuration of incident tri-
angles can be continuously deformed to a disk or to a half disk
for a boundary vertex (see, for instance, [31]). This property
enforces an intuitive surface representation, very suitable for
anatomical structures (at the scale we use for observation) that
rules out edges shared by more than two triangles and vertices
shared by more than one connected fan of triangles. Although
piecewise planar, if enough vertices and triangles are used, this
model can faithfully represent smooth anatomical surfaces.3

The benefits of this representation will become apparent in
Section IV on 2-D to 3-D registration. When using points
only, the connectivity information is absent. It can potentially
be retrieved using triangulation methods [33], but then one
realizes that much fewer triangles are typically required to
approximate the same geometry sufficiently closely. When
using volumetric models, the assumption is that accurate solid
models of the anatomical structures are available, which is not
necessarily true, because of missing data.

In the CT scan data that is clinically acquired for THR,
the slice spacing typically varies significantly, from 1 mm in
the vicinity of the fiducial markers to 6 mm or more in the
femur shaft, to maximize the detail in the critical areas while
limiting the X-ray dosage. Direct extraction of bone surfaces
from such CT data using iso-surface building software yields
poor contour definition at the slice level and poor surface
tiling in between contours. Instead, our current approach for
extracting a surface model from the CT data is to use a
classical semiautomated method wherein contours are drawn
on each relevant slice by an operator and are then tiled to
form a surface [30], [33], [34].

A. 2-D Contour Extraction (CT Slice or Fluoroscope Image)

For each slice, we use a deformable model technique to
detect the 2-D contour of the bone. We have implemented
the technique of Kasset al. [35] with minor modifications.
In [35] an energy is defined that incorporates the stretching
and bending energies of the contour as well as a potential
field measuring closeness to the data. We have chosen a
smoothed image gradient norm for the potential field. The
contour is then modeled with a series of points, and the
energy is minimized by solving a partial differential equation
using a finite differences method. In our implementation, the
user is asked to select a few points in the vicinity of the
structures of interest. The system then connects such points
by a polygon, samples new points on that polygon, and uses

3The notion of smoothness applies to piecewise planar surfaces [32].

(a) (b)

(c)

Fig. 5. (a) extracting contours from X-ray data, (b) X-ray paths obtained
from (a) after calibration, and (c) extracting distal femur contours from CT.

such sampled points as an initial estimate for the deformable
model [Fig. 5(a)–(c)].

In recent years, a considerable research effort was devoted
to extend [35] for attracting the contours from a long range,
and for automatically changing the topology of the deformable
model. For our particular application to the femur bone, the
contour topology is relatively simple, formed of either one
simple polygon (most of the time) or two. To define a longer
range potential, we have implemented a two step process,
whereby a first deformable model is attracted by a smoothed
low resolution version of the potential; the result is then used
as an initialization for a second deformable model that is
attracted by the full resolution potential. This process was
particularly useful to reuse the same initial points from slice to
slice and limit the user input. Such reuse of the input points is
shown in Fig. 6. The same method is used to extract contours
from 2-D X-ray image data, as shown in Fig. 5(a).

B. Surface Construction from Contours

Several approaches address the general problem of building
a suitable surface model from any collection of contours
with complex branching situations [33], [34], [36]. The full
generality of such methods is not necessary for most of the
femur length, as contours are in one to one correspondence.
Branching contours exist at the head of the femur and condyles
(in fact, the femur head should not be incorporated in the
model since it is surgically removed during the operation).

When the correspondence between two contours is deter-
mined, we use a variation of a method described in [37] to
build a piece of surface connecting the two contours. We
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Fig. 6. Hierarchical deformable contour that can cope with incorrect user
input, or reuse such input for multiple slices.

define a measure of surface quality as the sum of the measures
of each individual triangle quality: typical measures we used
were triangle area and “compactness,” [31], which is the ratio
of the positive area by the sum of squared side lengths, scaled
such that an equilateral triangle has a compactness of one.
We then search for a true optimum of this surface quality
measure: we consider a rectangular graph (grid) whose
nodes represent edges between, respectively,and vertices
in both adjacent contours. Edges (1, 1) and are chosen
as a closest point pair between the contours. A path in this
graph from node (1, 1) to node represents a surface
connecting the two contours. All possible paths are constructed
using dynamic programming and the best one according to our
criterion is retained.

The resulting surfaces are simplified with a tolerance be-
tween 0.0 and 0.3 mm using the variable tolerance method of
Guéziec [31]. Two distinct surfaces are typically built, shown
in Fig. 11: one for the proximal femur, and one for the distal
femur (the shaft of the femur is not used for registration and
typically not CT-scanned). Both surfaces have holes at either
or both ends (are not solids). For our second experiment, the
proximal surface of Fig. 11 was formed of 1664 triangles and
the distal surface of 3913 triangles.

IV. 2-D TO 3-D REGISTRATION

The following methods have been investigated by other
researchers: Lavalleeet al. [3] register 2-D images (initially
video and subsequently, X-ray) to 3-D solid anatomical mod-
els. An elegant and powerful aspect of their work is that they
use a hierarchical data structure to quickly query the closest
point from anatomical surfaces to X-ray paths. The Euclidean
distance from an X-ray path to a surface that it intersects is
by definition zero. To constrain such X-ray paths to be tangent
after registration instead of intersecting, they define a negative
distance inside the 3-D model; this implies that there is an
inside and outside, i.e., that the 3-D model is a solid. We
believe that this is a significant limitation as in practice only
selected slices of data through the anatomy are available. To
complete such data so as to define a solid volume, it would be
necessary to add information that is not in the data. To resolve
this issue, in our method, we first compute apparent contours

of our surface models and only then compute closest points.
Similarly to [3] our search for closest points on the apparent
contours is hierarchical.4

Lee [4] uses stereo pairs of radiographs to track in real time
the position of a patient’s skull during radiotherapy delivery.
He uses localized bony features segmented from a CT-scan.
Feldmaret al. [5] register surfaces to projected contours, by
defining image to surface correspondences and by minimizing
a least squares criterion using iterative methods. The criterion
incorporates contour and surface normals. In their method, the
calibration parameters can be optimized as well during the
registration process. Hamadeh [6] extends [3] by combining
the X-ray segmentation and registration steps. Liuet al. [7]
synthesize a 3-D model from X-ray views that they then
register to another 3-D model.

A. Using Apparent Contours of the Surfaces

For each fluoroscopic view, our calibration method ex-
plained above (Section II) provides a bundle of lines from
any collection of pixels. Assuming that the distortion was
compensated for, the geometry of this line bundle is that of
a perspective projection, i.e., all lines intersect at acenter
of perspective, (possibly at infinity for a parallel projection).
Using the method of Section IV-B, we compute the position
of this center of perspective for each view.

Given the center of perspective (possibly very far from the
surface for a parallel projection) we can now define surface
apparent contours: for each surface triangle, the “viewing
direction” is defined as the vector originating from the center
of perspective to the triangle centroid. If the triangle normal
(defined by the cross product of ordered oriented triangle
edges) makes an obtuse angle with the viewing direction, the
triangle is said to bevisible and invisible otherwise. Surface
apparent contours are a subset of surface edges, such that the
triangle on one side of the edge is visible and the triangle on
the other side of the edge is invisible. The apparent contours
are such that the edges are linked to form (nonplanar) closed
polygonal curves in three dimensions.

To build the apparent contours, we first identify all edges
belonging to any apparent contour using the criterion defined
above, and add such edges to a list. We orient edges such that
the visible triangle is on the left side of the edge as shown in
Fig. 7(a), thus defining an edge origin and an edge destination.
We then iterate on the following process: 1) we take the first
edge in the list; we create a new apparent contour starting with
that edge; 2) we complete the apparent contour containing that
edge as follows: starting from the destination of the current
edge we determine a next edge as shown in Fig. 7(a): we visit
the triangles incident to the destination vertex in a counter-
clockwise fashion and determine the first edge that belongs to
the list of apparent contour edges [Fig. 7(a): this is necessary
because there may be several such edges]. We reapply Step
2) until the next edge is the same as the first edge that was
processed in 1); and 3) we remove all the edges forming that

4Such methods share the spirit of the iterative closest point methods [38],
[39], with the important difference that in our case, a shape is matched to
its projection, and the notion of a “closest,” or corresponding point is not
straightforward.
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contour from the list of apparent contour edges. We reapply
Steps 1) to 3) until the list of apparent contour edges is empty.
A typical result is illustrated in Fig. 7(b).

Then, we find the closest point from each X-ray path (line
) on the apparent contour(s): we first compute the closest

point from the line in all apparent contours in Step A; once
all the closest points have been determined, in Step B we
select a particular apparent contour and the corresponding
closest point. In Step A, we use a hierarchical decomposition
of the polygonal (apparent) contours in segments with an
associated “bounding region” that completely encloses the
contour portion that the segment defines [consists of two
hemispheres linked with a cylinder centered on the segment

shown in Fig. 7(c)]. We start with the first segment
and compute a distance to the line . We consider the
interval , being the maximum deviation attached
to the segment, and add this interval to a priority queue
keyed with . We loop on the operation of taking the
interval with the lowest key from the priority queue, of
splitting in two the segment corresponding to the interval
according to the information in the hierarchical decomposition
of the polygonal contour, and of computing distances to both
segments obtained. We stop the looping process when it is
determined that the interval with the lowest key in the priority
queue (Segment 1) has an empty intersection
with the next interval in the priority queue ,
meaning that . We record the point
on Segment 1 that is closest to the line. We next define

. We also record the point on
the line that is closest to. When computing the closest point
to the same polygonal contour from a second line, we first
compute the distance from the second line to the point. If
that distance is less than then the closest point is directly
searched for inside Segment 1. We observed experimentally
that the average complexity of determining the closest point
using that method is proportional to where is the
number of vertices in the polygonal contour.

In Step B, once all the closest points from a line to all
the apparent contours have been determined according to Step
A, we first determine if the line “stabs” the apparent contour
or does not stab it. As shown in Fig. 7(d), the line stabs the
apparent contour if the vector pointing from the closest
point on the apparent contour to the pointon the line (with
a right angle at ), the oriented edge starting from the closest
point and the line direction , form a right handed frame. For
a given line, if it corresponds to an external bone pixel in the
X-ray image (“internal contours” can be used as well, because
X-rays allow to visualize opaque objects as transparent), we
determine whether there is any apparent contour that it stabs;
if so, we retain the stabbed apparent contour for which the
distance to the closest point is the largest. Otherwise, we retain
the apparent contour for which the distance to the closest point
is the smallest.

B. Robust Matching of 3-D Points to 3-D lines

At this point, starting with a set of 3-D lines (bundles of
X-ray paths from different X-ray views, whose equations are

(a)

(b)

(c)

(d)

Fig. 7. (a) Notations and basic step for extracting surface apparent contours,
(b) surface apparent contours shown together with X-ray paths, (c) bounding
regionR completely enclosing the portion of an apparent contour between
the two pointsa andb; a hierarchy of such bounding regions is build, and
(d) determining if the X-ray path “stabs” the apparent contour.

known in the coordinate system of the robot, such as those of
Fig. 5 and a set of corresponding 3-D points (closest points on
CT surface apparent contours) we must determine a rotation
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and translation that brings each point as close as possible to
its corresponding line. This is apose estimationproblem.

Kumar and Hanson [40] analyze different formulations
for the pose estimation problem and provide several robust
methods to weigh out outliers. In addition, there is a rich
literature on the problem of pose estimation using points or
line tokens [41]. We compare several alternatives in the sequel.

1) Formulation: Assuming that the imagery is calibrated
(which was done in Section II), using the following formula-
tion we can treat parallel projections (not only perspective) and
process simultaneously several views, when several centers of
perspective are present.

We minimize the sum of squared distances between a set
of 3-D vertices and corresponding 3-D lines

, passing through a given center of perspective
and having the direction of the unit vector (see
Fig. 8). In the following, represents a 3-D rotation matrix
and represents a 3-D translation vector.and are unknown
and all the other symbols have known values or expressions.
The distance between the transformed 3-D point
and the th. 3-D line is obtained by taking the norm of
the cross product between the vector joiningand
and the unit vector that specifies the direction of the line.
The problem can be written as follows:

(2)

where denotes the skew symmetric matrix implementing
the vector cross product with . Solutions exist for
any number of data points and lines provided that there is at
least one point. However, it is known that a minimum of three
points are required to provide a unique solution [42].

One parameterization of the rotation that is convenient for
our formulation is the one by Cayley that we explain next. If

denotes a skew symmetric matrix obtained from the vector
, i.e.,

then the 3 3 matrix is a rotational
matrix. It is a rational parameterization. Although it is rather
not standard in the literature, we have chosen it for various
reasons: because of its rational nature, the computations are
fast and more accurate than with parametrizations involving
sines and cosines; going back and forth between a linearized
(simply derived as ) and exact form is easy;
when the rotation is small, the parameter values correspond to
the magnitude of rotation along the Cartesian axes; computing
the derivative of the rotation with respect to the parameters
which is necessary for the Levenberg–Marquardt (LM) method
discussed below is very manageable.

We now present three different methods, called LM, linear,
and robust, to minimize (2) and obtain a rigid transformation.

(a)

(a) (b)

Fig. 8. (a) Euclidian distanced between a 3-D line defined with a vertexc,
a unit directionv and a 3-D pointp, (b) sets of points and corresponding
lines before registration, and (c) set of (b) after registration, regardless of the
outlier marked with a rectangle. (The shades of grey associated to the different
lines and points have no particular meaning.)

We then compare experimentally the methods in order to
choose the most appropriate for our application.

2) Nonlinear Minimization (LM): Suppose that we con-
sider (2) as the sum of squares of real-valued functions

of variables, with

(3)

We can rewrite (2) as

(4)

where is the vector . To minimize (4), we can
use the LM method, which consists of switching gradually
from Newton’s minimization method, to the steepest descent
method. Since details on these methods are available elsewhere
[43], we briefly recall the principles and concentrate on
providing suitable input to library routines that implement
these methods.

Newton’s method supposes that a quadratic approximation
of is available for a small

where denotes the gradient of and the Hessian,
or symmetric matrix of second-order partial derivatives. By
application of the chain rule, we get , where is the
gradient of , which is a 6 matrix. Further differentiation
leads to , provided that the error residual
is small with respect to . Newton’s method consists of
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computing the value of that will minimize the quadratic
term, which corresponds to solving . For
numerical reasons, it is preferable to minimize the following,
which is less sensitive to roundoff errors:

The LM method consists of solving

For a small it corresponds to Newton’s method, and for
a large , is determined by the formula ,
which corresponds to the steepest descent method, along the
direction of the gradient. In practice, is set to a very small
value at the beginning and gradually increased as the solution
vector is approached.

It is necessary to provide the LM implementation with pro-
cedures for computing both and for any input parameters

. is easily computed by first deriving the rotationfrom
and by using (3). The gradient requires more

work: the derivatives with respect to the translation parameters
are the simplest

In order to compute the derivative of with respect to
, considerable simplification is obtained by computing the

derivatives of the vector with respect to , which is a
3 3 matrix: . We have used Mathematica to do
that (the formula can be found in [45]). We can write

The method requires that the 66 matrix be of full
rank. It is thus necessary to provide at least six corresponding
points and lines. We will see that the linear method exposed
next does not have this requirement.

3) Linearization and Constrained Minimization:A second
method, which we refer to as the linear method, consists of
linearizing the rotation. We subject the minimization to the
constraint that the rotation will be small, for the linearized
equation to be valid. After linearizing the rotation with

, and constraining to be smaller than, real value,
(such as 0.1, in order to guarantee that the approximation holds
true up to at least two decimals in each rotation entry) (2)
becomes

(5)

We transform the expression (5) and introduce the skew
symmetric matrices (the relationship between and is
the same as the one betweenand )

(6)

which we can rewrite in matrix form

subject to (7)

with

matrix, ,
matrix, and finally 3 6 matrix.

This method is iterative: once have been estimated,
we compute from (which has a rational expression), set
the new 3-D points and solve (7) until the
increments of are below a certain small value or until a
maximum number of iterations has been exceeded. Contrary
to the LM method, any number of points greater than two can
be fed to (7). An answer could normally be obtained with one
point only, but we have chosen to only consider problems with
more equations than unknowns. The method works very well
for three points and thus offers a good alternative to closed
form solutions [42].

4) Use of a Robust M-Estimator:In this section, we de-
scribe the third method which we refer to as the Robust
method. Robust means that the method will be resistant to
outliers [44]. We start with the expression minimized in (6);
then each error term (3-D distance point-line) is weighted by
(specifically, becomes the argument of) a function, such
that measurements that correspond to an error exceeding the
median of the errors by some factor will have a constant
contribution. This formulation was introduced by Tukey, and

is called the Tukey weighting function. We obtain

(8)

where is a scale factor. Let us note
the error. The constant can be defined as

median . It is not necessary to know the
exact expression of. We will rather use the derivative of,

[40], [41]: if and zero,
otherwise. Following [40] we set . Note that the choice
of as well as the choice of influence the proportion of
data points that will be considered outliers. We differentiate
(8) with respect to . The first step is to differentiate
with respect to and

(8a)

At this point, we introduce the projection matrix
. The derivative of with respect to the vector

yields, once the constant terms have been removed from the
summation
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which we can rewrite in matrix form , with

6 6 matrix

6 1 vector (noting that ). The method can be
applied to any number (1) of points. However, in the case
of three points, an exact match for all points is possible. We
have observed that the linear method is more accurate in that
case, since the normal least squares equations are used rather
than the direct minimization.

In practice, the linear method, (7), has been implemented
with an explicit constraint of being smaller than, while
the robust method has been implemented without constraint.
The technique for implementing that constraint is generalized
singular value decomposition (GSVD), which is explained in
Golub and Van Loan [28].

5) Experimental Comparison of the Methods:To compare
the LM, linear and robust methods, we generate a set of
lines and points simulating a typical configuration that would
occur when solving a pose estimation problem specialized to
radiographic imagery.

The first step is to generate the base configuration of points
and lines. We first choose random points
inside the unit cube: . We assume a
perspective projection. The following step is to choose a
center of perspective , where all lines will intersect. For
this experiment, the point was chosen, which
corresponds to a maximum angle for the bundle of lines
of approximately 20. In order for the experiment to be
independent of our particular choice for the origin and axes, we
rotate the entire configuration by a rotation of random axis and
of arbitrary angle (30). We then rotate the points only by
a random rotation of 30, which is within the range of expected
rotations for the pose estimation problem. We translate the
points by a random vector that has the same magnitude as
the points (drawn inside the unit cube). This completes the
construction of the base configuration. A configuration of
20 points and lines is shown in Fig. 8.

The next step is to take the base configuration, register the
points to the lines and compare the transformation obtained
with the one that was effectively applied. In order to make
that comparison, we apply both transformations to landmark
points and compute the distance between the two transformed
points. We used the following vertices of the unit cube as
landmark points , and . The maxi-
mum distance is chosen to measure the quality of registration
(maximum registration error). The last step is to add noise
to selected points. We add zero mean Gaussian noise to the
points. The maximum standard deviation of the noise varies
from 0–0.33, which is roughly one-third of the diameter of the
cloud of points. Such a large amount of noise would rarely
be observed in practice, if at all. We add noise to a selected
number of points, up to 50%.

In Fig. 9(a)–(c) we show the maximum registration error
with each method. The figure shows that the LM and linear
methods typically tolerate noise that does not exceed a tenth
of the diameter of the cloud of data points (assuming that a
significant portion of the points are corrupted by the noise).
Noise of higher magnitude can be coped with provided that
less than 5% of the points are corrupted. While in theory, the
robust method should still work with 50% of spurious points,
in practice, such a large number of outliers is only tolerated
with small noise levels, and we have observed a successful
registration with up to approximately 40% of outliers corrupted
with noise of magnitude a third of the diameter of the cloud
of data points. Due to the iterative evaluation process for the
rotation and translation, significant errors can remain at early
stages of the registration, making it difficult to isolate outliers
based solely upon the residual error. Valid data points are more
likely to be misinterpreted as outliers, resulting in an incorrect
registration.

Table I provides us with the average execution times (using
an IBM RS6000 UNIX workstation) for the three different
methods on data sets that comprise 100 points and 20 points,
respectively. All three methods execute in less than one
second for datasets of fewer than 100 points, which is much
more points than expected in practice, since in a practical
situation, it is difficult to extract from image and model data
a large number of 3-D points and lines that unambiguously
correspond to each other. Due to an advantageous complexity
for the numerical computation of the six parameters, the robust
method executes significantly faster than the other two and is
only linearly dependent on the number of points. The linear
(constrained) method uses a version of GSVD, that has a
component cubic in the number of data points, which is why
the computing time grows faster than with the other methods.
The LM method uses a linear system that is also 66, but has
a significant overhead of computing the gradient of each of the
functions. It thus starts with the highest cost, but the cost does
not increase dramatically with the number of points. The
robust method has two parts: the first part, whose complexity
is linear in the number of data points, consists in determining
the median of error measurements and forming a linear system;
the system, which is of size 66, is solved in the second part,
in constant time. The robust method will execute in less than
1 s for virtually any data set. The method, applied to 1000
points, computed registrations in an average of 0.25 s.

C. Registration of Surface Models to Bundles of X-Ray Paths

Although all three methods among LM, linear, and robust
are reasonably fast (can complete in well below 1 s on
typical data sets), the robust method was chosen because
of its advantageous computational complexity, and of its
capability to cope with about 40% of outliers (as it appears,
independently of the magnitude of the noise).

To register the CT surface models to the X-rays (and to
the robot), we iterate on 1) solving the equation
of Section IV-B-4, 2) applying the resulting rotation and
translation to the surfaces, 3) recomputing apparent contours,
and 4) closest points on those, until the residual error falls



GUÉZIEC et al.: ANATOMY-BASED REGISTRATION OF CT-SCAN AND INTRAOPERATIVE X-RAY IMAGES 725

(a)

(b)

(c)

Fig. 9. (a) Maximum registration error plotted versus noise magnitude and
percentage of outliers for the LM method, (b) maximum registration error for
the linear method, and (c) idem for the robust method.

TABLE I
AVERAGE EXECTUTION TIMES IN MS FOR THE THREE

REGISTRATION METHODS APPLIED TO DATA SETS THAT

COMPRISE 100 POINTS (TOP) AND 20 POINTS (BOTTOM)

Number Points/Method LM Linear Robust

100 points (CPU time) 790 690 28
20 points (CPU time) 200 42 9.6

below a given value, or until we exceed a maximum number
of iterations, or until the magnitude of the incremental rotation
and translation falls below a minimum threshold. Results
obtained with this method are presented in the next section.

V. EXPERIMENTS AND DISCUSSION

Much of the prior work, with the notable exception of Lee’s,
uses high-quality 3-D and projection images for experiments,
such as high resolution CT scans of dry bones, or simulations
of radiographs using video images. Such data are only avail-
able in a controlled laboratory test. In contrast, we have used
the same data that would be clinically available. The CT slices
show soft tissue, present notable artifacts, and are of wide and
unequal spacing, to minimize the X-ray dose delivered to the
patient. Precise segmentation of such data is challenging. The
fluoroscopic images were obtained with a Ziehm Exposcop
Plus (R).

We have performed two experiments, with increasing real-
ism. The first experiment was conducted in June 1996 using the
ROBODOC system at Sutter Hospital, Sacramento, CA. We
CT-scanned a cadaver bone having three implanted fiducial
markers. We then brought the cadaver bone to the OR and
fixated it to the robot. We positioned the robot so that the
calibration rod and cadaver femur where both in the field of
view of the fluoroscope. We then captured sets of fluoroscopic
images of the cadaver femur and calibration rod; the robot
could move the rod to form two planar grids which were
imaged. We repeated this operation for the proximal and distal
femurs. The purpose of this experiment was to determine the
geometric relationship of these images with respect to the
robot (X-ray to robot registration) and with respect to the
CT-scan image of the bone. The results were compared with
the ROBODOC registration technique using three markers
implanted in the femur. Since the object of this experiment
was to test the algorithms, we were not overly concerned with
the clinical viability of the test setup. This experiment was
performed without an OR table, and we positioned the robot
and fluoroscope in places that would not be available if an OR
table and patient were present.

The results of this experiment were as follows: starting with
the registered position computed using the markers (current
ROBODOC protocol), we perturbed it with a rotation of
9 and started the registration process from that perturbed
position. The registration was completed in about 6 s on an
IBM RS6000 580. We then measured the distance between the
marker locations specified by our algorithm and the locations
specified by the marker-based ROBODOC registration. In
addition to the fluoroscope images, we used one of the markers
for registration (the proximal marker): since the position of this
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(a) (b)

(c) (d)

Fig. 10. (a) Proximal and (c) distal femur models and X-ray paths of our
first experiment (b) before registration and (d) after registration (using the
proximal marker in addition to X-ray images).

marker was prescribed, the registration process optimized the
rotational component only. In this case we found a difference
of 2 mm or less in the positions of the distal markers (i.e., the
positions of the distal markers found by the robot versus those
calculated using the proximal marker/fluoroscopy registration).
The registration error was somewhat higher (about 5mm) if we
used only the fluoroscope images. Configurations before and
after registration are shown in Fig. 10.

We performed another experiment in November 1996. It was
similar to the previous experiment in that the robot, calibration
rod, fluoroscope, and cadaver femur were used. The main goals
of this experiment were to test the feasibility of the registration
method for THR. A new design of the calibration rod was
used: it was elongated, and made of sterilizable ULTEMTM;
a metallic tip allowed calibration of the rod coordinates by
the robot. We draped a cadaver bone along with a foam bone
and placed them on an OR table to simulate the Antero-Lateral
approach to THR [Fig. 1(b)]. This was based on the judgement
of an OR nurse and an ISS engineer. We avoided any position
of the equipment that would not be possible if a patient’s body
was on the table. We collected images corresponding to four
different positions and orientations of the fluoroscope, two
views proximally and two views distally (Fig. 11); for each
view the robot moved the calibration rod along two planes to
obtain calibrated image information. On the X-ray images, the
anatomy was sometimes occluded by various OR instruments
[Fig. 11(a)].

The results of this second experiment are gathered in
Table II. Starting with the registered position computed using
the markers, we perturbed it with 11 various rotations and
translations, and started the registration process. We limited

(a)

(b)

Fig. 11. (a) Proximal and (b) distal CT femur models from our second ex-
periment, in registered position with X-ray fluoroscopy, showing X-ray paths
(dark lines emanating from 2-D image bone contours) and distortion-corrected
X-ray images projected on “far” calibration plane. In (b), calibration planes
corresponding to different fluoroscope orientations happen to intersect, and
so do images.

the rotation angle to 7(which, when applied to a 450 mm
femur, can perturb the position by as much as 55 mm; a
10 rotation could perturb the position in excess of 80 mm.
Hence, we applied very significant perturbations, exceeding
considerably the expected misregistration after suitable initial
positioning in a practical situation, of 10 to 20 mm at the
most). The translation was set so as to leave the centroid
of the pin positions invariant. For this experiment, only the
fluoroscopic views were used. The maximum registration
error (measured at each marker location) was between 1.2
and 3.7 mm, with the exception of one initial position (7,
position four) for which the registration error reached 4.8
mm (these 4.8 mm, however, were measured at one of the
distal pins; the error on implant placement, which is proximal,
would be closer to 3.5 mm which is the error measured
proximally).

The following two remarks help interpret these data: first.
for a femur that is about 450-mm long, an angular misregis-
tration of 1 can correspond to an error of 8 mm (4 mm if the
center of rotation is situated in the medial part of the femur).
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TABLE II
REGISTRATION RESULTS: DISTANCE MEASURED AT FIDUCIALS AFTER

REGISTRATION. WE START WITH THE REGISTEREDPOSITION OF THE ANATOMICAL

SURFACES PROVIDED BY THE PIN-BASED METHOD AND PERTURB THIS

POSITION WITH SEVERAL DIFFERENT ROTATIONS AND TRANSLATIONS

Transformation
proximal
marker

distal
marker 1

distal
marker 2

identity 1.16 2.38 2.4

rotation 5 degrees 1 1.7 1.56 3.03
rotation 5 degrees 2 1.19 1.28 1.53
rotation 5 degrees 3 3.05 2.91 2.95
rotation 5 degrees 4 2.14 1.61 2.66
rotation 5 degrees 5 2.76 3.06 2.69
rotation 7 degrees 1 3.08 3.66 2.96
rotation 7 degrees 2 2.7 2.52 3.22
rotation 7 degrees 3 2.56 2.84 2.38
rotation 7 degrees 4 3.48 4.81 2.83
rotation 7 degrees 5 2.59 2.32 3.18

The above figures indicate that the registration is correct within
1 or less of rotation. The main reason the numbers would
seem large is the size of the object that we register. Second,
in practice it is very unlikely that we will start the registration
process with an initial position representing an error in excess
of 50 mm. More likely, we will have initial errors of 10 to
20 mm to correct for, and the accuracy numbers quoted here
are thus conservative.

These data do not indicate how the registration accuracy
depends upon the initial position (as opposed to the angular
misregistration alone).

A. Potential Sources for Inaccuracies in X-Ray
and Anatomy-Based Registration

There are potential sources for inaccuracies in each step
of the process: X-ray image calibration errors, 2-D and 3-D
image segmentation errors, and registration errors.

Potential image calibration errors could have two effects.
First, if the relationship is incorrect between image and device
to be registered (surgical robot), a correct registration would
be corrupted by some bias. Second, a wrongful correction of
the image distortion can result in a lack of correspondences
between the 2-D and 3-D data to be registered, having similar
effects as image segmentation errors. However, the tests
described in Section II indicate that our 2-D image to robot
calibration step is very accurate.

Potential image segmentation errors affect the accuracy of
registration because they affect negatively the potential to
discover correspondences between surface and contours to
be registered (potentially corresponding points are eliminated
or displaced, and spurious points may be added). Ideally,
once a segmentation procedure is established, one way to
quantify these errors would be to perform a large number of
experiments on various datasets. This is, however, outside the
scope of this article. Another way to quantify these errors is to
test the algorithm on synthetic data. We performed such tests in
[45], and obtained very accurate registrations (submillimeter).
This would indicate that segmentation is the foremost source
of errors.

The last source of errors is the registration algorithm itself.
The registration algorithm establishes point correspondences
(using apparent contours, and a novel search algorithm on the
apparent contours). These correspondences could be incorrect.
For instance, the closest point on the apparent contour is not
necessarily the best match. This area is open for improvements
in the future. Also, the registration would fail in situations
where the initial positioning brings the surfaces in a location
that is too distant from the correct position for the registration
algorithm to select a majority of correct (line, apparent contour
point) correspondences, which is required for a successful
registration when using a robust method (which can correct
some errors, but fails when the majority of data points are
spurious).

VI. CONCLUSION

Based upon our preliminary findings, fluoroscopy based
registration is a promising alternative to marker based regis-
tration for our application: 1) our proposed use of fluoroscopy
would be compatible with time, workspace and x-ray exposure
constraints in the operating room; 2) our proposed registration
method would cope with clutter and distortion in clinical x-ray
fluoroscopic images, and nonlinear correspondences between
fluoroscopy and CT image brightnesses (because it is feature-
based); 3) the image-based registration accuracy would satisfy
prevalent guidelines (clinical studies involving patient data
would be required to confirm this).

To develop and test this method further, a next step would be
to conduct studies involving patient data. A number of issues
may be investigated, notably evaluating the robustness of the
method when applied to clinical image data, assessing the reg-
istration accuracy without markers (that were necessary in the
present study for establishing a ‘‘ground truth’’), developing
methods for monitoring and refining the registration during
the operation, using additional intraoperative images. Another
logical step would be to integrate the different software and
hardware components involved into a complete system.
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