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1 Introduction

HTP is an SMT Modulo theorem prover similar to many others.[2-6,9,11] As
input, HTP accepts problems using the SMT-LIB format[8]. As output, HTP
will answer either SAT, UNSAT or UNKNOWN. Alternatively, HTP can be run
in a preprocessing mode in which the output is the simplified problem in SMT-
LIB format. An evidence file showing the derivation in a human readable form
can be produced. There is a Treeview application which shows this derivation in
a tree widget making it convenient to navigate a complex proof.

The main contribution of HTP is the introduction of a preprocessor that
includes algorithms for detecting unate predicates, eliminating variables, sym-
metry breaking and boolean encoding. The other algorithms of HTP are similar
to other systems. HTP implements a DPLL(T) similar to BarcelogicTools|[6].
There are domain theories for equality of uninterpreted function symbols, real
difference logic, linear inequality and array logic.

2 The Preprocessor

HTP has a preprocessor that applies a number of algorithms to incrementally
simplify problems before handing them off to the DPLL(T) solver. There are
command line switches to turn on and off some of the algorithms.

2.1 Rewriting

Before anything else is done with a problem, HTP rewrites it using a num-
ber of algebraic simplification rules for arithmetic and boolean equations. As
an example, the system will rewrite a+b=2*a+1 to b=a+1 and it will rewrite
1+1+1+1+1+a<1+1+b to a+3<b. Boolean expressions are also simplified. For ex-
ample, a and a is rewritten to a.

HTP also implements a simple contextual rewriting mechanism. The idea is
that certain subterms can be assumed to be true or false while rewriting others.
For example, for the expression a<b and not(a=b), when simplifying not (a=b),
the system can assume a<b is true. This reduces not (a=b) to true and hence
the whole expression reduces to a<b.



2.2 The unate detection algorithm

For any boolean expression E (which HTP is trying to satisfy), if asserting a
predicate P is guaranteed to make E false, then we know that for any assignment
to the predicates satisfying E, we know that P has to be false. P is thus a unate
predicate. The theorem can be simplified by making not (P) an assumption and
then simplifying E. HTP can detect unate predicates efficiently.

The algorithm is most easily described through the use of an example, (a<b)
and (if b=c then a+1=b else a<b+1). This expression has four atomic pred-
icates, a<b, b=c, a+1=b and a<b+1. The goal is to figure out which are unate.

The system creates a table with all pairwise implications between the atomic
predicates. Then the system annotates each boolean subterm of the expression
with four sets, the set of atomic predicates that when asserted make that subterm
true, the set of atomic predicates which when asserted make that subterm false,
the set of atomic predicates which when denied make that subterm true and the
set of atomic predicates which when denied make that subterm false.

The system starts by computing these sets for each of the atomic predicate
subterms in the theorem. Then these sets are combined with simple set opera-
tions (union or intersection) to create the sets for each of the non-atomic terms.
The table below shows these computations for the example above.

Assert makes true|Deny makes false
b=c b=c b=c
a<b a<b,a+1=b a<b,a<b+1
a+1=b a+1=b a+1=b,a<b,a<b+1
a<b+1 a<b,a<b+1,a+1=bla<b+1
if b=c then atl=b else a<b+l|atl=b a<b+1
(a<b) and (if b=c a+1=b a<b,a<b+1
(then a+1=b else a<b+1)

HTP stores all expressions as DAGs. Hence, the work in computing these
sets only needs to be done once for each unique subterm. Also, the sets are
represented as bit vectors making the computations very efficient.

Variable elimination is a special case of unate detection. If it is found that
denying a predicate of the form v=e, where v is a variable, makes the theorem
false, then we know any satisfying assignment must have v=e as true. Hence,
within our theorem, we can replace all instances of v with e and simplify. We
do not need to enter v=e as an assumption.

2.3 Symmetry breaking

Symmetry breaking in HTP is an extension of the idea studied in the context of
SAT problem solving.[7]. The algorithm works through the following steps. First,
all symmetric pairs of variables are detected. A pair of variables (a,b) are said to
be a symmetric pair if in the theorem T (the theorem HTP is trying to prove)
when replacing all instances of a with b and b with a, the resulting theorem is
exactly the same as T. The current algorithm for finding pairs simply tests all



possible pairs of variables of the same type to see if swapping them produces the
same theorem. From this set of symmetric pairs of variables, symmetric pairs
of atomic predicates are identified. P1 and P2 are said to be symmetric if there
is a set of symmetric variable pairs {(a1,b1)...(an,b,)} such that P1 can be
transformed to P2 by simply replacing each a; with b; and each b; with a; for
each of the pairs in the set of symmetric variables. Next we calculate groups of
symmetric predicates. A group of symmetric predicates is a set of two or more
atomic predicates such that any two predicates in the group are symmetric.
Finally, symmetry breaking disjuncts are added in a manner similar to [7].

2.4 Boolean encoding

HTP implements an algorithm for doing boolean encoding of difference logic
built on ideas from [10]. More information on this algorithm is available on the
author’s website at www.fordocsys.com/htp.htm.

3 Current state of the implementation

The system is implemented in C and compiled both on Windows and Linux.
The Treeview program for viewing outputs is only available on Windows. The
author’s website contains detailed tables with results and a downloadable exe-
cutable. HTP has been run in stand alone mode on the entire QF_UF problem
set as well as the scheduling problems in QF _RDL[1] giving results which are
competitive with other top systems. The preprocessing mode has been run on
all SMT-COMP’05 problems except the QF _UFIDL and QF_AUFLIA sections.

The preprocessor was evaluated by running the output in MathSat[2], YIC-
ES|[3], Simplics[4] and BarcelogicTools[6]. Using symmetry breaking, the prepro-
cessor substantially improved the performance of problems in the QF__UF section.
However, the current algorithm cannot be applied to other sections. Combining
the preprocessor with YICES yields a combined theorem proving tool that can
solve 40 problems from SMT-COMP’05. BarcelogicTools, the top system from
the competition, only solved 39 problems. Unate detection and rewriting im-
proved the performance of the QF _LRA /spider_benchmarks, the QF_LIA /sal
and the QF_LRA /sal sections. For many of these problems, rewriting and unate
detection were sufficient to solve the problems. Rewriting also improved the per-
formance of the QF_LIA /wisa benchmarks. This was due to many expressions
of the form 1+1+1+...+x=y being simplified to n+x=y. The unate detection and
rewriting had little impact for the other sections. In some cases applying the
preprocessor changed the performance of other tools by as much as a factor of
five either way. This variance has also been seen with minor permutations of
problems in many SMT Modulo solvers. The difference logic encoding was quite
effective in improving performance when it was applicable.



4 Conclusion and future work

Good preprocessing techniques are the most promising direction for finding per-
formance improvements. Future work will also include expansion of the stand
alone mode to handle problems from all divisions of SMT-COMP’05[1] as well
as adding bit vector and quantifier logic. The two most promising preprocessing
directions for creating additional performance enhancements are that of devel-
oping boolean encoding algorithms and symmetry breaking. Boolean encoding
routines are being extended beyond difference logic. Symmetry breaking is being
extended to handle problems outside the QF_UF division.
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