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Abstract

Functional Reactive Programming (FRP) is a programming framework
for constructing interactive applications in a declarative manner. FRP is
now used in animation, vision, robotics and other control systems. Behav-
iors and Fvents — values and conditions which are functions of time — play
a key role in FRP. In this paper we present an implementation of main
FRP features in C++, an widely used imperative programming language.
By exploiting C++'s versatile template class and operator overloading, a
strictly typed and concise approach is proposed, and it is taking advantage
from both FRP and C++ sides in applications.

1 Introduction

Functional Reactive Programming (FRP) is a programming framework for con-
structing interactive applications in a declarative manner. Developed originally
as a Domain Specific Language (DSL) for reactive animation [8], FRP is now
also used for vision, robotics and other control systems applications among the
programming community [4] [15] [13].

However, all previous implementation of FRP is based on Haskell, a pure
functional language, until recently. FRP benefits much from Haskell’s higher-
order functions, strict, polymorphic type system, and lazy evaluation strategy.
However, we demonstrate that it is actually possible to implement FRP in C++,
a widely used imperative programming language. Moreover, the C++ approach
could benefit from the following:

e Some tasks are more straightforwardly described in a non-functional man-
ner. FRP in C++ allows to code them more expressively and intergrate
with other tasks; this way the whole application is more clear and easy to
maintain.

e Many of existing libraries are in C/C++. Current hybrid approaches, such
as FVision [14], combine Haskell code of FRP and C++ code of libraries
through special wrapping. Our approach eliminates boundary between
languages, so it is both effective and easy to use.



e Requirements of background for both users and applications are alleviated
in our approach: not every application wants an embedded Haskell envi-
ronment inside after all. Also, there are much more C+4 programmers
around than Haskell ones.

There has been a recent effort to implement FRP in Java. The result in-
tegrates the FRP event/behavior model with the Java Beans event/property
model [2]. However, the lack of a strictly typed polymorphic system in Java
becomes a limitation. Furthermore, that implementation of behaviors heavily
depends on an event propagation (“push” mode), somehow different from ex-
isting Haskell ones. The latter mainly make use of the lazy evaluation feature
(“pull” mode). This makes significant differences when recursive or mutually
recursive behaviors being defined.

In this paper we present a novel C++ approach that aims to provide

e A pure standard C++ implementation. This fits easily with most existing
programming environments.

e Concise and straight-forward FRP expressions. Both “functional” and
“reactive” aspects are perserved

e Fully extensible modules for generality and customizability from the merits
of object oriented programming.

e An analog of well establish FRP implementations. This makes under-
standing easy and conversions fast. The analog includes

— A stream-based implementation of Behaviors and Events. It has been
formally proved asymptotically “correct” [16].

— A strictly typed framework. It is easier and safer to do a compile-time
type checking than a run-time one.

— The “Pull” mode stream graphic. Data flow is initiated by sink and
propagated to source.

2 A Brief Introduction to FRP Model

Functional Reactive Programming (FRP) is a programming framework for con-
structing interactive applications in a declarative manner. Since FRP is origi-
nally developed from FRAN (Functional Reactive Animation) and FROB (Func-
tional Robotics) as an Embedded Domain Specific Language on Haskell, it is
hard to distinguish the core of FRP from the features of Haskell language it-
self. Nevertheless, here we present our description based on the preliminary
FRP User’s Manual[5], and all our discussions in this section are in (simplified)
Haskell syntax:

e x :: a declares that x has type a



e () denotes a void type, which has only one possible dummy value ();
(a,b) denotes a pair type, which has first element of type a and second
element of type b; [a] denotes a homogeneous list type of any (include
infinite) length whose each element is of type a.

e a —> b denotes a function type which takes a type a argument and gives
out the type b result. Functions that takes more than one argument
are usually treated as higher order functions, for example, a -> b -> ¢
denotes a function type which takes a type a argument and results in a
function which takes a type b argument and results in type c. In other
words, it is a function which takes one argument of type a and the other
argument of type b and results in type c.

e Polymorphic types describe families of types: if T is a polymophic type
and a is a type, T a means “T of a”, such as “List of Integers”. Types
belongs to the same family usually share same functions. One example is
that both “List of Integers” and “List of Characters” can apply the same
list operations.

2.1 Behaviors

The key terms in FRP are Signal, including Behavior and Event. Conceptu-
ally, a Behavior t is a value of type t that varies over continuous time. The
simplest behaviors are constant behaviors, which always has the same value
over time, such as 1 :: Behavior Int, or red :: Behavior Color. More
complex and interesting examples including animations as Behavior Picture,
or position vectors of a visual tracker as Behavior (Int,Int).

Sometimes Behaviors are derived from constants or ordinary functions and
existing behaviors. This kind of operation is called a “lift”, for example,

1ift0 :: a -> Behavior a

liftl :: (a -> b) -> (Behavior a —> Behavior b)

lift2 :: (a -> b -> ¢) -> (Behavior a -> Behavior b -> Behavior
c)

Since functions that take no argument always return the same values, constB,
which makes a constant behavior, is same as 11ft0 (on lifting constants to be-
haviors). 1ift1 returns a function which applies the function argment of 1ift1
to all values of a behavior to create a new behavior; it works like map in func-
tional languages.

Most arithmetic operators can be overloaded in Haskell so that same “lifted”
form can be used conveniently, for example,

a, b, ¢ :: Behavior Real

c=(a+b) /2

Here “+” and “/” are both functions lifted to behaviors level, and “2” is
used as a constant behavior.

Sometimes value of one behavior at current time relies on values of this
and/or other behaviors at previous times. We can form a “delayed” behavior



of existing one to allow this. delayB delays a behavior for one sampling step,
given an initial value.

delayB :: a —-> Behavior a -> Behavior a
2.2 Events
Conceptually, an Event t is a time-ordered sequence of event occurrences, each
carrying a value of type t. For example, a left button press 1bp :: Event ()
and a keyboard press key :: Event Char.

constE :: a -> Event a

neverE :: Event a

constE lift a constant to an event that is always happening and neverE
construct an event that never happens. Lifted functions can also apply on
events.

Events can be derived from behaviors and vice versa. whileE turns boolean
behaviors to events using the rule that the event happens if and only if the value
of the behavior is true, and whileByE turns behaviors to events by specified
functions. whenE is same as whileE except that it discards repeating events.

whileE :: Behavior Bool -> Event ()

whenE :: Behavior Bool -> Event ()

whileByE :: (a -> Maybe b) -> Behavior a-> Event b
stepB :: a -> Event a -> Behavior a

Given an initial value, stepB holds the value of the most recent event as the
current value of the derived behavior:

snapshotE_ :: Event a -> Behavior b -> Event b

timeOfE :: Event a -> Event Time

snapshotE_ captures the value of a continuous behavior at the time of an
event occurance, and timeOfE captures the current time.

An FRP program is just a set of mutually recursive behaviors and events.

2.3 Switches

A rich set of operators is provided for users to compose new behaviors and events
from existing ones. Some of the operators describe the way they react. Event
mapping operators, ==> and -=>, can be used to create an event of behaviors,
and the switchB and tillB operators switch active behaviors according to such
event of behaviors.

(==>) :: Event a -> (a -> b) -> Event b

(-=>) :: Event a -> b -> Event b

switchB :: Behavior a -> Event (Behavior a) —-> Behavior a
tillB :: Behavior a -> Event (Behavior a) -> Behavior a

switchB switches to the behavior carried by the event each time it occurs;
t111B switches on the first ocurrence once and for all.

A more complicated example follows:

color :: Behavior Color

color = red ‘tillB¢ ( 1lbp -=> blue .|. rbp -=> green )



This reads as “initially behave as red, after the left button is pressed change
to blue, or after the right button is pressed change to green”.

2.4 Tasks

Another way to express reactivity is using the concept of Task. There is actually
a family of different types of tasks. Here we only focus on their common aspects.
A task combines a behavior and a terminating event, and can be composed either
sequentially or in parallel.

(>>) :: Task a b -> Task a ¢ -> Task a ¢
(Ill) :: Task a x -> Task b y -> Task (a,b) (Either x y)
Tasks can be sequenced using >>, or put in parallel using |||. Sequenced

tasks are executed in order: the second one begins to be evaluated when the
first one ends (that is its terminating event occurs). Parallel tasks are execuated
simultaneously: they begins at the same time, and the end of either one of them
also termiantes the other.

mkTask :: Behavior b -> Event x -> Task b x

The mkTask function constructs a task from its behavior and terminating
event:

tillT_ :: Task b x -> Event x -> Task b x

til1lT terminates a task by an extra event. The occurence of this event
terminates the associated task if it is not already terminated.

2.5 The Streams Implementation of FRP in Haskell

Practically, an implementation of FRP has to sample continuous behaviors. In
other words, behaviors are presented by infinite streams of values sampled at
an infinite stream of times [3]:

type Behavior a = Stream Time -> Stream a

Events are defined similarly, as infinite streams of value of type Maybe, each
indicates whether or not the event occurs (Just x or Nothing) and the value it
is carrying if it does, sampled at an infinite stream of times:

data Maybe a = Nothing | Just a

type Event a = Stream Time -> Stream (Maybe a)

Then it’s easy to define behavior and event operations on the base of stream
and functional operations, such as constB is defined as a function for any input
of stream of time, return the stream of repeating some same value. The com-
plexity of manipulating infinite streams is hidden by lazy evaluation feature of
Haskell, as the value of an element in a stream will not be computed until it is
needed immediately.

2.6 Data Graph View of FRP

The other way to look at the FRP model is the view as data graph. Each vertex,
namely behavior or event, provides a typed time-varying value; each directed
edge is a data dependency. From time to time, data flows along the edges and is
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Figure 1: How Euler integral module is composed by a differentiator and an
accumulator?.

processed by some functions at vertices. For example, at any specific time, any
lifted (+) operator is a vertex whose value is the sum of current values of the
two vertices that are on the other sides of the operator’s current two incoming
edges. The reactivity implies that the graph itself is a function of time.

In this sense, FRP shares common merits with graph or dataflow languages,
except that it is non-visual. Its layered modular structure allows rapid prototype
developing and reduces errors. Furthermore, since the graph structure changes
dynamically instead of being statically predefined, it is able to do more complex
tasks.

This data graph view plays an important role in our understanding and
implemention of FRP in C++.

3 A User’s View of FRP in C++

Obviously, it is neither desirable nor necessary to implement the Haskell syntax
in C+4. Our implementation keeps most of the basic FRP sementics, while
employs the syntax notation as similiar as possible.

2The symbol Z~1 denotes the delay operation of one sample length.
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Figure 2: Data graph view of the fibonacci series example.

3.1 Behavior and Event

There are two basic data types in FRP in C++: Behavior<T> and Event<T>.
These mirror their Haskell counterparts, Behavior and Event. Behavior<T> is
the type to declare behavior of type T, and Event<T> is to declare event of T.
Constants and functions can be lifted to behavior level by constB and constE
or overloaded 1iftB and 1iftE respectively. Common operators such as “+7,
“r @ and “/” already have their lifted version overloaded. Thus, for example,
we can write

Behavior<double> a, b, c ;

c=(Ca+b) /2.0 ;

Here is an example of fibonacci series, which is defined as each succeeding
term is the sum of the two immediately preceding:

Behavior<int> fibo ;

fibo = delayB(0) ( fibo ) + delayB(0) ( delayB(1) ( fibo ) );

Here the delayB function delays a behavior for one sampling step, effectively
get immediate preceding of every term. The behavior fibo itself is the whole
fibonacci series.

The simplest way to run a FRP program is to repeatly evaluate the current
value of a behavior, for example, fibo.run().

3.2 Switches and Tasks

The switchB and tillB operators switch active behaviors according to some
events, which can be constructed by ThenB.

The same expression in the last section turns out to be:

Behavior<Color> color, red, blue, green ;

Event<void> 1lbp, rbp ;

color = red TillB ( 1bp ThenB blue || rbp ThenB green )

Here the “| |” opeartor merges two events.

3For illustration purpose, these are not their real prototypes, but are transparently equiv-
alent. T, X and Y are types. Same applies for the other lists of functions.



Behavior<T> constB (T) ;

Behavior<T> (x 1iftB (T (0 ) YO ;

Behavior<T> (* 1iftB (T ()X ) ) ( Behavior<X> ) ;
Behavior<T> (x 1iftB (T (x)EX,Y) ) ) ( Behavior<X>, Behavior<yY> );
Behavior<T> integral  ( Behavior<T> ) ;

Behavior<T> derivative ( Behavior<T> ) ;

Event<T> constE (T) ;

Event<T> neverE O ;

Event<T> (* 1iftE (T (=0 ) YO

Event<T> (* 1iftE (T (DX ) ) ( Event<X> ) ;

Event<T> (x 1iftE (T (x)X,Y) ) ) ( Event<X>, Event<Y> ) ;
Behavior<T> (* stepB (T) ) ( Event<X> ) ;

Event<T> snapshotE ( Event<X>, Behavior<T> ) ;

Event<Time> timeOfE ( Event<X> ) ;

Event<T> (* whileByE  ( Maybe<T> (*)(X) ) ) ( Behavior<X> ) ;
Event<T> whileE ( Behavior<bool> ) ;

Event<T> whenE ( Behavior<bool> ) ;

Figure 3: List of some functions on behaviors and events 3.

Task<T,Y> is the type of task composed by a behavior of type T and a
terminating event of type Y. mkTask function constructs a task from its behavior

and terminating event. Here is an example of task.
Task<Color,void> display ;

display = mkTask(blue, lbp) >> mkTask(green, rbp) >> display;

The above expression reads as “display blue until left button is pressed, then

display green until right button is pressed, then repeat”.

Behavior<T> switchB
Behavior<T> tillB
Event<T> thenB
Event<T> thenB
Task<T,Y> mkTask
Task<T,Y> tillT
Task<T,Y> operator >>
Task<T,Y> operator ||

Event<X>, T (x)(X) );
Event<X>, T );

AN """ """~ "

Behavior<T>, Event< Behavior<T> > );
Behavior<T>, Event< Behavior<T> > );

Behavior<T> x, Event<Y> y ) ;
Task<T,Y> x, Event<Y> y ) ;

Task<T,Y> x, Task<T,Y> y ) ;
Task<T,Y> x, Task<T,Y> y ) ;

Figure 4: List of some functions on switches and taskes




3.3 Notations on Syntax

Since the pair of parentheses of function application are required in C++, they
may accumulate and impair expressiveness of the program (as it arguablely does
in Lisp). To counter it, We introduce the “<<=" operator for unary function as
an additional feature. Like “$” operator does in Haskell, a <<= b means a(b).
This also makes data-flow intuitive. For the same example of fibonacci series,
we can now write

fibo = (delayP(0) <<= fibo) + (delayP(0) <<= delayP(1) <<= fibo);

C++ allows neither defining new opeartor symbols nor making function
application in “infix” style, so synonymous macros are provided for infix usage
in addition to existing functions such as tillB, while new macro name ThenB
are introduced for both ==> and -=>%.

4 Some Examples

In this section, our implementation is put as a part of a developing C++ library
for real time image processing and visual tracking, called XVision2[6], so it
has such integrated fuctions, besides I/O support routines. Data types begin
with “XV” prefix are defined by XVision2. Most of them are self-explanatory,
like XVPosition for position and XVImageRGB<XV_RGB> for native RGB image.
Beside these, our FRP implementation provides wrapper behaviors, events and
behavior combinators for I/O functionalities in XVision2.

This statement declares a behavior combinator display that takes its argu-
ment, whose type is behavior of RGB image, and display it to a window. Its
output is also a behavior of RGB image that is the overall content of the win-
dow, as additional drawings may be put on the window in addition to the input
behavior. Events of the window, such as button presses, can also be derived
from it, for instance, display.1lbp () returns the left button press event.

WindowDisplay<XV_RGB> display ;

Video sequences can be represented by behavior of image. Most common
used video sources include video capture devices (from input of cameras or video
tapes) and stored MPEG files. The following statements declares a behavior of
RGB image videoSource connected with an IEEE 1394 frame grabber.

XVImageRGB<XV_RGB> videoSource ;

XVDig1394<XVImageRGB<XV_RGB> > grabber (DC_DEVICE NAME, "S1R1");

videoSource = video(grabber);

4.1 Image Processing and Visual Tracking

Our example problem is to track the position a specified template image in a
video sequence by the means of SSD (sun-of-square differences) tracking. This

4The reason of combine two operator into one is that we are running out of meaningful
operator symbol space. Because overloaded functions on the same operator symbol can be
distinguished by its usage, and in this case both their similarity in meaning and difference in
form is obvious, to share the same symbol here does not harm.



process can be illustrated as following:

position <— ’ SSD Tracker ‘ <~—— gray image <—

-~ ’ RGB to Scalar ‘ <—— color image <— | Video Camera

Our program directly reflects above:
position = ssdTracker <<= &RGBtoScalar<XV_RGB,int> <<= videoSource;

where position is of type Behavior<XVTransState> (XVTransState is a
pair of double that represent position in translation), and ssdTracker is a
behavior combinator based on SSD tracker in XVision2, which takes a template
image and a source image and returns the position of the former in the latter.

4.2 Interactive Animation

Here we’ll see how to express a moving circle on the screen leading by mouse.

First we shall have behaviors of XVPosition for circle center positions, and
event of XVPosition for where user clicks in the window. To make the circle
move graduallly towards target position, we must have knowledge of how much
time has elapsed since last mouse click, and what is total time we allow the
circle to travel:

Behavior<XVPosition> current, last, target ;
Event<XVPosition> button ;
Behavior<Time> time, delay ;

button = display.lbp() ;
time = timeB - stepTimeOfE(button) ;
delay = Time(1.0) ; // const Behavior

Function stepTimeOfE(x) is defined as stepB<Time>(0) (timeOfE(x) ), mean-
ing the time of occurence of last event x.

Now the definition of positions are simple: current position is a linear in-
terpolation of last position and target position, or is just target position if it
reaches it; target position is where the button last clicks, and “last” position is
where the circle is when the button last clicks.

current = switchB( (target*time+last*(delay-time))/delay,
whileE(time>=delay) ThenB target ) ;

target = stepB(original) <<= button ;

last = stepB(original) <<= snapshotE( button, current ) ;

The order of definitions can be arbitrary. In fact, the above ones are mutual
recursive.
Finally we can run the expressions by:
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( display << (liftB(makeCircle) <<= current) <<= background )->run();

Where makeCircle is an ordinary C++ function returns a circle centered
at given position and having a constant radius, and background is behavior of
image serves as background.

4.3 Robot Control

The simplest way to control a robot is to assign the velocity of it two wheels.
Meanwhile, we need input from its world, from sonar, infrared sensor, bumper,
or video camera. High level abstraction is needed: If the robot is to go for
a colored ball, we normally use a color-blob tracker on the data returned by
mounted camera, and it must also be aware at the same time of the data returned
by front sonar to avoid bumping into something. The code would be:

scoutDrive <<=
(1iftB(go_for) <<= liftB(center) <<= blobFeature <<= videoSource)
TillB whenE( getScoutSonar(0) <= 10 ) ThenB scoutStop ;

scoutDrive is a behavior combinator which accepts behavior of ScoutVel,
which is defined as a pair of double, as assigning speed of left and right wheels
of Scout robot. getScoutSonar(0) returns the front sonar behavior. go_for is
a ordinary C++ function given the position of tracked color blob feature, tells
how robot shall go for it by returning a ScoutVel. Its detail depends on the
type of camera and it settings. For example, if it is a omni-camera viewing 360
degrees of surroundings from high top of the robot, the code might looks like:

ScoutVel go_for( XVPosition obj ) {

if( distance( obj, dest ) <= threshold ) { // close enough, stop
return ScoutVel(0,0) ;

telse if( angle( obj, dest ) <= -PI/4 ) { // at right, turn right
return ScoutVel(1l,-1) ;

telse if( angle( obj, dest ) >= PI/4 ) { // at left, turn left
return ScoutVel(-1,1) ;

telse { // go strait
return ScoutVel(1,1) * speed ;

}

}

5 Implementation Details

Before an implementation take place, many decisions must be made on what
level of similarity on both syntax and semantics of the original one on Haskell
should and/or could be mantained, as well as on the ground of possible appli-
cations.

11



5.1 Implementation Considerations
5.1.1 Pure versus Impure

Compare with functional languages such as Haskell, C++ is is quite free: any
piece of code may do anything it wants, including side-effect. Only when user
limit such usage, our implementation of FRP framework on C+4 would help
to build declarative application. Especially, caution must be taken with objects
having states, as functions may change the internal state of their parameters.
Although sometimes it provides shortcuts to accomplish certain tasks, in terms
of behaviors and events themselves, it is necessary to imitate pure-functional
style: only one definition of a behavior is allowed, and the definition should not
be restricted to appear before its first usage, as long as the type signature is
declared (this is indeed a limitation of C++). Also, copies of existing behavior
should be identical with the original: definition or reference of one be equivalent
as another, even some of the variables refering this entity has been out of the
scope or destroyed. This feature is accomplished by an envelope class wrapping
a real behavior model and handling copy and assignment operations accordingly.
The envelope looks as behavior class itself from user is perspective.

5.1.2 Pull versus Push

Maybe the most important implementation issue is the underlying mode of how
changes of behaviors and events propagate. Basically, there are two of them:
stream based “pull” mode as used in the original Haskell implementation, and
GUlI-like event propagation “push” mode as used in the Java implementation.

e In the “pull” mode, behaviors are driven from consumer, or the FRP
engine. It takes sample either at a timely manner or as fast as possible,
provided necessary and unavoidable computations are completed. Events
are defined in terms of behaviors.

e In the “push” mode, events are driven from event sources and being prop-
agated and processed. The sample of behaviors can be taken at any time,
however, they may only change in time of events thus only after all previ-
ous events processed they can behave correctly.

While they are indistinguishable when the computation load is light, “pull”
mode is more error-tolerant then “push” mode when computational load is
heavy. For example, a robot equipped with a video camera which changes
behavior at 30Hz may perform some tracking operation which requires more
the 1/30 second to complete for some frames, so it is better to drop frames
when necessary. In our implementation, we use the “pull” mode not only to
make analog of the Haskell one, but also look for its advantages.

5.1.3 Finite versus Infinite

At first glance, to implement an infinite stream of values has no way in C++,
an empirical language does not provide lazy evaluation, which is essential not to
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compute or store ever-lasting sequences of values. However, further investigation
reveals that only current value need to be computed and store for any stream.
Although recursively defined streams make use of its previous values, this can
be solved by introducing delay operator, which constructs new behaviors which
are one “tick” delay of old ones. In this way our graph structure is able to
emulate resursive behaviors.

5.1.4 Parameters versus Signals

In the Haskell FRP, time and input are treated as parameters to singals, where
inputs are classified and united. However, in our implementation, they are
treated as seperate behaviors or events. This is for the following reasons:

e One of our designing aim is the openness of the system, in other words,
we are not goint to limit the variety of types of input which we cannot
predict.

e In practice most behaviors and events are combinations of others, where
the combinator itself (such as “+”) are not directly functions of time or
input.

e For those singals that are directly function of time and/or input, explicit
declarations are also easy to write by lifting the function to behavior or
event level.

5.1.5 Derived Class versus Template

Behaviors can be any types by definition. There are two mechanisms in C++ to
apply polymorphic algorithms: class hierarchy and template class or function.
We employ the latter in our implementation, for the following reasons:

e Template classes and functions provide static type checking in compile-
time, in addition of possible dynamic run-time type checking. It is not
only safer, but also more declarative.

e It would be inconvenience if user has to define their behavior as a derived
class, in particular, many behaviors can be represented by basic types in
C++, which are not in any class hierarchy unless wrapped.

5.2 Syntax Sugar

It is one thing to implement FRP ideas, while it is another thing to do it in a
neat way. The inherent lack of compile-time type inference is an obstacle for all
C++ packages that more or less touch the functional world. Obviously, to force
users to write out all type signatures invloved in the computation is the easiest
solution, but this will not only harm the readablility of the program, but also
unnecessarily expose internal implementation details, which harms modularity
and scalability. Since our work is not to provide a full-fledge functional package
for C++, we found these methods useful to provide adequate “syntax sugar”:

13



e Overloading of existing functions and operators as auto-lifting for expres-
siveness.

e Defining cast operators, constructors and assignment operators, plus over-
loading of FRP functions, to hide implementation details.

e Using template partial specialization as static type look-up table, which
is often referred as Type Traits.

5.2.1 Type Traits

In C++, a type is not a object, so it is not possible to write a function on types.
However, when we write signatures, it is not uncommon that one type is a
function of another. For example, the “<<=" operator applies its first argument,
which is either a (pointer to) function or a function-like object (usually called
functor or functoid), to its second argument. To define “<<=" we must declare
its return type, which depends on the return type of its first argument. Since
there are many forms of function-like object and users can define their own, it
is better to write one defining body of “<<=" and use a static type look-up table
to establish this type dependency in a more maintainable way. Same applies for
“lift”.

To implement such type look-up table, “typedef” are used inside a partial
specialized template class:

template<class T>

struct CombinatorTraits {

typedef typename T::Result Result ;

s

template<class T1, class T2>

inline typename CombinatorTraits<T1>::Result

operator <<=( comst T1& x1, const T2& x2 ) {
return x1(x2);

}

This assumes the first argument of “<<=" belongs to a type T inside which
defines T::Result as its result type. While this is true for all function-like object
classes defined in our implementation, C++ native (pointer to) function type
doesn’t fit into this category. To allow “<<=” works on the variety of native
function forms, we shall define:

template<class Tout, class Tin>
struct CombinatorTraits<Tout (*)(Tin)> {
typedef Tout Result ; };
template<class Tout, class Tin>
struct CombinatorTraits<Tout (*)(const Tin&)> {
typedef Tout Result ;

s
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And so on. Similiarly we can add new entries into the table for third-party
functional packages without modifying existing entries and the package itself.

5.3 System Architecture

The understanding above leads to our implementation of FRP in C++. Any
kind of behavior and event is abstracted as module, while modules are intercon-
nected forming a graph structure, which is the FRP program. Each module has
a time-varying value of its type, and maintains its “frame counter” indicating
what time of the value it is having. Each module also knows how to update
its value in need, including which other modules it depends on. When one of
the module is requested for a value that is not ready yet (the existing value the
module has is of a previous time), it asks them for their updated values then
computes its own based upon those ones. Such update request propagates from
the original reqeusting module throughout all those modules in the graph which
have an impact on the value of the original one, as the name “pull” indicates.
One phase of propagation must be completed before another begins to ensure
the synchronism of the graph.

Technical details, such as constructors and destructor, are ignored in all
following code pieces due to space limitation.

DelayCombinator LiftDCombinator Lift1Combir
2rlass T= 55 Tout, class Fn= 55 Tin1, clas
BehaviorCombinato
=class T=

5.3.1 Basic Modules

Abstract class GenericBehavior and its derived templated abstract class BehaviorBase<T>
defines the behavior modules sample and dependency handling interfaces.

class GenericBehavior {

public:
virtual void update( Sample now ) = O ; // update this and all dependencies
virtual void compute(void) = O ; // do local computation
virtual void attach( GenericBehavior* b ) = 0 ; // add to dependency
virtual void detach( GenericBehavior* b ) = 0 ; // remove from dependency

+s

template<class T>
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class BehaviorBase : public GenericBehavior {

public:
virtual const T& get(void) const = 0 ; // get current behavior
virtual void get( T+ addr ) = 0 ; // (potentially) delayed get

s

Class BehaviorModule<T> implements the above interfaces. It serves as root
class of all behaviors and events classes, as well as representing constant behav-
iors itself. Behavior is the envelope class mentioned before, so x :: Behavior
Int now translates as Behavior<int> x ;. Most other derived classes of BehaviorModule
are supposed to override compute() member function, which updates time-
varying behavior. They include behaviors lifted from C++ functions with 0,
1, 2, or more arguments. Different from Haskell version, functions with no
argument are not necessarily constant here.

5.3.2 Lifted Functions

However, a function with one or more arguments can have more than one form
of their inputs, among which, the most frequently-used are type T and const
T&. It is impractical to list all combinations of them, so this function type are
also templatized:

template <class Tout, class Tinl, class Fn>
class LiftiModule : public BehaviorModule<Tout> {
protected:
Fn fn ;
BehaviorBase<Tinl> *pl ;
public:
void compute(void) { value = fn( pl->get() ) ; }

+s

Functions with more arguments are lifted in the same manner. To make
concise expression instead of to define variables for lifted functions explicitly,
auxiliary overloaded functions 1ift are defined to lift any function to behavior
level, by making use of a static type looking-up table implemented by type
traits:

template<class T>

struct LiftTraits { // const lift as default
typedef T Arg ;
typedef T Agent ;
typedef Behavior<T> Result ;

+s

template<class T>
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inline typename LiftTraits<T>::Result 1lift( T f ) {
return typename LiftTraits<T>::Result
( typename LiftTraits<T>::Agent(f) );
}

template<class Tout, class Tinl>
struct LiftTraits<Tout (*)(Tinl)> {
typedef Tout (*Arg) (Tinl) ;
typedef Arg Agent ;
typedef LiftCombinatori<Tout,Tinl,Arg> Result ;

+s

template<class Tout, class Tinl, class Tin2>
struct LiftTraits<Tout (*)(Tin1,Tin2)> { ... }

5.3.3 Delay Module

To enable recursive and mutually resursive behaviors, delay modules are intro-
duced as an unary behavior operator, constructs new behaviors which are one
sample delay of old ones. The idea is to store previous value of original behavior
as current value of new one:

template<class T>

class DelayModule : public BehaviorModule<T> {
BehaviorBase<T>* p ;
T prefetch ;

public:
void compute(void) { value = prefetch ; p->get(&prefetch); }

+s

While stepping forward to next sample, the increasing of frame counter is
propagating among the graph structure of behaviors, so not all modules are
having the same sample count at same time while in transition. To deal with
this temporary discrepancy, asynchronous get () mechanism is employed here.
Each BehaviorModule maintains a list of those modules which are waiting for
a value that is currently not available in this module. Asynchronous get add
modules in the list if necessary, and whenever a new value is generated, the list
are updated by completing possible requests. This asychronous get is only used
in DelayModule, since all recursive or mutually recursive behavior definitions
must have at least one of them in the loop, or it will never terminate.

Similarly, events are defined as behaviors of Maybe type. Since there is no
data type in C++, we emulate it by a general Maybe<T> class as a wrapper of
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T*, plus consideration of effectiveness on copying and assignment, as well as a
specialized Maybe<void> class as a wrapper of bool for Maybe () in Haskell:

template<class T>
class Maybe {
protected:
T *x value ;
char datal[sizeof(T)];
public:
bool hasValue(void) const { return value ; }
T& getValue(void) { return *value ; }
const T& getValue(void) const { return *value ; }

Maybe() : wvalue(0) {}
Maybe( const T& x ) : value(new((void*)data) T(x)) {}
Maybe( const Maybe<T>& x )
value(x.hasValue() 7new((void*)data) T(x.getValue()):0) {}
Maybe<T>& operator = ( const Maybe<T>% x ) { ... }
Maybe() { if( value ) value-> T() ; }
}s

template<>
class Maybe<void> {
protected:

bool value ;
public:

.

Now the implemetation of events is simple:

template<class T> class Event : public Behavior<Maybe<T> > {...};

Thus we can define interactive primitives on behaviors and events, such as
whileE, whileByE, whenE, onceE, and so on. In fact, whileByE is just a 1ift
and whileE is just a lifted cast from bool to Maybe<void>

In the original FRP, Task are type classes, which have instances of different
kinds of tasks. Here we take a simplified implementation, to define task as a
single aggregate type of a behavior and an event.

template<class T, class Y>
class Task : public BehaviorCombinator<T> {
protected:

BehaviorBase<T>* p ;

BehaviorBase<Maybe<Y> >* e ;
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public:

6 Related Work

Implementations of Functional Reactive Programming (FRP) on Haskell have
been pioneered by Elliott[3] and Hudak[9]. Our implementation in C++ share
the same stream-based model and some of working mechanism with their work.
Recently, Courtney[2] implemented (a sub-set of) FRP in Java, focused on
the relationship between the FRP event/behavior model and the Java Beans
event /property model.

On the other hand, the idea of dataflow-based (graph) programming exists
for a long time. Lucid[l], ECOSI7] and Singal[10] are such languages. In our
work, we explore the connection between dataflow and functional programming
and build our implemetation upon this connection.

C++ Programming in functional style, including higher-order functions, is
already well-known to the community[11] [12]. Our implementation is not di-
rectly based on existing works: It is neither our purpose to re-invent a functional
programming language over C++, nor to depend to arbitrary syntax notations
of third parties.

7 Conclusions

Here we have presented an implementation of FRP in C+4. The work demon-
strate that the idea of FRP falls beyond functional programming world and it
is not only possible but also beneficial of having an C++ implementation of
FRP, which faithfully keeps the core feature of the original FRP in Haskell by
intelligent exploiture of standard C++ programming language.

Our work has significant potential impact on eliminating the barrier be-
tween new emerging functional reactive programming community and massive
conventional empirical programming community and providing an alternative
understanding of FRP. It also enables “apple to apple” comparative analysis of
the two approaches.

7.1 Limitations

Compare with original FRP in Haskell, which itself is evolving, our implemen-
tation has certain limitations:

e The inherent limitation of not being able to define a function “on fly” in
C++. It can be alleviated, in fact, by introduction of lambda expression
of signals, which is not mentioned in this article.
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e The implementation of task operations is incomplete. Tasks themself are
less functional from programming point of view, so it is still under discus-
sion how much of it shall be useful in our mixed environment.

e This implementation is not thread-safe. If multiple threads is to run the
same expression at the same time, explicit mutual exclusive machanism
must be employed.

e Memory leak of data graph nodes. It only occurs on the dynamic con-
struction and destruction of the graph itself, not the procession of data,
so the it is only a minor problem. Due to potentially recursive nature of
behaviors, the leak cannot be resolved simply by reference counting. A
garbage collector would solve it completely.

Our implementation is also sharing the same limitation with the Haskell
version due to event sampling, that such event as whileE( timeB == 1.0 )
will never be detected.

7.2 Future Work

Our directions of future include:

e Further exploration of the definition of FRP and its relation with its exist-
ing Haskell expression, and the extension of such definition and expression
fit into empirical world.

e Full applications of this implementation which utilize its merits and dis-
play its possible limitations, as for functional reactive programming.
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