
Peer-to-Peer Systems for Prefix Search

Baruch Awerbuch∗

Department of Computer Science
Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
baruch@cs.jhu.edu

Christian Scheideler
Department of Computer Science

Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
scheideler@cs.jhu.edu

ABSTRACT
This paper presents a general methodology for building message-
passing peer-to-peer systems capable of performing prefix search
for arbitrary user-defined names. Our methodology allows to achieve
even load distribution, high fault-tolerance, and low-congestion con-
current query execution. This is the first known peer-to-peer system
for prefix search with such properties. The essence of this method-
ology is a plug and play paradigm for designing a peer-to-peer sys-
tem as a modular composition of arbitrary concurrent data struc-
tures.

1. INTRODUCTION

1.1 Distributed searchable data structures
Consider data items o with names (or identifiers) Name(o) out

of some universe Names. A standard ”uni-processor” searchable
data structure U is accessed through a single handle (entry point)
h into U (e.g., a tree root or the front of a queue). It supports the
following standard operations:

• h.Insert(o): adds data item o to U .

• h.Delete(key): removes the data item with name key from U .

• h.Search(key): returns the closest prefix o∗ in U to key from
above: o∗ = argmin{Name(o) | o ∈ U , Name(o) ≥ key}
where “≥” is with respect to lexicographical ordering.

Fault-tolerant data structures [2] and concurrent data structures use-
ful for a network of processors may also have multiple handles h
into the data structure.

In order to implement a searchable data structure in a distributed,
dynamic environment, we also need operations for the reorganiza-
tion of the data placement if new participants (or sites) enter the
system or old participants leave the system. Hence, in addition to

∗Supported by DARPA grant F306020020550 “A Cost Benefit
Approach to Fault Tolerant Communication” and DARPA grant
F30602000-2-0526 “High Performance, Robust and Secure Group
Communication for Dynamic Coalitions”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

supporting Insert, Delete, and Search, a distributed searchable data
structure D must also support

• s.Join(s′) contacts site s′ in D to integrate new site s into D.

• s.Leave() removes site s from D.

If only precise lookup is required, then the distributed hash ta-
ble approach of Chord, CAN, Pastry, Tapestry, or Viceroy [13, 11,
12, 15, 8] can be used to construct and maintain a distributed data
structure. In these approaches, a connected pointer graph (or over-
lay network) is maintained between dynamically changing sites,
and hashing is used to map data to sites in a load-balanced manner.
While no impossibility result has been formally shown, it appears
to be difficult to accomplish prefix search. In fact, the task of con-
structing distributed searchable data structures was considered an
open problem [4].

We solve this problem with a new plug-and-play paradigm: in-
stead of designing yet another distributed data structure, we show
how to combine existing (non-searchable or imbalanced) concur-
rent data structures (see Section 1.2) to construct a searchable (and
balanced) distributed data structure.

We describe the general principle of this paradigm in Section 2
and give implementation details in Section 3. In Section 4, we
introduce parameters measuring the fault-tolerance and the ability
to route requests with low congestion in order to quantitatively state
properties of our decomposition (see Theorem 5.1 in Section 5).
Finally, in Section 6, we illustrate our methodology, using existing
un-searchable and imbalanced concurrent data structures [13] and
[1] as black boxes. Quantitative bounds for resulting (searchable
and balanced) distributed data structures are given in Corollary 6.3.

To simplify the presentation, we will assume throughout the pa-
per that sites work reliably and that sites leave gracefully, i.e. if
a site s wants to leave the system, its first waits for s.Leave() to
complete before, for example, closing the Internet connection. Cer-
tainly, for a distributed data structure implementation to work reli-
ably in a distributed setting, fault and exception handling is a major
issue, but considering this here would have made the paper unread-
able and would have disguised our main new ideas.

1.2 Previous work
The essence of our paradigm to construct a distributed data struc-

ture is to combine two concurrent data structures in a transparent
and consistent way. In this section, we give an overview of previous
work on concurrent data structures and consistency.

Concurrent data structures
The difference between a sequential and a concurrent data structure
is that each data item (resp. the object holding it) in a concurrent
data structure can be used as a handle into the data structure and that

the operations Insert, Delete, and Search can be executed concur-
rently. Concurrent data structures have been heavily investigated
in the area of shared memory machines (or PRAMs) [14], though
in a slightly weaker form than we require here, since in some of
these constructions not every data item can be used as a handle.
The reason this was often not necessary is that these approaches
rather concentrate on parallelizing the way in which the data struc-
ture is accessed instead of parallelizing its structure, i.e. making its
structure more symmetric. For distributed environments, symmet-
ric concurrent data structures are of much greater use because of
much better fault tolerance properties.

Symmetric concurrent data structures form the essence of our
construction. The problem of managing such a data structure is
very similar to maintaining a searchable overlay network between
dynamically changing (and reliable) sites with names. In this sense,
elegant randomized implementations for concurrent searchable data
structures have already been presented, essentially independently,
by Li and Plaxton [7], Aspnes and Shah [1] and Harvey et al [5].
(Note that hash-based methods [13, 11, 12, 15, 8] do not work be-
cause they only allow precise lookup.) The resulting data structures
were named skip graphs or skip nets [7, 1, 5]. They constitute a
simple and elegant extension of the randomized skip list data struc-
ture proposed by Pugh [10] to a concurrent environment. In [7, 1,
5] the focus is on proving upper bounds on the degree, path length,
and expansion of these constructions.

The reason why the concurrent searchable data structure problem
is easier than the distributed variant of this problem is that it leaves
unsolved how to dynamically embed a data structure on top of the
site structure. The contribution of our paper is a simple paradigm
accomplishing such an embedding, thus making the results of [7, 1,
5] applicable to distributed, load-balanced message-passing peer-
to-peer networks. Next, we describe the approach of [7, 1, 5].

Existing concurrent data structures
Essentially all the solutions for concurrent searchable data struc-
tures are based on a doubly-linked list or cycle of data sorted in
increasing order of their (user-defined) names. Each data item y
has a pointer to its successor z = succ(y) and predecessor x =
pred(y). This alone is not an ideal implementation, since in a list
of n data items it can take Θ(n) steps to go from one data item
to another. Moreover, concurrent execution of search operations
by n processes can cause a high congestion as a data item may
be traversed by Θ(n) processes. There are several ways of adding
shortcut pointers to alleviate this problem.

Perfect chordal graphs. Consider a doubly-linked cycle in
which each data item o keeps pointers to all data o whose ranking
in this cycle is exactly 2i larger than its own, namely pointi(o) = o′

such that

rank(o′) = rank(o) + 2i (mod n)

where rank(o) = r− 1 if o has the rth smallest name. The pointer
graph resulting from this belongs to the class of chordal graphs and
is close to a hypercube. Because of the expansion properties of
the hypercube, it can be shown that, in a data structure as above
with n data items, n concurrent search operations with constant
contention at the endpoints create an only logarithmic amount of
traffic through a single data item. However, maintaining perfect
hypercubic pointers is very expensive since a single insert or delete
operation requires to update Θ(n) pointers.

Skip list based approaches. Consider the sequential skip list
data structure initially suggested in [10] and extended to parallel

environments in [7, 1, 5].
The basis of these data structures is a doubly-linked, sorted list

` of all data items. Imagine that we pad the name of each item f
with a bit 0 or 1 in the least significant position, and not all the pads
are equal. Now, we can decompose ` into two sorted sublists: `0,
which contains all sorted even data (i.e. data padded with 0), and
`1, which contains all sorted odd data (i.e. data padded with 1).

Now, we continue this process recursively on `0 and `1, generat-
ing even smaller sub-lists in the next higher level, namely `00, `01,
`10, and `11, etc. Under the assumption that sub-lists are more or
less of equal size, the recursion continues for a logarithmic number
of levels. At level i of the recursion, a sublist `b1,b2...bi

is a doubly-
linked list of all data with the padding sequence b1, b2 . . . bi.

The following approaches to padding are possible.

• Alternate bit padding: Even-positioned nodes choose 0, and
odd positioned nodes choose 1. Then `0 will contain even-
positioned nodes and `1 will contain odd-positioned nodes.
In this case,

pointi(o) = o′ s.t. rank(o′) = rank(o) + 2i

i.e., we get a situation similar to the perfect chordal graphs
above, with high cost for insertions and deletions.

• Random bit padding: If the numbers chosen by the nodes are
random, then on expectation, rank(pointi(o)) − rank(o) =
Θ(2i), and we get an approximation to a hypercube. The ad-
vantage of random choices is that its distributed implemen-
tation of an Insert and Delete operation is easy. For example,
deleting data item y with predecessor x and successor z in
a sublist `b1,b2...bi

involves simply changing x’s (resp. z’s)
pointer from y to z (resp. x). This is done for each one of
the logarithmic number of levels at overall logarithmic cost.
This is essentially the algorithm in [7, 1, 5].

Consistent Hashing: assignment of files to sites
Next we consider previous work on consistent memory assignment
related to our approach. Virtually all distributed data structures
presented so far (e.g., [13, 11, 12, 15, 8]) use consistent hashing.
Consistent hashing was introduced by Karger et al. [6] as a means
to manage the caching of web pages in a distributed environment.
It works as follows:

Let V be the set of all possible web caches (or nodes) and D be
the set of all possible data items. Consider the two hash functions
h : V → [0, 1) and g : D → [0, 1) that map each node or data
item to a real number in [0, 1). Then the consistency condition that
has to be maintained at all times is that each data item x ∈ D
currently in the system must be stored at the node v ∈ V with
minimum h(v) so that h(v) ≥ g(x). If h and g are random or
pseudo-random, it turns out that keeping the placement consistent
is very cheap: First of all, random functions h and g ensure that at
any time, the expected number of data items stored in a node is the
same for all nodes. Hence, if the current number of nodes in the
system is n, then the expected amount of data replacements when
including or excluding a node is roughly a 1/n fraction of the total
amount of data in the system.

The problem with using pseudo-random or random hash func-
tions h and g is that this makes the data structure unsearchable in
our sense, since hashing scrambles the name space, making pre-
fix search impossible (i.e. only precise key lookup operations can
be supported). On the other hand, replacing hashing by a structure-
preserving function g, such as the identity function, to enable search-
ability may create a high load imbalance. This paper, however, will

S

F

F F

F

F

S

S

S

S

Figure 1: A distributed data structure D whose file nodes and
site nodes form separate topologies representing directed cy-
cles.

get the best of both worlds: functionality (i.e., prefix search capa-
bility) of [7, 1, 5] and the load balancing property of [13, 11, 12,
15, 8], thus solving the open problem in [4].

2. THE PLUG-AND-PLAY PARADIGM
In this section, we describe on a high level how to combine con-

current data structures in a transparent and consistent way to con-
struct an efficient, distributed searchable data structure D. Imple-
mentation details will be given in the next section. In the following,
let Files denote the current set of data items (also called files in the
following to distinguish between data stored in different data struc-
tures) and Sites denote the current set of sites.

2.1 Data structures
Instead of only organizing the sites in a data structure, we use

data structures for both the sites and the files (see Figure 1). More
precisely, our construction needs the following data structures:

• A concurrent searchable data structure F for Files. This may
be any one suggested in [7, 1, 5].

• A concurrent data structureS for Sites supporting just lookup
operations. This may be any one suggested in [13, 11, 15, 8].

To make sure that both of these data structures are accessible from
any site, each site s has exactly one data item in S representing
s and one data item, called auxiliary handle, in F representing s.
Apart from these two items, a site may also have many other data
items in F representing files that have been inserted into the sys-
tem. Each of these data items may potentially be used as a handle
into the corresponding structure.

To ensure a plug-and-play property, F and S have to be able to
operate independently of each other, i.e. changes in Files should
only affect F , and changes in Sites should only affect S (and F
only insofar that auxiliary handles are inserted or deleted). Next
we explain how to achieve this.

2.2 Consistent naming
We use a different name space for each of the data structures.

• F uses the name space Names representing the set of all pos-
sible user-defined names of files (and the space [0, 1) for the
auxiliary handles).

S
Name

Ref

F

Names

[0,1)

IPs

F Name

Ref

Name

Ref

Figure 2: Names and references of data items in F and S . The
middle box represents auxiliary handles into F .

• S uses the name space [0, 1).

• D uses the name space IPs consisting of all possible IP ad-
dresses.

These name spaces are glued together in a consistent way by as-
signing to each data item o not only a name Name(o) but also a
reference Ref(o), which specifies its location. We use the follow-
ing rules for the references (see also Figure 2):

• Data items inF have references in the name space [0, 1), and
a data item o is stored at the site s with minimum Name(s)
so that Name(s) ≥ Ref(o).

• Data items in S have references in the name space IPs, i.e.
the reference of a data item in S is equal to the IP address of
its site.

Now suppose that the files in F choose their references via some
random hash function g : Files → [0, 1) and that the sites in S
choose their names via some random hash function h : IPs →
[0, 1). Then we have exactly the same situation as in the consistent
hashing approach [6].

The consistent naming approach achieves independence between
F and S (apart from the auxiliary handles), because any change in
Files does not affect the name or reference of a site, and any change
in Sites does not affect the name or reference of a file (but only its
place).

Apart from gluing name spaces together in a consistent way, in-
cluding references in data items also has the nice effect that in order
for item o to establish a pointer to item o′, it just has to store a copy
of o′ in its neighbor list. By doing this, an item in S can deter-
mine the IP address of its neighbor and forward a request directly
to it. An item o in F can forward a request to its neighbor o′ by
selecting Ref(o′) ∈ [0, 1) and then asking S to forward the request
to the site responsible for Ref(o′). Or more precisely, to preserve
independence between F and S , D will ask S on F’s behalf to
forward the request to the corresponding site. We will give more
details about how this works later.

Certainly, it would be easier to forward requests if Ref(o) of an
item o in F stored the IP address of its site instead of some number
in [0, 1). This, however, would have a devastating effect. First of
all, it destroys consistency if for some reason a site leaves and not
all references of objects affected by this (which includes the neigh-
bors of objects that have to move) are informed about it. Also, a
change in Sites could create a tremendous amount of update work,
because the number of files in a site can be large, and therefore their
neighbors in F may be spread out among a large number of sites
that all have to be updated. We note, however, that for optimiza-
tion purposes D may have a cache storing relationships between
references of files and the IP addresses of their sites.

site

S S

site

F

D

F

D

Figure 3: Nodes in F and S can only communicate with their
localD-node. D-nodes may then pass the messages fromF and
S on to other D-nodes to deliver them to the right recipient. To
ensure modularity, there is no direct communication between
an F-node and an S-node.

2.3 Supporting operations in F and S
D supports communication between items in F and items in S

by essentially providing a transport layer for F and S . (See Fig-
ure 3 to see the communication lines between the data structures
and Figure 4 to see how D would allow two items in F to com-
municate.) That is, each time an item o in S or F wants to send a
message to a neighbor o′,D will take care of that. This ensures that
our approach is modular, i.e. any implementation of a concurrent
data structure fulfilling the interface requirements specified in the
next section can be plugged into D without further adaptations.

2.4 Operations in D
Suppose that a site s wants to joinD. Then this is done by insert-

ing an item representing s into S and an auxiliary handle represent-
ing s intoF to give s a handle into both data structures. Afterwards,
all files in F s is responsible for are moved to s. The insertions ex-
ecuted within the join operation are handled by the corresponding
Insert operations in F and S .

If a site s wants to leaveD, then it first moves all of its files in F
to the site now responsible for them, then deletes its auxiliary han-
dle from F , and finally deletes its data item from S . The deletions
are handled by the corresponding Delete operations in F and S .

If a file f has to be inserted into D, then the site initiating the
request first contacts the site responsible for f . This site will then
include f in its set of files and insert f into F by calling the corre-
sponding Insert operation.

If a file f has to be deleted from D, then the site initiating the
request first contacts the site responsible for f . This site will then
delete f from F by calling the corresponding Delete operation and
then remove f from its set of files.

Finally, if a search request for some name key is issued by some
site s, then s picks a handle into F (which it always has due to
its auxiliary handle) and calls from there the corresponding Search
operation for F .

2.5 Remarks on the P&P paradigm
At the end of this section, we note some nice features of our

plug-and-play paradigm that may be interesting for future research
on peer-to-peer systems.

Due to explicitly storing references, we do not need hash func-
tions for the data items and the sites to achieve searchability. Any
way of selecting references for items in F and names for items in
S would work. Hence, in contrast to previous work, any mapping
of data items to sites can in principle be supported. This opens up

InsertInsert Search Delete Search

JoinSearchDeleteInsert Leave

Delete

F

D

S

Figure 5: Operations in D and their connections to operations
in F and S .

many interesting applications. For example, the freedom of choos-
ing an arbitrary mapping may be used to handle non-uniform ca-
pacities, to store popular data items at the sites of highest band-
width, or to pull data items to the sites that have the largest number
of search requests to these items. Hence, our plug-and-play ap-
proach may be used for many interesting future optimization prob-
lems in the area of peer-to-peer networks.

3. IMPLEMENTATION
We use object oriented programming principles to give a detailed

description of how to implement a distributed searchable data struc-
ture. For an illustration of how this implementation works, see Fig-
ure 6.

The lowest form of object is a data object. Each data object o
consists of two fields: a name field o.Name and a reference field
o.Ref. The name field is used for searching purposes, and the ref-
erence field specifies the location of the object. The format of the
location may depend on the concurrent data structure the object be-
longs to. If o belongs to S , then o.Ref is an IP address, and if o
belongs to F , then o.Ref ∈ [0, 1).

3.1 The class C-node
The class C-node defines the variables and methods used for a

concurrent data structure node C (see Figure 7). Its constructor C-
node(name, ref) generates an object containing a data object o with
name o.Name = name and reference o.Ref = ref. As required
for a concurrent data structure, C-node provides the three standard
operations Insert, Delete, and Search. Given a C-node v that is
already integrated into C, v.Insert(o) integrates the C-node w con-
taining data object o into C by setting up the neighbor sets of w
and its neighboring nodes in a suitable way. For example, in or-
der to establish an edge between node u to w, u adds w.MyData
to u.MyPointers and w adds u.MyData to w.MyPointers. Operation
v.Delete(key) will exclude the C-node w holding the data object
o with o.Name = key from C by setting w.MyPointers = ∅ and
modifying the neighbor sets of the remaining nodes so that o is not
in C any more. v.Search(key) returns the data object o in C with
o.Name being the closest prefix from above to key.

To enable the C-nodes to communicate with each other, we also
need functions Read and Write. Write(ref, msg) sends the mes-
sage msg to the node with identifier ref via some output stream,
and Read() receives incoming messages via some input stream. A
message has the format (ref′, call, L), where ref′ specifies the final
recipient, call specifies a command that the recipient is supposed to
execute, and L is the parameter list necessary to execute the com-

F

D

S F

D

S F

D

S F

D

S

F

D

S F

D

S F

D

S F

D

S

F

D

S F

D

S F

D

SF

D

S F

D

S F

D

S F

D

S

F

D

S F

D

S F

D

S

F

D

S F

D

S F

D

S

F

D

S F

D

S F

D

S F

D

SF

D

S F

D

S F

D

S

u v w

(d)

(c)

(b)

(a)

Figure 4: An F-node u wants to forward a message to an F-node w along a path in F of length two, represented by the dotted arcs.
For this, u’s D-node d intercepts u’s message to v in d.Read() and initiates a search request in S for Ref(v) (see (a)). The answer of
this request is returned by S (see (b)) and used by d to forward the message from u to v (see (c)). v’s message to w is then handled by
its D-node d′ in the same way as previously for u by d.

mand. Hence, the kind of messages we are interested in are remote
procedure calls.

3.2 The class D-node
The class D-node defines the variables and methods used for a

distributed data structure node (see Figures 7 and 8). Its constructor
D-node(name, ref) generates a D-node d with d.MySite.Name =
name and d.MySite.Ref = ref. ref represents, for example, an
IP address to allow communication between the D-nodes. The
constructor also initializes the set of objects MyFiles representing
nodes in the file structure F to ∅. As required for a distributed data
structure, D also provides the five standard operations Join, Leave,
Insert, Delete, and Search.

3.3 The methods of D-node
If a new node v wants to join D by contacting w, then it calls

v.Join(refw) where refw is the reference (i.e. IP address) identify-
ing w. v.Join(refw) will then send a message to w asking it to ex-
ecute LetJoin(o) where o = v.MySite. w.LetJoin(o) first searches
for the closest successor q of o in S (i.e. the q with minimum
q.MyData.Name so that q.MyData.Name ≥ o.MyData.Name). Af-

terwards, it inserts o into S (thereby integrating the S-node of v
into S) and moves to v all F-nodes stored in the D-node owning q
that have to be stored at v to get back to a consistent data placement.
Finally, it inserts an auxiliary handle with name and reference equal
to v.MySite.Name into F .

Given a node v that wants to leaveD, v.Leave() first removes v’s
auxiliary handle from F and v.MyFiles, then moves v’s F-nodes
to the D-node owning the successor of v.MySite in S , and finally
removes v’s S-node v.MySite from S .

For a D-node v executing v.Insert(o), v first searches for the
S-node q with closest name from above to o.Ref by initiating a
search operation in S . Afterwards, v asks the D-node w owning
q to perform the insertion of o. w checks whether it already has
a data object with name o.Name in w.MyFiles. If not, then w will
pick a handle f ′ into F , include a new F-node f holding o into
w.MyFiles, and finally include f into F by calling f ′.Insert(o).

The node v initiating v.Delete(key) first checks via a Search op-
eration in F whether there is a data item with name key in the sys-
tem. If so, v determines via another search operation in S the D-
node w responsible for key and then asks w to delete the object with
name key. w first deletes the data object with name key from F by

(c)

(a) (b)

(d)

MyFiles

MySite

Ref: 128.220

Name: 0.24

Name: 0.24

Ref: 0.24

Name: Cher

MyFiles

MySite

Name: 0.78

Ref: 128.223

Name: 0.78

Ref: 0.78

Name: U2

Ref: 0.15 Ref: 0.62

MyFiles

MySite

Ref: 128.220

Name: 0.24

Name: 0.24

Ref: 0.24

Name: Cher

MyFiles

MySite

Name: 0.57

Ref: 0.57

Name: 0.57

Ref: 128.131

MyFiles

MySite

Name: 0.78

Ref: 128.223

Name: 0.78

Ref: 0.78

Name: U2

Ref: 0.15 Ref: 0.62

MyFiles

MySite

Ref: 128.220

Name: 0.24

Name: 0.24

Ref: 0.24

Name: Cher

MyFiles

MySite

Name: 0.57

Ref: 0.57

Name: 0.57

Ref: 128.131

MyFiles

MySite

Name: 0.78

Ref: 128.223

Name: 0.78

Ref: 0.78

Name: U2

Ref: 0.15 Ref: 0.62

MyFiles

MySite

Ref: 128.220

Name: 0.24

Name: 0.24

Ref: 0.24

Name: Cher

MyFiles

MySite

Name: 0.57

Ref: 0.57

Name: 0.57

Ref: 128.131

Name: Abba
MyFiles

MySite

Name: 0.78

Ref: 128.223

Name: 0.78

Ref: 0.78

Name: U2

Ref: 0.15

Ref: 0.48

Ref: 0.62

Figure 6: Suppose that F and S simply keep the data items in a directed cycle sorted according to their names. The example shows
what happens in this case if a D-node joins the system (see (b) and (c)) and the data item “Abba” gets inserted (see (d)).

calling f.Delete(key) via some handle f into F and then removes
the F-node holding the data item of name key from w.MyFiles.

Finally, to execute v.Search(key), node v first fetches a handle
f into F and then executes f.Search(key).

An example code of introducing a new site and a new file is given
in Figure 10.

4. PERFORMANCE MEASURES
Next we introduce some measures that will help us to determine

the quality of our plug&play approach.

4.1 Sequential data structures
We can view a sequential data structure U as a directed graph

GU = (V, E) where nodes represent items stored in the data struc-
ture and directed edges represent pointers. The fault-tolerance α(GU)
measures the (lack of) sensitivity to faults, i.e. the ratio between the
number of faults and the number of elements disconnected by these
faults. This is captured by the expansion of a graph.

DEFINITION 4.1. Given a graph G = (V, E) and a subset
U ⊆ V , the expansion of U is defined as α(U) = |Γ(U)|/|U |
where Γ(U) is the set of nodes in V \U that have an edge from U .
The expansion of G is defined as

α(G) = min
U,|U|≤|V |/2

α(U)

For a data structure U and integer n, consider the family Gn =
{G(names)} of all worst case pointer structures formed by this
data structure over all possible sets names ⊆ Names of user-defined
names with |names| = n. That is, G(names) represents the worst
case pointer graph over all possible sequences of insertion and dele-
tion operations so that at the end, the set of names stored in U is
names.

We will distinguish between metrics for the worst case and the
average case for Gn. In order to evaluate the average case, we av-
erage over the uniform distribution.

Let the worst-case fault-tolerance αU (n) and the average-case
fault-tolerance ᾱU (n) of U be defined as

αU (n) = min
G∈Gn

α(G) and ᾱU (n) =
1

|Gn|

∑

G∈Gn

α(G)

As pointed out in [2], traditional pointer graphs (2-3 trees, linked
lists, etc.) are fault-sensitive in the sense that deleting or corrupting
a single memory location (i.e., the root of the tree and its pointers)
may cause many or even all other locations to become unreachable.
Since our ultimate goal is embedding our data structures onto dy-
namic distributed systems in a fault-tolerant manner, we limit our
attention to data structures whose underlying pointer-graph repre-
sentation is both searchable and fault-tolerant, thus ruling out trees,
linked lists, etc with low expansion properties. Fault-tolerant se-
quential data structures were investigated, e.g., in [2]. We are inter-
ested in fault-tolerant concurrent data structures.

class Data
{

Name: name of data item
Ref: reference to location of data item

public:
Data(name,ref): constructor setting Name and Ref

}

class C-node
{

MyData: object of type Data
MyPointers: set of objects of type Data (neighbors in C)

Read(): reads message from input stream
Write(ref, msg): writes msg with dest. ref to output stream

public:
C(Name,Ref): constructor
Insert(o): inserts object o into C
Delete(key): removes object with name key from C
Search(key): returns data object with closest prefix to key

}

class D-node
{

MySite: object of type C-node (handle into S)
MyFiles: set of objects of type C-node (handles into F)

LetJoin(o): includes site represented by o into D
OwnerInsert(o): inserts o at site responsible for storing o
OwnerDelete(key): deletes key from site responsible for key

GetFile(key): returns pointer to C-node in MyFiles
InsertFile(f): inserts C-node f into MyFiles
MoveFiles(o): moves C-nodes in MyFiles to another D-node

Read(): reads message from input stream
Write(ref, msg): writes msg with dest. ref to output stream

public:
D-node(name,ref): constructor
Join(ref): contacts site in D with address ref to join D
Leave(): leaves D
Insert(o): inserts file o into D
Delete(key): removes file with name key from D
Search(key): returns file whose name is closest prefix to key

}

Figure 7: The classes of D. key and name are of type Names or [0, 1), o is of type Data, and f is of type C-node.

4.2 Concurrent data structures
The additional issue in this case is that many insert, delete, or

search requests may be traversing the data structure concurrently,
and we need to make sure that nodal congestion is not slowing
down the process. In order to measure this, we introduce the search-
ability ρ(G).

Consider a concurrent data structure C consisting of

• a pointer structure G and

• a probabilistic or deterministic implementation of Search.

A random search problem in a pointer structure G is a routing prob-
lem in which each node in G is the source of a request and each
request chooses its destination independently at random. Look-
ing at random destinations is useful for peer-to-peer systems that
(pseudo-)randomly distribute data among the sites, which includes
all distributed hash table approaches [13, 11, 15, 8].

DEFINITION 4.2. Given a random search problem in a pointer
structure G, let

• C(G) be the expected congestion (i.e. the expected maximum
number of paths sharing a node) and

• D(G) be the dilation (i.e. the length of the longest path)
when applying Search to the requests in G.

Then the searchability of G is ρ(G) = max{C(G), D(G)}.

The following claim gives an important relationship between the
searchability and the expansion.

CLAIM 4.3. For every graph G with searchability ρ(G), α(G) =
Ω(1/ρ(G)).

PROOF. Suppose that there is a set U ⊆ V with |U | ≤ |V |/2
and |Γ(U)| = o(|U |/ρ(G)). Then consider the search problem in
Definition 4.2. It is easy to see that the expected number of requests
that have to leave or enter U is equal to

2|U |

(

1 −
|U |

|V |

)

≥ |U |

for all U with |U | ≤ |V |/2. Hence, the expected congestion cre-
ated at nodes in Γ(U) due to requests leaving or entering U is at
least |U |/|Γ(U)|. On the other hand, it follows from the defini-
tion of searchability that the expected maximum congestion is at
most ρ(G). However, this is not possible to achieve if |Γ(U)| =
o(|U |/ρ(G)).

Now, consider the family of worst case pointer structures Gn =
{G(names)} formed by the given data structure C over all possible
sets names ⊆ Names of user-defined names of size n. Let the
worst-case searchability ρC and the average-case searchability ρ̄C

of C be defined as

ρC(n) = max
G∈Gn

ρ(G) and ρ̄C(n) =
1

|Gn|

∑

G∈Gn

ρ(G)

4.3 Distributed data structures
In a distributed system, we need not only to create a data struc-

ture but also to embed it on a set of sites. To take this into account,
we suggest the following fault-tolerance measure for distributed
data structures.

DEFINITION 4.4. Consider an instance D of a distributed data
structure over a set of files Files and a set of sites Sites with a search
operation Search for the files. For a set of files F ⊂ Files and a
set of sites S ⊂ Sites we say that S blocks F , denoted as S � F ,
if every Search(Name(f)) operation with f ∈ F executed by a

d.D-node(name, ref):
// prepare handle for S
MySite← new C(name, ref)
// prepare auxiliary handle for F
f ← new C(name, name)
MyFiles← {f}

d.Join(ref):
Write(ref,(∅,call LetJoin,MySite))

d.LetJoin(o):
q ← MySite.Search(o.Name)
// integrate site node of o into S
MySite.Insert(o)
Write(q.Ref,(∅,call MoveFiles,o))
// integrate auxiliary file node into F
o.Ref← o.Name
f ← GetFile(o.Name)
f .Insert(o)

d.MoveFiles(o):
for all f ∈ MyFiles with f.Ref ≤ o.Name
Write(o.Ref,(∅,call InsertFile,f))

d.InsertFile(f):
MyFiles← MyFiles ∪ {f}

d.Leave():
// remove auxiliary file node from F
f ← GetFile(MySite.Name)
f .Delete(MySite.Name)
// move file nodes to predecessor of MySite in S
q ← MySite.Search(MySite.Name + ε)
MoveFiles(q)
// remove site node from S
MySite.Delete(MySite.Name)

d.GetFile(key):
if there is f ∈ MyFiles with f.MyData.Name = key then

return f
else

return a random f ∈ MyFiles

d.Insert(o):
// determine site responsible for o
q ← MySite.Search(o.Ref)
Write(q.Ref,(∅,call OwnerInsert,o))

d.OwnerInsert(o):
// insert o into F via f ′

f ′ ← GetFile(o.Name)
if f ′.MyData.Name 6= o.Name then

f ← new C-node(o.Name, o.Ref)
MyFiles← MyFiles ∪ {f}
f ′.Insert(o)

d.Delete(key):
// is key in the system?
o← Search(key)
if o.Name = key then

// determine site responsible for o
q ← MySite.Search(o.Ref)
Write(q.Ref,(∅,call OwnerDelete,key))

d.OwnerDelete(key):
// remove file object with name key from F
f ← GetFile(key)
f .Delete(key)
MyFiles = MyFiles \ {f : f.MyData.Name = key}

d.Search(key):
f ← GetFile(key)
return f .Search(key)

Figure 8: The methods of D. d represents a D-node.

site in Sites \ S passes through at least one site in S. Denote the
fault-tolerance of the resulting data structure as

α(D) = E

[

min
S�F

|S|
/

|Sites|

|F |
/

|Files|

]

where the expected value is over the mappings of Files to Sites.

Intuitively, α(D) shows how much percentage of the sites need
to be down to block access to one percentage of the files.

Next, we define the imbalance and searchability of a distributed
data structure.

DEFINITION 4.5. Given a mapping of files to sites, let L(s) be
the load (i.e. the number of files) at site s. The imbalance σD(k) of
a distributed data structure D is the maximum over all sets of files
Files and sets of sites Sites with |Files|/|Sites| = k of

E

[

max
s∈Sites

L(s)

|Files|/|Sites|

]

where the expected value is over the mappings of Files to Sites.

DEFINITION 4.6. We define the searchability ρ(D) of instance
D as the maximum of the dilation and expected congestion caused
by sending search requests, one for each site, to random files.

Now, consider the family of structures Gn,m = {D(names, IPs)}
formed by the distributed data structure D over all possible in-
stances names of file names and IPs of IP addresses of sites, |names|
= m and |IPs| = n. Then we define the worst-case and average-
case fault-tolerance and searchability of D as

αD(n, m) = min
D∈Gn,m

α(D) and ᾱD(n, m) =
1

|Gn,m|

∑

D∈Gn,m

α(D)

and

ρD(n, m) = max
D∈Gn,m

ρ(D) and ρ̄D(n, m) =
1

|Gn,m|

∑

D∈Gn,m

ρ(D)

¿From Definitions 4.5 and 4.4, and 4.6 it follows that α−1
D ≥ σD

and ρ ≥ σD for any m and n.

5. COMPOSITION THEOREM

d.Write(ref′,(ref,call,L)):
send (ref,call,L) to output stream ref′

d.Read():
upon receiving message (ref,call,L) from ref′, check:
if ref′ ∈ [0, 1) then

// from F , send msg to site q responsible for ref
q ← MySite.Search(ref)
Write(q.Ref,(ref,call,L))

else if ref′ ∈ IPs then
if ref ∈ IPs then

// from S-node
Write(ref,(ref,call,L))

else
// remote procedure call from other D-node
case call of

call LetJoin: LetJoin(L)
call MoveFiles: MoveFiles(L)
call InsertFile: InsertFile(L)
call OwnerInsert: OwnerInsert(L)
call OwnerDelete: OwnerDelete(L)

Figure 9: The Write and Read algorithm of D.

In this section we state our main technical result of the paper.
Consider a distributed data structure obtained by using F as a file
structure and S as the site structure, within the framework of Sec-
tions 2 and 3. We will denote this as D = F × S .

THEOREM 5.1 (COMPOSITION THEOREM). If m = |Files| ≥
|Sites| = n, files are given random references in [0, 1), and sites
are given random names in [0, 1), then D = F × S has, in the
worst case,

σD = Θ(log n) (1)
ρD = O(σ2

D · ρF · ρ̄S) (2)

αD = Ω

(

1

σD · (1 + 1
ᾱS

)(1 + 1
αF

)

)

(3)

PROOF. The proof of (1) follows from the fact that the maxi-
mum range in [0, 1) a site is responsible for is Θ((log n)/n) with
high probability.

We proceed with the proof of (2). Consider the problem of rout-
ing a random search problem in D. Then each F-node is the origin
of at most one request and each source-destination pair (f, f ′) in
F has a probability of at most 1/|Files| of being chosen. Since the
total number of nodes in F , nF , is at most 2 · |Files| because of at
most |Files| auxiliary handles, each pair (f, f ′) in F has a proba-
bility of at most 2/nF of being chosen. Hence, it follows from the
definition of ρ that routing the requests in F creates an expected
congestion of at most 2ρF and a dilation (path length) of at most
ρF . Let P be the path collection chosen by D, and let C be the
congestion and D be the dilation of P . We know that D ≤ ρF and
E[C] ≤ 2ρF . To continue, we need the following two lemmata.
Recall that a matching in a graph G is a set of edges so that every
node in G is adjacent to at most one edge.

LEMMA 5.2. P can be broken down into O(C +D) matchings
of size at most |Sites| each.

PROOF. The matching bound follows from a simple coloring
argument. Since each edge shares a node with an expected number

MyExample:
// create new site
ref← 120.128.220.114 // IP address of site
val← h(ref) // hash value of IP address
d← new D-node(val, ref)
// join D
ref← 120.128.220.135 // IP address of site in D
d.Join(ref)

// insert file
name← “Hallo”
val← g(name) // hash value of name
o← new Data(name, val)
d.Insert(o)

// leave D
d.Leave()

Figure 10: Example code demonstrating how to join D, insert a file,
and leave D. h and g are some suitable hash functions. Notice that the
values for val can be arbitrary numbers in [0, 1), i.e. it is not necessary
to use fixed functions for D to be consistent and searchable.

of at most 2C − 1 other edges, an expected number of at most 2C
colors suffice to color the edges so that no two edges with the same
color share a node. (Simply use a greedy coloring algorithm for
this.) Since the sum of the path lengths in P is at most |Sites| ·D,
it follows that these matchings can be further broken down into at
most D additional matchings to obtain matchings of maximum size
|Sites|.

LEMMA 5.3. Any matching in F of size at most |Sites| can be
routed in S with dilation at most ρ̄S and expected congestion at
most σ2

D · ρ̄S .

PROOF. The consistent naming approach and the definition of
σD imply that the probability of a file to be mapped to a site is at
most σD/n (where n = |Sites|) for any site, independently of the
other files. Since we only consider routing matchings M in F in
S , each edge in M is mapped independently of the other edges to
sites in S . Viewing the probabilities of mapping edges to site pairs
as fractional flow values, any site pair (s1, s2) has a fractional flow
of at most n · (σD/n)2 = σ2

D/n. From the definition of ρ̄S we
know that fractional flow problems in S with flow 1/n for each
site pair can be solved with congestion and dilation at most ρ̄S .
Hence, routing the fractional flow problem for M in S creates a
congestion of at most σ2

Dρ̄S , and therefore routing M in S cre-
ates an expected congestion of at most σ2

Dρ̄S . Since the dilation is
obviously bounded by ρ̄S , the lemma follows.

Combining the two lemmata finishes the proof of (2)

Next we prove (3). Consider some instance D with fixed im-
balance σ(D), αF (D), and αS(D). Let ΛS be the set of sites
removed, and ΓS be the set of sites in S inaccessible in S from a
majority in S that are not in ΛS . Furthermore, let ΥS be the set
of sites that can reach the majority in S . For a subset F (S) of
files (sites) denote by ||F || (||S||) the relative fraction of such files
(sites) i.e., ratio |F |/|FilesD| (respectively, |S|/|SitesD|).

Since S has a fault-tolerance of αS(D),

||ΓS || ≤
||ΛS ||

αS(D)
.

Now, let ΛF be the set of files stored at ΛS and ΓF be the maximal
set of files that are inaccessible in D from a majority in S , which
are not in ΛF . Also, let ΥF be the set of those files which are
accessible in D from majority in S . Note that the sets ΛF , ΥF ,
and ΓF are disjoint in F .

Now, let us decompose ΓF = Γ1
F

⋃

Γ2
F such that Γ1

F

⋂

Γ2
F = ∅

and Γ1
F is a maximal subset stored at sites in ΓS . By the above

argument, the fraction of such files is at most

||Γ1
F || ≤ ||ΓS || · σ(D) ≤

||ΛS ||

αS(D)
· σ(D)

Now, consider file o ∈ Γ2
F stored at site s. By definition, s /∈ ΛS

(since then o ∈ ΛF) and also s /∈ ΓS since then we could have
added o to Γ1

F , but Γ1
F cannot be increased since it is maximal.

The only remaining possibility is that s ∈ ΥS . Consider any
file o′ which is neighbor of o in F stored at s′. Clearly, s′ /∈ ΥS

since then both s and s′ are in ΥS , and then o must be in ΥF , a
contradiction. It follows that s′ ∈ ΓS ∪ ΛS . The fraction of such
o′ is at most

σ(D) · (||ΛS || + ||ΓS ||) ≤ σ(D) ·

(

1 +
1

αS(D)

)

||ΛS ||

Since o ∈ Γ2
F has all its neighbors in F in a set of size (1 +

1
αS(D)

)||ΛS || at most, we have

||Γ2
F || ≤

σ(D)

αF (D)

(

1 +
1

αS(D)

)

||ΛS ||

Summing it all up, ||ΓF || is equal to

||Γ1
F || + ||Γ

2
F ||

≤ σ(D) ·
||ΛS ||

αS(D)
+

σ(D)

αF (D)

(

1 +
1

αS(D)

)

||ΛS ||

= σ(D) · ||ΛS || ·

(

1

αF (D)
+

1

αS(D)
+

1

αF (D) · αS(D)

)

Using the fact that ||ΛF || ≤ σ(D) · ||ΛS ||, it follows that α(D) is
equal to

||ΛS ||

||ΓF ||+ ||ΛF ||
≥

1

σ(D)(1 + 1
αF (D)

)(1 + 1
αS(D)

)

Hence, with 1/σ(D) = Θ(1/σD) w.h.p. and αF (D) ≥ αF one
can compute a bound for the expected α(D) over random values
in [0, 1) for files and sites that matches the bound for αD in the
theorem.

6. CHOOSING THE COMPONENTS
Now, we show how to use our composition methodology from

Sections 2 and 3. The only issue is how to make proper selec-
tions for the distributed data structure and the final peer-to-peer
system, out of concurrent data structures presented in Section 1.2.
Towards this goal, we simply need to apply the framework of Sec-
tion 5 and the results of Theorem 5.1, calculating searchability and
fault-tolerance of the composed system by simple substitution into
the result of Theorem 5.1.

We exemplify the plug-and-play approach of Theorem 5.1 by
choosing Chord [13] as the site structure S and Skip Graph [1]
as the file structure F . Other structures, e.g. Chord++ [3] or [9],
can be used to get better bounds on the parameters σD , αD and
ρD of the composed scheme. However, for the purpose of clarity
and completeness, we restrict ourselves to using already published
methods, such as Chord [13], and Skip Graph [1].

CLAIM 6.1 ([3]). When used for site structure S , Chord with
the routing strategy in [3] satisfies ρ̄S(Ch) = O(log2 n) and
ᾱS(Ch) = Ω(1

log n
).

CLAIM 6.2 ([1]). When used for file structure F , Skip Graph
[1] satisfies ρF (Sk) = O(log2 n) (conjectured) and αF (Sk) =
Ω(1

log n
) (shown in [1]).

Applying Theorem 5.1, we can compose a distributed data struc-
ture SkipChord (abbreviated SkCh) consisting of Skip Graph for
files, and Chord for sites.

COROLLARY 6.3. SkipChord is a load-balanced prefix-search
capable peer-to-peer system with the following characteristics:

σD(SkCh) = O(log n)

ρD(SkCh) = O(log6 n)

αD(SkCh) = Ω(
1

log3 n
)

7. REFERENCES
[1] J. Aspnes and G. Shah. Skip graphs. In SODA 2003.
[2] Y. Aumann and M.A. Bender. Fault tolerant data structures.

In FOCS 1996, pages 580–589.
[3] B. Awerbuch and C. Scheideler. Chord++: A congestion-free

fault-tolerant concurrent data structure. Unpublished
manuscript, 2003. See http://www.cs.jhu.edu/
∼scheideler.

[4] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica. Complex queries in DHT-based peer-to-peer
networks. In IPTPS 2002.

[5] J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with
practical locality properties. In USITS 2003.

[6] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In STOC 1997, pages 654–663.

[7] X. Li and C.G. Plaxton. On name resolution in peer-to-peer
networks. In POMC 2002, pages 82–89.

[8] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. In PODC 2002.

[9] M. Naor and U. Wieder. Novel architectures for P2P
applications: The continuous-discrete approach. In SPAA
2003.

[10] W. Pugh. Skip lists: A probabilistic alternative to balanced
trees. In WADS 1989, pages 437–449.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
SIGCOMM 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In Middleware 2001.

[13] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM 2001.

[14] U. Vishkin, W. J. Paul, and H. Wagener. Parallel dictionaries
on 2-3 trees. In ICALP 1983, pages 597–609.

[15] B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. In UCB Technical Report UCB/CSD-01-1141, 2001.

