600.363/463 Algorithms - Fall 2013 Solution to Assignment 1

(110 points)

I (30 points) Tow possible solutions are shown below.

Solution 1: i. Algorithm(10 points)

Input: Two arrays A and B, both of length n

Output: True if A and B have at least one common element. False otherwise.

- 1 flag = False; **2** for $i \leftarrow 1$ to n do $key \leftarrow A[i];$ 3 for j = 1 to n do $\mathbf{4}$ if B/j = key then $\mathbf{5}$ $flag \leftarrow True;$ 6 break; 7 end 8 \mathbf{end} 9 10 end 11 return flag;
- ii. Correctness(10 points)

Loop invariant: At the start of each iteration of the for loop in of lines 2-10, if flag=False, the subarrays A[1..i-1] and B[1..n] do not have any common element; if flag=True, the subarrays A[1..i-1] and B[1..n] do not have any common element and $A[i] \in B[1..n]$.

Initialization (input to loop): i = 1, A[1..i - 1] is empty, nothing need to be proved.

Maintenance (loop to loop): new $i = i_{old} + 1$, flag=False, $A[i-1] \notin B[1..n]$. Hence loop invariant holds.

Termination (loop to out): If flag=True, for current $i, A[i] \in B[1..n]$ and $A[i-1] \notin B[1..n]$; If flag=False, $i = n + 1, A[n] \notin B[1..n]$. Then we conclude that A[1..n] does not have common element with B[1..n], Hence the algorithm is correct.

iii. Speed(10 points)

i takes less than or equal to *n* values and *j* takes less than or equal to *n* values. It takes O(1) for each comparison, hence $T(n) = O(n^2)$.

Solution 2: i. Algorithm

Input: Two arrays A and B, both of length n

Output: True if A and B have at least one comment element. False otherwise.

- 1 Sort A and B using Merge-Sort; $\mathbf{2} \ i \leftarrow 1;$ **3** $j \leftarrow 1;$ 4 flag \leftarrow False; 5 while $i \leq n$ and $j \leq n$ do if A[i] == B[j] then 6 $flag \leftarrow True;$ 7 break; 8 end 9 10 else if A[i] < B[j] then 11 i++; 12end else $\mathbf{13}$ $\mathbf{14}$ j++; end $\mathbf{15}$ 16 end 17 return flag;
- ii. Correctness

Correctness of merge sort refers to textbook.

Loop invariant: At the start of each iteration of the while loop in of lines 5-16, if flag=False, the subarrays A[1..i-1] and B[1..j-1] do not have any common element; if flag=True, the subarrays A[1..i-1] and B[1..j-1] do not have any common element and A[i] = B[j].

Initialization (input to loop): i = 1, j = 1, A[1..i - 1] and B[1..j - 1] are empty, nothing need to be proved.

Maintenance (loop to loop): flag must be False, if new $i = i_{old} + 1$, $A[i-1] \notin B[1..j-1]$; if new $j = j_{old} + 1$, $B[j-1] \notin A[1..i-1]$; Hence loop invariant holds.

Termination (loop to out): If flag=True, for current i, j, A[i] = B[j], but $A[i-1] \notin B[1..j-1]$ and $B[j-1] \notin A[1..i-1]$; If flag=False, then if $i = n+1, A[n] \notin B[1..j-1]$ and if $j = n + 1, B[n] \notin A[1..i-1]$. Then we conclude that A[1..n] does not have common element with B[1..n], Hence the algorithm is correct.

iii. Speed

Merge-sort takes $O(n \log n)$ time. i, j takes less than or equal to n values respectively, and each comparison takes O(1) time, hence $T(n) = O(n \log n) + O(n) = O(n \log n)$

II (10 points) For n > 1,

$$\begin{aligned} f(n) &= 2f(n-1) + n \\ &= 2(2f(n-2) + n - 1) + n \\ &= 2^2f(n-2) + 2(n-1) + n \\ &= \cdots \\ &= 2^{n-1}f(1) + 2^{n-2}(n - (n-2)) + \cdots + 2(n-1) + n \\ &= 1 \cdot 2^{n-1} + 2 \cdot 2^{n-2} + 3 \cdot 2^{n-3} + \cdots + (n-1) \cdot 2^1 + n \cdot 2^0 \end{aligned}$$

Then

$$2f(n) = 1 \cdot 2^{n} + 2 \cdot 2^{n-1} + 3 \cdot 2^{n-2} + 4 \cdot 2^{n-3} + \dots + n \cdot 2^{1}$$

By subtracting the above two equations, we have

$$f(n) = 2^{n} + 2^{n-1} + \dots + 2 + 1 - n - 1 = 2^{n+1} - n - 2$$
(1)

To prove by induction, when n = 1,

$$f(1) = 2^2 - 1 - 2 = 1$$

Assume for $n = k, k = 1, 2, 3, \dots, f(k) = 2^{k+1} - k - 2$ holds, then for n = k + 1,

$$f(k+1) = 2f(k) + (k+1) = 2(2^{k+1} - k - 2) + k + 1 = 2^{k+2} - (k+1) - 2$$

Hence the claim holds.

III (70 points) Note that here we assume log means \log_2 .

- 1 (10 points) T. $3n^2 + 6n \le 9n^2$ for any $n \ge 3$, hence $3n^2 + 6n = O(n^2)$. 2 (10 points) T. $3n^2 + 6n \le 6n^2 \log n$ for any $n \ge 2$, hence $3n^2 + 6n = O(n^2 \log n)$.
- 3 (10 points) F. $O(\log n) > O(1)$. More precisely, given any n_0 and c, $n^2 \log n > cn$ when $n \ge \max\{2^c, n_0\}$.
- 4 (10 points) F. $3^n = O(\frac{3}{2})^n O(2^n) > O(2^n)$. More precisely, given any n_0 and $c, 3^n > c * 2^n$ when $n \ge \max\{\log_{3/2} c, n_0\}$.
- 5 (10 points) F. Note that taking log preserves inequality. If $\log n \le c(\log \log n)^4$, then $\log \log n \le \log c + 4 \log \log \log n$. Clearly $\log \log n \ge \log \log \log n$, hence it is false.
- 6 (10 points) T Note that taking log preserves inequality. If $n \le c(\log n)^{\log n}$, then $\log n = \log c + \log n(\log \log n)$. Clearly this holds.
- 7 (10 points) T

Note that taking log preserves inequality. If $n^{100} \leq c2^n$, then $\log n^{100} = 100 \log n \leq \log c + \log 2^n = \log c + n \log 2$. Clearly this holds.