600.363/463 Algorithms - Fall 2013 Solution to Assignment 1

(110 points)

I (30 points) Tow possible solutions are shown below.
Solution 1: i. Algorithm(10 points)
Input: Two arrays A and B, both of length n
Output: True if A and B have at least one common element. False otherwise.
flag = False;
for $i \leftarrow 1$ to n do
$k e y \leftarrow A[i]$;
for $j=1$ to n do
if $B[j]==$ key then
flag \leftarrow True;
break;
end
end
end
return flag;
ii. Correctness(10 points)

Loop invariant: At the start of each iteration of the for loop in of lines 2-10, if flag=False, the subarrays $A[1 . . i-1]$ and $B[1 . . n]$ do not have any common element; if flag=True, the subarrays $A[1 . . i-1]$ and $B[1 . . n]$ do not have any common element and $A[i] \in B[1 . . n]$.
Initialization (input to loop): $i=1, A[1 . . i-1]$ is empty, nothing need to be proved.
Maintenance (loop to loop): new $i=i_{\text {old }}+1$, flag=False, $A[i-1] \notin B[1 . . n]$. Hence loop invariant holds.
Termination (loop to out): If flag=True, for current $i, A[i] \in B[1 . . n]$ and $A[i-1] \notin$ $B[1 . . n]$; If flag=False, $i=n+1, A[n] \notin B[1 . . n]$. Then we conclude that $A[1 . . n]$ does not have common element with $B[1 . . n]$, Hence the algorithm is correct.
iii. Speed(10 points)
i takes less than or equal to n values and j takes less than or equal to n values. It takes $O(1)$ for each comparison, hence $T(n)=O\left(n^{2}\right)$.
Solution 2: i. Algorithm

Input: Two arrays A and B, both of length n
Output: True if A and B have at least one comment element. False otherwise. Sort A and B using Merge-Sort;
$i \leftarrow 1$;
$j \leftarrow 1 ;$
flag \leftarrow False;
while $i<=n$ and $j<=n$ do
if $A[i]==B[j]$ then
flag \leftarrow True;
break;
end
else if $A[i]<B[j]$ then
i++;
end
else
j++;
end
end
return flag;
ii. Correctness

Correctness of merge sort refers to textbook.
Loop invariant: At the start of each iteration of the while loop in of lines 5-16, if flag=False, the subarrays $A[1 . . i-1]$ and $B[1 . . j-1]$ do not have any common element; if flag=True, the subarrays $A[1 . . i-1]$ and $B[1 . . j-1]$ do not have any common element and $A[i]=B[j]$.
Initialization (input to loop): $i=1, j=1, A[1 . . i-1]$ and $B[1 . . j-1]$ are empty, nothing need to be proved.
Maintenance (loop to loop): flag must be False, if new $i=i_{\text {old }}+1, A[i-1] \notin$ $B[1 . . j-1]$; if new $j=j_{\text {old }}+1, B[j-1] \notin A[1 . . i-1]$;. Hence loop invariant holds. Termination (loop to out): If flag=True, for current $i, j, A[i]=B[j]$, but $A[i-1] \notin$ $B[1 . . j-1]$ and $B[j-1] \notin A[1 . . i-1]$; If flag=False, then if $i=n+1, A[n] \notin B[1 . . j-1]$ and if $j=n+1, B[n] \notin A[1 . . i-1]$. Then we conclude that $A[1 . . n]$ does not have common element with $B[1 . . n]$, Hence the algorithm is correct.
iii. Speed

Merge-sort takes $O(n \log n)$ time. i, j takes less than or equal to n values respectively, and each comparison takes $O(1)$ time, hence $T(n)=O(n \log n)+O(n)=O(n \log n)$

II (10 points) For $n>1$,

$$
\begin{aligned}
f(n) & =2 f(n-1)+n \\
& =2(2 f(n-2)+n-1)+n \\
& =2^{2} f(n-2)+2(n-1)+n \\
& =\cdots \\
& =2^{n-1} f(1)+2^{n-2}(n-(n-2))+\cdots+2(n-1)+n \\
& =1 \cdot 2^{n-1}+2 \cdot 2^{n-2}+3 \cdot 2^{n-3}+\cdots+(n-1) \cdot 2^{1}+n \cdot 2^{0}
\end{aligned}
$$

Then

$$
2 f(n)=1 \cdot 2^{n}+2 \cdot 2^{n-1}+3 \cdot 2^{n-2}+4 \cdot 2^{n-3}+\cdots+n \cdot 2^{1}
$$

By subtracting the above two equations, we have

$$
\begin{equation*}
f(n)=2^{n}+2^{n-1}+\cdots+2+1-n-1=2^{n+1}-n-2 \tag{1}
\end{equation*}
$$

To prove by induction, when $n=1$,

$$
f(1)=2^{2}-1-2=1
$$

Assume for $n=k, k=1,2,3, \cdots, f(k)=2^{k+1}-k-2$ holds, then for $n=k+1$,

$$
f(k+1)=2 f(k)+(k+1)=2\left(2^{k+1}-k-2\right)+k+1=2^{k+2}-(k+1)-2
$$

Hence the claim holds.
III (70 points) Note that here we assume \log means $\log _{2}$.
1 (10 points) T.
$3 n^{2}+6 n \leq 9 n^{2}$ for any $n \geq 3$, hence $3 n^{2}+6 n=O\left(n^{2}\right)$.
2 (10 points) T .
$3 n^{2}+6 n \leq 6 n^{2} \log n$ for any $n \geq 2$, hence $3 n^{2}+6 n=O\left(n^{2} \log n\right)$.
3 (10 points) F.
$O(\log n)>O(1)$. More precisely, given any n_{0} and $c, n^{2} \log n>c n$ when $n \geq \max \left\{2^{c}, n_{0}\right\}$.
4 (10 points) F. $3^{n}=O\left(\frac{3}{2}\right)^{n} O\left(2^{n}\right)>O\left(2^{n}\right)$. More precisely, given any n_{0} and $c, 3^{n}>c * 2^{n}$ when $n \geq$ $\max \left\{\log _{3 / 2} c, n_{0}\right\}$.
5 (10 points) F.
Note that taking \log preserves inequality. If $\log n \leq c(\log \log n)^{4}$, then $\log \log n \leq \log c+$ $4 \log \log \log n$. Clearly $\log \log n \geq \log \log \log n$, hence it is false.
6 (10 points) T
Note that taking \log preserves inequality. If $n \leq c(\log n)^{\log n}$, then $\log n=\log c+\log n(\log \log n)$.
Clearly this holds.
7 (10 points) T
Note that taking \log preserves inequality. If $n^{100} \leq c 2^{n}$, then $\log n^{100}=100 \log n \leq \log c+$ $\log 2^{n}=\log c+n \log 2$. Clearly this holds.

