
600.363/463 Algorithms - Fall 2013

Solution to Assignment 1

(110 points)

I (30 points) Tow possible solutions are shown below.

Solution 1: i. Algorithm(10 points)

Input: Two arrays A and B, both of length n
Output: True if A and B have at least one common element. False otherwise.

1 flag = False;
2 for i← 1 to n do
3 key ← A[i];
4 for j = 1 to n do
5 if B[j]==key then
6 flag← True;
7 break;

8 end

9 end

10 end
11 return flag;

ii. Correctness(10 points)
Loop invariant: At the start of each iteration of the for loop in of lines 2-10, if
flag=False, the subarrays A[1..i − 1] and B[1..n] do not have any common element;
if flag=True, the subarrays A[1..i− 1] and B[1..n] do not have any common element
and A[i] ∈ B[1..n].
Initialization (input to loop): i = 1, A[1..i − 1] is empty, nothing need to be
proved.
Maintenance (loop to loop): new i = iold + 1, flag=False, A[i − 1] /∈ B[1..n].
Hence loop invariant holds.
Termination (loop to out): If flag=True, for current i, A[i] ∈ B[1..n] and A[i−1] /∈
B[1..n]; If flag=False, i = n + 1, A[n] /∈ B[1..n]. Then we conclude that A[1..n] does
not have common element with B[1..n], Hence the algorithm is correct.

iii. Speed(10 points)
i takes less than or equal to n values and j takes less than or equal to n values. It
takes O(1) for each comparison, hence T (n) = O(n2).

Solution 2: i. Algorithm

1



Input: Two arrays A and B, both of length n
Output: True if A and B have at least one comment element. False otherwise.

1 Sort A and B using Merge-Sort;
2 i← 1;
3 j ← 1;
4 flag ← False;
5 while i <= n and j <= n do
6 if A[i] == B[j] then
7 flag←True;
8 break;

9 end
10 else if A[i] < B[j] then
11 i++;
12 end
13 else
14 j++;
15 end

16 end
17 return flag;

ii. Correctness
Correctness of merge sort refers to textbook.
Loop invariant: At the start of each iteration of the while loop in of lines 5-16, if
flag=False, the subarrays A[1..i−1] and B[1..j−1] do not have any common element;
if flag=True, the subarrays A[1..i−1] and B[1..j−1] do not have any common element
and A[i] = B[j].
Initialization (input to loop): i = 1, j = 1, A[1..i− 1] and B[1..j − 1] are empty,
nothing need to be proved.
Maintenance (loop to loop): flag must be False, if new i = iold + 1, A[i − 1] /∈
B[1..j − 1]; if new j = jold + 1, B[j − 1] /∈ A[1..i− 1];. Hence loop invariant holds.
Termination (loop to out): If flag=True, for current i, j, A[i] = B[j], but A[i−1] /∈
B[1..j−1] and B[j−1] /∈ A[1..i−1]; If flag=False, then if i = n+1, A[n] /∈ B[1..j−1]
and if j = n + 1, B[n] /∈ A[1..i − 1]. Then we conclude that A[1..n] does not have
common element with B[1..n], Hence the algorithm is correct.

iii. Speed
Merge-sort takes O(n log n) time. i, j takes less than or equal to n values respectively,
and each comparison takes O(1) time, hence T (n) = O(n log n) + O(n) = O(n log n)

2



II (10 points) For n > 1,

f(n) =2f(n− 1) + n

=2(2f(n− 2) + n− 1) + n

=22f(n− 2) + 2(n− 1) + n

= · · ·
=2n−1f(1) + 2n−2(n− (n− 2)) + · · ·+ 2(n− 1) + n

=1 · 2n−1 + 2 · 2n−2 + 3 · 2n−3 + · · ·+ (n− 1) · 21 + n · 20

Then

2f(n) = 1 · 2n+2 · 2n−1 + 3 · 2n−2 + 4 · 2n−3 + · · ·+ n · 21

By subtracting the above two equations, we have

f(n) = 2n + 2n−1 + · · ·+ 2 + 1− n− 1 = 2n+1 − n− 2 (1)

To prove by induction, when n = 1,

f(1) =22 − 1− 2 = 1

Assume for n = k, k = 1, 2, 3, · · · , f(k) = 2k+1 − k − 2 holds, then for n = k + 1,

f(k + 1) = 2f(k) + (k + 1) = 2(2k+1 − k − 2) + k + 1 = 2k+2 − (k + 1)− 2

Hence the claim holds.

III (70 points) Note that here we assume log means log2.

1 (10 points) T.
3n2 + 6n ≤ 9n2 for any n ≥ 3, hence 3n2 + 6n = O(n2).

2 (10 points) T.
3n2 + 6n ≤ 6n2 log n for any n ≥ 2,hence 3n2 + 6n = O(n2 log n).

3 (10 points) F.
O(log n) > O(1). More precisely, given any n0 and c, n2 log n > cn when n ≥ max{2c, n0}.

4 (10 points) F.
3n = O(32)nO(2n) > O(2n). More precisely, given any n0 and c, 3n > c ∗ 2n when n ≥
max{log3/2 c, n0}.

5 (10 points) F.
Note that taking log preserves inequality. If log n ≤ c(log log n)4, then log log n ≤ log c +
4 log log log n. Clearly log log n ≥ log log log n, hence it is false.

6 (10 points) T
Note that taking log preserves inequality. If n ≤ c(log n)logn, then log n = log c+log n(log log n).
Clearly this holds.

7 (10 points) T
Note that taking log preserves inequality. If n100 ≤ c2n, then log n100 = 100 log n ≤ log c +
log 2n = log c + n log 2. Clearly this holds.

3


