600.363/463 Algorithms - Fall 2013
Solution to Assignment 1

(110 points)

I (30 points) Tow possible solutions are shown below.

Solution 1:

Solution 2:

i. Algorithm(10 points)

ii.

iil.

i.

Input: Two arrays A and B, both of length n
Output: True if A and B have at least one common element. False otherwise.

1 flag = False;

2 for i <~ 1 ton do

3 key < Alil;

4 for j =1 tondo

5 if Bfj/==key then
6 flag«— True;

7 break;

8 end

9 end

10 end

11 return flag;

Correctness(10 points)

Loop invariant: At the start of each iteration of the for loop in of lines 2-10, if
flag=False, the subarrays A[l..i — 1] and BJ[l..n] do not have any common element;
if flag=True, the subarrays A[l..i — 1] and B[1..n] do not have any common element
and A[i] € B[l..n].

Initialization (input to loop): i = 1, A[l..i — 1] is empty, nothing need to be
proved.

Maintenance (loop to loop): new i = iyq + 1, flag=False, A[i — 1] ¢ BJl..n].
Hence loop invariant holds.

Termination (loop to out): If flag=True, for current ¢, A[i] € B[l..n] and A[i—1] ¢
Bl[1..n]; If flag=False, i = n + 1, A[n] ¢ B[1..n]. Then we conclude that A[l..n] does
not have common element with B[1..n], Hence the algorithm is correct.

Speed (10 points)

1 takes less than or equal to n values and j takes less than or equal to n values. It
takes O(1) for each comparison, hence T'(n) = O(n?).

Algorithm



ii.

iii.

Input: Two arrays A and B, both of length n
Output: True if A and B have at least one comment element. False otherwise.
1 Sort A and B using Merge-Sort;
2 1+ 1;
3 5+ 1;
4 flag < False;
5 while 1 <=n and j <=n do

6 if Afi] == B[j] then
7 flag«True;

8 break;

9 end

10 else if A[i| < B[j] then
11 | i+

12 end

13 else

14 ‘ j++;

15 end

16 end

17 return flag;

Correctness

Correctness of merge sort refers to textbook.

Loop invariant: At the start of each iteration of the while loop in of lines 5-16, if
flag=False, the subarrays A[l..i—1] and B[l..j — 1] do not have any common element;
if flag=True, the subarrays A[l..i—1] and B[1..j—1] do not have any common element
and A[i] = B[j].

Initialization (input to loop): i =1,5 =1, A[l..i — 1] and BJ[l..j — 1] are empty,
nothing need to be proved.

Maintenance (loop to loop): flag must be False, if new i = iyq + 1, Ali — 1] ¢
B[l..j —1]; if new j = joq + 1, Blj — 1] ¢ A[l..i — 1];. Hence loop invariant holds.
Termination (loop to out): If flag=True, for current ¢, j, A[i] = B[j], but A[i—1] ¢
B[l..j—1] and B[j —1] ¢ A[l..i—1]; If lag=False, then if i = n+1, A[n] ¢ B[1..j —1]
and if j = n+ 1, B[n] ¢ A[l..i — 1]. Then we conclude that A[l..n] does not have
common element with B[1..n|, Hence the algorithm is correct.

Speed

Merge-sort takes O(nlogn) time. i, j takes less than or equal to n values respectively,
and each comparison takes O(1) time, hence T'(n) = O(nlogn) + O(n) = O(nlogn)



II

I11

(10 points) For n > 1,

fn)=2f(n—1)+n
=2(2f(n—-2)+n—-1)+n
=2%f(n—2)+2(n—1)+n

=2 ) +2" 2 (n—(n—2))+---+2(n—1)+n
=1-2"tp2.9n 2 3.0m 3 Lo (n—1)-2" 4020
Then
2f(n) =1-2"42.2"71 4 3.2"2 4 4.2" 3 4 ... 4 . 2!
By subtracting the above two equations, we have
fny=2"4+2""14...4241-n-1=2""_—pn-2 (1)
To prove by induction, when n =1,

f)y=2*-1-2=1

Assume for n =k, k =1,2,3,---, f(k) = 2"*1 —k — 2 holds, then for n = k + 1,
flk+D) =2f(k)+(k+1D) =202 k-2 +k+1=2"2_(k+1)-2

Hence the claim holds.

(70 points) Note that here we assume log means log,.

1 (10 points) T.
3n? 4+ 6n < 9n? for any n > 3, hence 3n? + 6n = O(n?).
2 (10 points) T.
3n2 + 6n < 6n2 logn for any n > 2 hence 3n2 4+ 6n = O(n2 logn).
3 (10 points) F.
O(logn) > O(1). More precisely, given any ng and ¢, n?logn > cn when n > max{2¢,ng}.
4 (10 points) F.
3" = 0(3)"0(2") > O(2"). More precisely, given any ng and ¢, 3" > ¢ 2" when n >
max{logs s ¢, n0}-
5 (10 points) F.
Note that taking log preserves inequality. If logn < c(loglogn)?, then loglogn < logc +
4logloglogn. Clearly loglogn > logloglogn, hence it is false.
6 (10 points) T
Note that taking log preserves inequality. If n < c¢(logn)°8™, then logn = log c+log n(loglogn).
Clearly this holds.
7 (10 points) T
Note that taking log preserves inequality. If n'0 < 27, then logn!'% = 100logn < log c +
log 2™ = log ¢ + nlog 2. Clearly this holds.



