600.363/463 Algorithms
 Assignment 2
 Due Sept 23, 2013

I. By applying the master theorem solve the following recurrences. For the base cases, assume that T is $O(1)$.

1. $T(n)=25 T(n / 5)+n^{2.1}$
2. $T(n)=25 T(n / 5)+n^{1.5}$
3. $T(n)=25 T(n / 5)+n^{2}$
II. Solve the following recurrence by successive substitutions or by induction. For the base cases, assume that T is $O(1)$.
$T(n) \leq 25 T(n / 5)+n^{2} \log n$.
III. The element distinctness problem consists of testing whether a given set of n numbers have no duplicates. Design an $O(n \log n)$ step comparison-based algorithm for this problem.
IV. In the selection problem (finding the $k^{\text {th }}$ smallest element), if we group the n elements into $n / 3$ groups each of 3 elements and make appropriate changes to the algorithm, derive the speed of the resulting algorithm. Repeat it when each group consists of 7 elements.
V. (BONUS PROBLEM) For the element distinctness problem derive a lower bound of $\Omega(n \log n)$.
