
600.363/463 Algorithms - Fall 2013

Solution to Assignment 2

(90 points+20 bonus points)

I (30 points)

1 a = 25, b = 5, logb a = log5 25 = 2. Since f(n) = n2.1 = n2+0.1 = Ω(n2+0.1), by the master
theorem part 3, T (n) = Θ(n2.1)

2 a = 25, b = 5, logb a = log5 25 = 2. Since f(n) = n1.5 = n2−0.5 = O(n2−0.5), by the master
theorem part 1, T (n) = Θ(n2)

3 a = 25, b = 5, logb a = log5 25 = 2. Since f(n) = n2 = Θ(n2), by the master theorem part 2,
T (n) = Θ(n2 log n)

II (20 points)

T (n) ≤ 25T
(n

5

)
+ n2 log n

= 25

(
25T

(n

52

)
+
(n

5

)2
log

n

5

)
+ n2 log n

= 252T
(n

52

)
+ 25

(
n2

52

)
log

n

5
+ n2 log n

= 252T
(n

52

)
+ n2 log

n

5
+ n2 log n

= 252T
(n

52

)
+ 2n2 log n− n2 log 5

= 252
(

25T
(n

53

)
+
(n

52

)2
log

n

52

)
+ 2n2 log n− n2 log 5

= 253T
(n

53

)
+ 3n2 log n− (1 + 2)n2 log 5

= · · ·

= 25kT
(n

5k

)
+ kn2 log n− (1 + 2 + · · ·+ k − 1)n2 log 5

= 25kT
(n

5k

)
+ kn2 log n− k(k − 1) log 5

2
n2

Let n/5k = 1⇒ k = log5 n = log n/ log 5, then

T (n) ≤ 25log5 nT (1) +
log n

log 5
n2 log n− log n(log n− log 5)

2 log 5
n2

= n2O(1) + O(n2 log2 n)−O(n2 log2 n)

= O(n2 log2 n)

1

Alternatively, proof by induction also get the full points.

III (20 points)

Algorithm 1: Element-Distinctness

Input: One array A of length n
Output: True if A has duplicate elements. False otherwise.

1 Sort A by an O(n log n) algorithm;
2 flag ← False;
3 for i← 1..n− 1 do
4 if A[i+1]==A[i] then
5 flag← True;
6 break;

7 end

8 end
9 return flag;

Sorting takes O(n log n) time, and the for loop in lines 3-8 takes O(n) time at the worst case,
therefore the algorithm takes O(n log n) time.

IV (20 points)

1 3-elements-grouping
Let x be the pivot element, then the number of elements greater than x is at least 2(1/2dn/3e) ≥
n/3, thus at most 2n/3 elements are considered in the next recursion. Therefore

T (n) =T
(n

3

)
+ T

(
2n

3

)
+ cn

for some positive constant c.
Claim that T (n) ≤ dn log n for d sufficiently large,

T (n) ≤ d
(n

3

)
log

(n
3

)
+ d

(
2n

3

)
log

(
2n

3

)
+ cn

= dn log n +

(
2

3

)
dn log 2− dn log 3 + cn

= dnlogn− ((log 3− 2/3)d− c)n

≤ dn log n

for d ≥ c/(log 3− 2/3).
Therefore T (n) = O(n log n).

2 7-elements-grouping
Let x be the pivot element, then the number of elements greater than x is at least 4(1/2dn/7e) ≥
2n/7, thus at most 5n/7 elements are considered in the next recursion. Therefore

T (n) =T
(n

7

)
+ T

(
5n

7

)
+ cn

2

for some positive constant c.
Claim that T (n) ≤ dn for d sufficiently large,

T (n) ≤ d
(n

7

)
+ d

(
5n

7

)
+ cn

=

(
6

7
d + a

)
n

= dn−
(

1

7
d− c

)
n

≤ dn

when d ≥ 7c.
Therefore T (n) = O(n).

V (BONUS 20 points) For the element distinctness problem derive a lower bound of Ω(n log n).
(Hint: As we already know that the lower bound for comparison-based sorting is Ω(n log n), we
just need to prove that the number of comparisons involved in element-distinctness problem
is no less than the number of comparisons in comparison-based sorting problem.)
Proof:
Without loss of generality, let a1 < a2 < · · · < an be any n distinct elements.
Claim: for any permutation of a1, a2, · · · , an given as input to the element-distinctness algo-
rithm, before it responds that the element are distinct, it must performed enough comparisons
so that it can output the sorted data.
(Proof by contradiction) If the claim is not true, suppose for some i, the order that ai < ai+1

is not known, that is, the element-distinctness algorithm has not compare ai and ai+1 yet,
then change ai+1 to ai and this change would not result in any change to the response. So the
element-distinctness algorithm would output that the new set of elements are distinct, which
is obviously incorrect.
Hence the element-distinctness algorithm performs no less comparisons than sorting algo-
rithms, therefore it has the lower bound of Ω(n log n).

3

