I. Design a dynamic programming algorithm for the following problem:

Given a sequence $a_1 \square_1 a_2 \square_2 \cdots a_{n-1} \square_{n-1} a_n$, in which each a_i is a positive integer and each \square_i is ‘+’ or ‘-’, compute a parenthesization of the expression such that the resulting value is the maximum possible. It suffices to compute the resulting value instead of the parenthesization. Estimate its speed.

For example, if the given sequence is 3 - 4 - 5, ((3-4)-5) results in -6 while (3-(4-5)) results in 4. The second parenthesization results in the maximum possible value, and the output is 4.

II. Let A be an $m \times n$ array of numbers. In phase 1, we sort the rows and then in phase 2, we sort the columns. Prove that after both the phases are completed, the rows remain in sorted order.

III. Let S_1, S_2, \cdots, S_m be nonempty subsets of \{1, 2, \cdots, n\}, and let the total number of elements in all the S_is be n. Design an $O(n)$ step algorithm for sorting the S_is.

IV. In the standard Heap Sort, given any n numbers a_1, a_2, \cdots, a_n, we first arranged them into a complete binary tree and then satisfied the heap property in the order $a_n, a_{n-1}, \cdots, a_1$. If we want to heapify in the order a_1, a_2, \cdots, a_n, describe an appropriate algorithm and estimate its speed. (In this algorithm, for any $i \geq 1$, after a heap is constructed for a_1, a_2, \cdots, a_i, the next number a_{i+1} is brought into the heap in a bottom-up fashion.)