600.363/463 Algorithms - Fall 2013
Solution to Assignment 3

(120 points)

I (30 points)
(Hint: This problem is similar to parenthesization in matrix-chain multiplication, except the
special treatment on the two possible operators.)
The optimal substructure: This problem has the optimal substructure. Suppose that the
optimal parenthesization of a;0; - - - axDagy1 - - - a; after ay, then the parenthesization of both
the "prefix” a;0; - --a; and the "suffix” ag4q1---a; must be optimal parenthesized. If Oy is
"+, the "suffix” is maximized when the expression a1 ---a; is maximized while if Oy, is "7,
the expression aj41 - - - aj is minimized. Therefore we record both the maximum and minimum
values of each subproblem. The computation of the minimization is similar.
Overlapping subproblems: It is obvious that during the recursion, subproblems (max or
min) with smaller size will be revisited again and again in the computation of bigger subprob-
lems.
Based on the analysis above, we need to record both the maximum and minimum value of
each subproblem. Let M, j] denote the maximum value of expression a;0; - - - a;, and mli, j]
denote the minimum value of a;0; - - - a;, then recursion is:

M[/L] i maxi§k<j{M[i, k] + M[k + 17.7]} if Dk = +/
I maxicp e (M0 K — mlk +1,5]} if Op =/
mli,] = min;<p<;{m[i, k| + m[k + 1, j]} if O =" +/
I mingee {mli k] - M +1,5]} if O = —

The M]i, j]s and mli, j|s can be computed in the order of increasing value of j —i. The re-
sulting bottom-up algorithms is shown below.

Algorithm 1: MAXIMIZATION-EXPRESSION

Input: A sequence of n positive numbers and n — 1 operators in the form of
a1byae0s - -an_1Up 105

Output: A parenthesised expression that the value is maximized.

for i <1 ton do

1
2 Mi,i] < a;;

3 mli,i] < a;

4 end

5 for [+ 2 ton do

6 fori<1ton—-1+1do

7 j—i+1-1;

8 M[Zm]] = —09;

9 mli, j] = +o0;

10 for k< itoj—1do

11 if 0, ==" 4+’ then

12 p < Mli, k] + M[k+ 1, j];
13 q < mli, k] + m[k + 1, j];
14 end

15 else

16 p < M[i, k] —mlk + 1, 7]
17 q < mli, k] — M[k+1,7];
18 end

19 if p > M]i, j] then

20 Mi, j] + p;

21 sli, j] < k;

22 end

23 if ¢ < mli,j] then

24 ‘ mli, j] < q;

25 end

26 end

27 end

28 end

29 return M and s;

The algorithm has 3-levels nested loop structure, and each loop index (I,i, k) takes at most
n — 1 values. Therefore the algorithm takes O(n?®) time. Since matrices M, m, s are of size
n X n, it requires ©(n?) space.

(30 points)
Proof. Let B denote the matrix after phase 1 and C denote the matrix after phase 2. Let o;;
denote the element of a matrix at i*” row and j** column. We show that for every i and j,

cij < ¢; j+1, establishing that the rows of C' are sorted.
Since collumns of C' are sorted, i.e.

Clj+1,Cljtls " 5 Cim1j+1 < Cijl

I11

Each of the above i elements has an element of j + 1** column of B. Each of them has a small
element in the j* column of B (since rows of B are sorted). Hence there are at least i elements
in the jth column of B each of which is less than or equal to ¢; j+1. Hence ¢;;, the 7y, smallest
element in the j* column of B, is less than ¢;,j + 1. O

Alternative proof by contradiction:
For any two elements b;; and b; j11 in the it" row of B, where 1 < i <m,1 < j < n, since rows
of B are sorted, b;; < b; j11. Let ¢y ;1 be the same element as b; j11, i.e. ¢y jy1 = b;jy1.

If the order of a row is not maintained after phase 2, let us assume that ¢y ; > ¢y j41, where
c(i’,7) is the i'** order statistics of column j, so does ci' j+1, since the columns in C are sorted.
Hence there are i’ elements in column j + 1 of C' no greater than Cit j+1. Since ¢y j11 = by ji1,
and column j + 1 in matrix B and C contains the same elements, there are i’ elements in
column j 4 1 of B no greater than b; j;1. Since the rows of B is sorted, column j of B has
i’ elements, which corresponds to the ¢’ elements in column j + 1, no greater than b; j1, and
those do not include b;;. Since b;; < b; j+1, then at column j, there are at least i’ + 1 elements
no greater than b; j;1, then no greater than cy ji1, as ¢y j41 = b;jy1. Since ¢y j > ¢y ji1,
there are at least i’ + 1 elements in j** column of C no greater than ¢yt j, which contradicts the
fact that c; ; is the i'*" order statistics of column j. Hence the rows maintain in sorted order.

(30 points)

Radix sort approach:

Take each element as the least significant digit and the set index as the next digit. Specifically,
for every i, if set S; contains element j, we create the pair (i, 7), then sort the pairs by radix
sort in O(n) time. Then going down the list, we output all the js with i as the first element
as the sorted .5;.

Algorithm 2: SORTING-SETS-RADIX

© 0w N O Ok W N

N N O T e T T s s
N R O © 0 N0 A ® N RO

23

Input: m non-empty sets S1,S2, -+, Sy, which are subsets of {1,2,

number of elements is n.
Output: S1, 52, -+, Sy being sorted in O(n) time.

k + 0;
for i < 1 to m do
for j < 1 to length(S;) do
Nk].key[1] < S;i[j];
N[k].key[2] < i;
k++;
end
end
for d <+ 1 to 2 do
Use a stable sort to sort N on key|d];
end
k <+ 1;
J< L
for i + 1 to m do
if N[k].key[2] == i then
Silj] NIk]key[1];
k4 +;
J++
end
else
RFESRE
end

end

,n} and the total

Note that key[l] has at most n possible values and key[2] has m possible values. Since the
elements are in {1,2,---,n} and the total number of elements is n, m < n. Therefore sorting
in line 10 takes O(n) time for each key, and the loop in lines 9-10 takes O(n) time. The other
two loops is simply copying elements hence takes O(n) time, therefore the speed of the algo-
rithm is O(n).

Alternative counting sort approach:
Three auxiliary arrays are introduced: C[l..n] records the counts, B[l..n] save the sorted re-
sults of all elements and T'[1..n] record the affiliations.

v

Algorithm 3: SORTING-SETS-COUNTING

Input: m non-empty sets S1, S92, -+, Sy, which are subsets of {1,2,--- ,n} and the total
number of elements is n.
Output: S1, 52, -+, Sy being sorted in O(n) time.
> Initialization.
for £+ 1 ton do
‘ C[k] < 0;

end
> Collecting counts.
for i < 1 to m do

for j < 1 to length(S;) do

| OIS+ +
end

© W N . TR W N

end
> Accumulating counts.
for k < 2 to n do
| C[k] « C[k] + C[k — 1;
end
> Sorting according to counts. Affiliation of each element to S; is assigned.
for i < 1 tom do
for j < 1 to length(S;) do
B[C[Si[5]]] < Silil;
TC[Si[j))] « s
ClSill) « Clsill] - 15
end

N N = T a s e T =
H O © 0 N O A ® N KO

end
> Initializing local index of each set.
for i < 1 tom do
| idali] + 1;
end
> Moving each elements to its affiliated set
for k<1 ton do
i < T[kl;
Silidx[il] < Blk];
idz[i] + +;
end
33 return 57,59, -+, Sn;

W W W N NN NN NDNN
N H O © ® N O Ok W N

There are 6 loops in all. Four of them are single loops and the loop index is of size n. The
other two are two-level nested loop which visit each element from all S; sets once. Therefore
they take O(n) time as well. Hence the algorithm takes O(n) time.

(30 points)

The heapifying procedure is as follows: after heapifying the first ¢ — 1 elements, we start at
Ali]. We compare A[i] with its parent. If the parent is larger, we stop; otherwise we swap the
2 elements. If a swap happens, we go up one level and repeat the procedure. The algorithms

are specified below.

Algorithm 4: MAX-HEAPIFY-BOTTOMUP(A, i)

Input: A[l..i — 1] satisfying a heap and element A[i] to be added to the heap
Output: A[l..7] satisfying a heap
if i ==1 then
| return A[1];
end
p < i/2] ;
if Alp] < A[i] then
swap A[i] < Alp];
MAX-HEAPIFY-BOTTOMUP(A, p);
end
else
‘ return A[l..i;
end

© 0O N O s W N =

[
= o

Algorithm 5: BUILD-MAX-HEAP(A)

Input: Array A.

Output: Max-heap A.

1 n < length[A] ;

2 for i <~ 1 to n do

3 MAX-HEAPIFY-BOTTOMUP(A, i);
4 end

5 return A;

The heap has depth of logn. So each heapifying any element A[i] takes at most O(logn) swaps.
The loop index takes O(n) time, hence the algorithm takes O(nlogn) time. More precisely, at
depth d there are at most 2! nodes, and such a node takes at most d swaps, therefore, there
are at most

logn

Z d2¢71 = O(nlogn)
d=1

swaps in building an heap of size n. Therefore the speed of the algorithm is O(nlogn).

