
600.363/463 Algorithms - Fall 2013

Solution to Assignment 3

(120 points)

I (30 points)
(Hint: This problem is similar to parenthesization in matrix-chain multiplication, except the
special treatment on the two possible operators.)
The optimal substructure: This problem has the optimal substructure. Suppose that the
optimal parenthesization of ai2i · · · ak2ak+1 · · · aj after ak, then the parenthesization of both
the ”prefix” ai2i · · · ak and the ”suffix” ak+1 · · · aj must be optimal parenthesized. If 2k is
’+’, the ”suffix” is maximized when the expression ak+1 · · · aj is maximized while if 2k is ’−’,
the expression ak+1 · · · aj is minimized. Therefore we record both the maximum and minimum
values of each subproblem. The computation of the minimization is similar.
Overlapping subproblems: It is obvious that during the recursion, subproblems (max or
min) with smaller size will be revisited again and again in the computation of bigger subprob-
lems.
Based on the analysis above, we need to record both the maximum and minimum value of
each subproblem. Let M [i, j] denote the maximum value of expression ai2i · · · aj , and m[i, j]
denote the minimum value of ai2i · · · aj , then recursion is:

M [i, j] =

{
maxi≤k<j{M [i, k] + M [k + 1, j]} if 2k =′ +′

maxi≤k<j{M [i, k]−m[k + 1, j]} if 2k =′ −′

m[i, j] =

{
mini≤k<j{m[i, k] + m[k + 1, j]} if 2k =′ +′

mini≤k<j{m[i, k]−M [k + 1, j]} if 2k =′ −′

The M [i, j]s and m[i, j]s can be computed in the order of increasing value of j − i. The re-
sulting bottom-up algorithms is shown below.

1



Algorithm 1: MAXIMIZATION-EXPRESSION

Input: A sequence of n positive numbers and n− 1 operators in the form of
a121a222 · · · an−12n−1an

Output: A parenthesised expression that the value is maximized.
1 for i← 1 to n do
2 M [i, i]← ai;
3 m[i, i]← ai;

4 end
5 for l← 2 to n do
6 for i← 1 to n− l + 1 do
7 j ← i + l − 1;
8 M [i, j] = −∞;
9 m[i, j] = +∞;

10 for k ← i to j − 1 do
11 if 2k ==′ +′ then
12 p←M [i, k] + M [k + 1, j];
13 q ← m[i, k] + m[k + 1, j];

14 end
15 else
16 p←M [i, k]−m[k + 1, j];
17 q ← m[i, k]−M [k + 1, j];

18 end
19 if p > M [i, j] then
20 M [i, j]← p;
21 s[i, j]← k;

22 end
23 if q < m[i, j] then
24 m[i, j]← q;
25 end

26 end

27 end

28 end
29 return M and s;

The algorithm has 3-levels nested loop structure, and each loop index (l, i, k) takes at most
n − 1 values. Therefore the algorithm takes O(n3) time. Since matrices M,m, s are of size
n× n, it requires Θ(n2) space.

II (30 points)

Proof. Let B denote the matrix after phase 1 and C denote the matrix after phase 2. Let •ij
denote the element of a matrix at ith row and jth column. We show that for every i and j,
cij < ci,j+1, establishing that the rows of C are sorted.
Since collumns of C are sorted, i.e.

c1,j+1, c1,j+1, · · · , ci−1,j+1 ≤ ci,j+1

2



Each of the above i elements has an element of j + 1th column of B. Each of them has a small
element in the jth column of B (since rows of B are sorted). Hence there are at least i elements
in the jth column of B each of which is less than or equal to ci,j+1. Hence cij , the ith smallest
element in the jth column of B, is less than ci, j + 1.

Alternative proof by contradiction:
For any two elements bij and bi,j+1 in the ith row of B, where 1 ≤ i ≤ m, 1 ≤ j < n, since rows
of B are sorted, bij < bi,j+1. Let ci′,j+1 be the same element as bi,j+1, i.e. ci′,j+1 = bi,j+1.

If the order of a row is not maintained after phase 2, let us assume that ci′,j > ci′,j+1, where
c(i′, j) is the i′th order statistics of column j, so does ci′,j+1, since the columns in C are sorted.
Hence there are i′ elements in column j + 1 of C no greater than ci′,j+1. Since ci′,j+1 = bi,j+1,
and column j + 1 in matrix B and C contains the same elements, there are i′ elements in
column j + 1 of B no greater than bi,j+1. Since the rows of B is sorted, column j of B has
i′ elements, which corresponds to the i′ elements in column j + 1, no greater than bi,j+1, and
those do not include bij . Since bij < bi,j+1, then at column j, there are at least i′+ 1 elements
no greater than bi,j+1, then no greater than ci′,j+1, as ci′,j+1 = bi,j+1. Since ci′,j > ci′,j+1,
there are at least i′+ 1 elements in jth column of C no greater than ci′,j , which contradicts the
fact that ci′,j is the i′th order statistics of column j. Hence the rows maintain in sorted order.

III (30 points)
Radix sort approach:
Take each element as the least significant digit and the set index as the next digit. Specifically,
for every i, if set Si contains element j, we create the pair (i, j), then sort the pairs by radix
sort in O(n) time. Then going down the list, we output all the js with i as the first element
as the sorted Si.

3



Algorithm 2: SORTING-SETS-RADIX

Input: m non-empty sets S1, S2, · · · , Sm, which are subsets of {1, 2, · · · , n} and the total
number of elements is n.

Output: S1, S2, · · · , Sm being sorted in O(n) time.
1 k ← 0;
2 for i← 1 to m do
3 for j ← 1 to length(Si) do
4 N [k].key[1]← Si[j];
5 N [k].key[2]← i;
6 k + +;

7 end

8 end
9 for d← 1 to 2 do

10 Use a stable sort to sort N on key[d];
11 end
12 k ← 1;
13 j ← 1;
14 for i← 1 to m do
15 if N [k].key[2] == i then
16 Si[j]← N [k].key[1];
17 k + +;
18 j + +;

19 end
20 else
21 j ← 1;
22 end

23 end

Note that key[1] has at most n possible values and key[2] has m possible values. Since the
elements are in {1, 2, · · · , n} and the total number of elements is n, m ≤ n. Therefore sorting
in line 10 takes O(n) time for each key, and the loop in lines 9-10 takes O(n) time. The other
two loops is simply copying elements hence takes O(n) time, therefore the speed of the algo-
rithm is O(n).
Alternative counting sort approach:
Three auxiliary arrays are introduced: C[1..n] records the counts, B[1..n] save the sorted re-
sults of all elements and T [1..n] record the affiliations.

4



Algorithm 3: SORTING-SETS-COUNTING

Input: m non-empty sets S1, S2, · · · , Sm, which are subsets of {1, 2, · · · , n} and the total
number of elements is n.

Output: S1, S2, · · · , Sm being sorted in O(n) time.
1 . Initialization.
2 for k ← 1 to n do
3 C[k]← 0;
4 end
5 . Collecting counts.
6 for i← 1 to m do
7 for j ← 1 to length(Si) do
8 C[Si[j]] + +;
9 end

10 end
11 . Accumulating counts.
12 for k ← 2 to n do
13 C[k]← C[k] + C[k − 1];
14 end
15 . Sorting according to counts. Affiliation of each element to Si is assigned.
16 for i← 1 to m do
17 for j ← 1 to length(Si) do
18 B[C[Si[j]]]← Si[j];
19 T [C[Si[j]]]← i;
20 C[Si[j]]← C[Si[j]]− 1;

21 end

22 end
23 . Initializing local index of each set.
24 for i← 1 to m do
25 idx[i]← 1;
26 end
27 . Moving each elements to its affiliated set
28 for k ← 1 to n do
29 i← T [k];
30 Si[idx[i]]← B[k];
31 idx[i] + +;

32 end
33 return S1, S2, · · · , Sm;

There are 6 loops in all. Four of them are single loops and the loop index is of size n. The
other two are two-level nested loop which visit each element from all Si sets once. Therefore
they take O(n) time as well. Hence the algorithm takes O(n) time.

IV (30 points)
The heapifying procedure is as follows: after heapifying the first i − 1 elements, we start at
A[i]. We compare A[i] with its parent. If the parent is larger, we stop; otherwise we swap the
2 elements. If a swap happens, we go up one level and repeat the procedure. The algorithms

5



are specified below.

Algorithm 4: MAX-HEAPIFY-BOTTOMUP(A, i)

Input: A[1..i− 1] satisfying a heap and element A[i] to be added to the heap
Output: A[1..i] satisfying a heap

1 if i == 1 then
2 return A[1];
3 end
4 p← bi/2c ;
5 if A[p] < A[i] then
6 swap A[i]↔ A[p];
7 MAX-HEAPIFY-BOTTOMUP(A, p);

8 end
9 else

10 return A[1..i];
11 end

Algorithm 5: BUILD-MAX-HEAP(A)

Input: Array A.
Output: Max-heap A.

1 n← length[A] ;
2 for i← 1 to n do
3 MAX-HEAPIFY-BOTTOMUP(A, i);
4 end
5 return A;

The heap has depth of log n. So each heapifying any element A[i] takes at most O(log n) swaps.
The loop index takes O(n) time, hence the algorithm takes O(n log n) time. More precisely, at
depth d there are at most 2d−1 nodes, and such a node takes at most d swaps, therefore, there
are at most

logn∑
d=1

d2d−1 = O(n log n)

swaps in building an heap of size n. Therefore the speed of the algorithm is O(n log n).

6


