
600.363/463 Algorithms - Fall 2013

Solution to Assignment 4

(30+20 points)

I (10 points)
This problem brings in an extra constraint on the optimal binary search tree - for every node
v, the number of nodes in both of its subtrees should be at least 1/5 of the number of nodes
in the tree rooted at v. Therefore in searching for the optimal root of a subtree ranging from
ki to kj , instead of taking all nodes as candidate roots, we must constrain our search within
the middle 3/5 of the nodes. Let kr be the root, then left subtree contains 2r − 2i+ 1 nodes:

{ki, ki+1, · · · , kr−1, di−1, · · · , dr−1}

and the right subtree contains 2j − 2r + 1 nodes:

{kr+1, kr+2, · · · , kj , dr, · · · , dj}.

Note that there are (j − i+ 1) ∗ 2 + 1 = 2j − 2i+ 3 nodes from ki to kj . Let{
2r − 2i+ 1 ≥ 1

5(2j − 2i+ 3)

2j − 2r + 1 ≥ 1
5(2j − 2i+ 3)

Solving the above inequalities, {
r ≥ 1

5(4i+ j − 1) , r1

r ≤ 1
5(i+ 4j + 1) , r2

The resulting recursion is:

e[i, j] = minr1≤r≤r2

{
qi−1 if j = i− 1

{e[i, r − 1] + e[r + 1, j] + w(i, j)} if i ≤ j.

where

w(i, j) =

j∑
l=i

pl +

j∑
i−1

ql.

1



The algorithm is shown below.

Algorithm 1: Optimal-Weight-Balanced-BST(p,q,n)

1 for i← 1 to n do
2 e[i, i− 1]← qi−1;
3 w[i, i− 1]← qi−1;

4 end
5 for l← 1 to n do
6 for i← 1 to n− l + 1 do
7 j ← i+ l − 1;
8 e[i, j]←∞;
9 w[i, j]← w[i, j − 1] + pj + qj ;

10 . Here the search is to the middle 3/5 of he nodes.
11 r1 = b(4i+ j − 1)/5c+ 1;
12 r2 = d(i+ 4j + 1)/5e − 1;
13 if r1 ≤ r2 then
14 for r ← r1 to r2 do
15 t← e[i, r − 1] + e[r + 1, j] + w[i, j];
16 if t < e[i, j] then
17 e[i, j]← t;
18 root[i, j]← r;

19 end

20 end

21 end

22 end

23 end
24 return e and root ;

The three nested loops take no more than n values for each loop variable, thus the algorithm
takes O(n3) time.

II (10 points)
(The key point to this problem is allowing a batch of operations consisting of enqueue/dequeue
and shuffle). The simulation is done in phases. At the beginning of a phase if the deque contains
elements a1, a2, · · · , ak then we store ak/2, ak/2−1, · · · , a1 in locations 1, 3, 5, · · · of the array
and ak/2+1, ak/2+2, · · · , ak in locations 2, 4, 6, · · · . There are two pointers, one points to the left
end a1 and the other points to the right end ak. The phase consists of simulationinghe next
k/2 dequeue operations in a straightforward way. Then if the deque length becomes k′(≤ k),
it gets split in halves and stored in the above way. The k/2steps of dequeue takes 2(k/2) = k
RAM steps for simulation and at most 2k′(≤ 3k) steps for redistribution. Hence it takes no
more than k+3k

k/2 = 8 steps per step of deque.

III (10 points)
Instead of using the length as the objective function, we redefine the objective function as the
weighted value of the common subsequence. Let c[i, j, a] be the maximum total weight among
all the common subsequence of x1x2 · · ·xi and y1y2 · · · yj that ends with symbol a. Then we
define the prevx(i, a) and prevy(j, a) as the biggest index of the subsequence of x1 · · ·xi and

2



y1 · · · yj ended with a respectively:

prevx(i, a) =

{
max{l} such that xl = a if there exists such an a

0 otherwise

prevy(j, a) =

{
max{l} such that yl = a if there exists such an a

0 otherwise

Let U = c[i− 1, j, a] and V = c[i, j − 1, a]. Hence the recursion formula becomes:

c[i, j, a] =



0 if i = 0 or j = 0,

max{U, V } if i, j > 0 and a /∈ {xi, yj},
maxb{U, V, c[i− 1, prevy(j, a)− 1, b] + δ(b, a)} if i, j > 0 and a = xi and a 6= yj

maxb{U, V, c[prevx(i, a)− 1, j − 1, b] + δ(b, a)} if i, j > 0 and a = yj and a 6= xi

maxb{U, V, c[i− 1, j − 1, b]}+ δ(b, a) if i, j > 0 and a = yj = xi

The maximum weight will be given by maxa{c[m,n, a]}. Let S be the dictionary of alphabets
and s be its size. Note the maximization over b only happens in limited cases, the algorithm
runs in O(mns).
(Remarks: The third case is needed to consider all in which xi matches up with some symbols
in y. When it does match up we can move it up to the maximum position in y. The fourth
case is similar. if you have not realized that you can limit to just the previous occurrence of
the symbol a, then the third case will become

max
b,l
{U, V, c[i− 1, l, b] + δ(b, a)} if a = xi, a 6= yj and xl+1 = a

The fourth case is analogues similarly. Then the running time will be O(smnmax{m,n})).
The psudo-code is given below.

3



Algorithm 2: LCS-MaxWeight(X,Y, δ)

1 m← length(X);
2 n← length(Y );
3 for a ∈ S do
4 for i← 0 to m do
5 prevx(i, a) = 0;
6 c[i, 0, a] = 0;
7 if xi−1 == a then prevx(i, a) = i− 1;
8 else prevx(i, a) = prevx(i− 1, a);

9 for j ← 1 to n do
10 prevy(j, a) = 0;
11 c[0, j, a] = 0;
12 if yj−1 == a then prevy(j, a) = j − 1;
13 else prevy(j, a) = prevy(j − 1, a);

14 for i← 1 to m do
15 for j ← 1 to n do
16 for a ∈ S do
17 U = c[i− 1, j, a];
18 V = c[i, j − 1, a];
19 if xi == yj == a then
20 c[i, j, a] =LOCAL-MAX(U, V, i− 1, j − 1, a);
21 else if xi == a&yj 6= a then
22 c[i, j, a] =LOCAL-MAX(U, V, i− 1, prevy(j, a)− 1, a);
23 else if a == yj&a 6= xi then
24 c[i, j, a] =LOCAL-MAX(U, V, prevx(i, a)− 1, j − 1, a);
25 else
26 if U > V
27 then c[i, j, a]← U ;
28 else c[i, j, a]← V ;

29

30 return c;

Algorithm 3: LOCAL-MAX(U, V, i, j, a))

1 weight← −∞;
2 for b ∈ S do
3 w ← c[i, j, b];
4 if w > weight then weight = w; sym = b;

5 weight← weight+ δ(sym, a);
6 B[i, j, b] = ” ↑ ”;
7 if U > weight then weight = U ;
8 if V > weight then weight = V ;
9 return weight;

4



IV (bonus 10 points)

For any 1 ≤ d ≤ n, define v[i, j, d] as the minimum cost of the subtree containing keys
ki, ki+1, · · · , kj rooted at depth d, i.e.

e[i, j, d] = min

j∑
l=i

pl(dl + 1 + d)2

If kr is the root of an optimal subtree containing keys ki, · · · , kj rooted at depth d, we have

e[i, j, d] = min
i≤r≤j

{
r−1∑
l=i

pl(dl + 1 + d)2 +

j∑
l=r+1

pl(dl + 1 + d)2 + pr(dr + 1 + d)2

}

= min
i≤r≤j

{
r−1∑
l=i

pl(d
′
l + 1 + 1 + d)2 +

j∑
l=r+1

pl(d
′
l + 1 + 1 + d)2

}
+ pr(0 + 1 + d)2

= min
i≤r≤j

{e[i, r − 1, d+ 1] + e[r + 1, j, d+ 1]}+ pr(d+ 1)2

and note that when i = j,

e[i, i, d] = pi(d+ 1)2

The algorithm is shown below.

Algorithm 4: Optimal-Weight-BST(p,q,n)

1 for d← 1 to n do
2 for i← 1 to n do
3 e[i, i, d] = pi(d+ 1)2;
4 end

5 end
6 for l← 2 to n do
7 for i← 1 to n− l + 1 do
8 j ← i+ l − 1;
9 for d← 1 to n do

10 e[i, j, d] = +∞;
11 for r ← i to j do
12 t← e[i, r − 1, d+ 1] + e[r + 1, j, d+ 1] + pr(d+ 1)2;
13 if t < e[i, j, d] then
14 e[i, j, d]← t;
15 root[i, j]← r;

16 end

17 end

18 end

19 end

20 end
21 return e and root ;

Filling the table e[i, j, d] takes O(n3) time, and search for the optimal root takes O(n) time,
hence the algorithm takes O(n4) time.

5



V (bonus 10 points)
One way to implement such a queue is using linked-list. There are two linked-lists: a data
lined-list Q and a garbage linked-list G saving the released space. Each element in both Q
and G has two pointers, one points to the next element and the other points to the previous.
Assuming at the beginning the queue Q has k elements a1, a2, · · · , ak. The head pointers of
Q points to a1, and the tail pointer points to ak. There is another flag Max recording the
maximum allocated RAM space.

In the dequeue operation, a1 is deleted from the data linked-list D by moving the head pointer
to a2 and the garbage linked-list G insert the space that element a1 used to its end. This
operation can be done straightforwardly. Suppose k′ steps of dequeue is simulated, and k′ is
no more than k. After the k′ steps, no new RAM space is required and no shuffle is needed.
Therefore each dequeue step takes k/k = O(1) RAM steps, and the space used is 3k spaces
plus some constant spaces.

In the enqueue operation, if G is not empty, take a space from G and assign it to the data
liked-list D by modifying the pointers. The length of G decreased by 1, while the length of D
increased by 1, and the total allocated RAM is the same. If G is empty, then increase Max by
1 and attach it to D. Suppose k′ steps of enqueue is simulated, where the spaces in G is used
up and Max is increased afterwards. After the k′ steps, the length of D is k′+k and length of
G is 0, and no shuffle is required. Therefore each enqueue step takes k′/k′ = O(1) RAM steps
and 3(k + k′) spaces.

The above mechanism ensures that the new space is allocated if and only if all the previously-
allocated spaces are in use. Therefore the size of space is bounded by the size of the data, i.e.
O(S(n)). Since no shuffle is required, and each step involves a constant number of operations,
i.e. it performs O(1) steps per step.

6


