600.363/463 Algorithms - Fall 2013 Solution to Assignment 5

(20 points)

I (10 points)
Note that the optimal substructure of LCS holds. We introduce another variable to record the ending symbol of the common subsequence. Let $c[i, j, a]$ be the length of the longest restricted common subsequence (LRCS) between two strings $x_{1} x_{2} \cdots x_{i}$ and $y_{1} y_{2} \cdots y_{j}$ ending with symbol a. Let S be the dictionary of alphabets and s be its size. Since the LRCS requires that no two consecutive symbols are equal, the recursion formula becomes:

$$
c[i, j, a]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\ c[i-1, j-1, a] & \text { if } i, j>0 \text { and } a \notin\left\{x_{i}, y_{j}\right\}, \\ c[i, j-1, a] & \text { if } i, j>0 \text { and } a=x_{i} \text { and } a \neq y_{j} \\ c[i-1, j, a] & \text { if } i, j>0 \text { and } a=y_{j} \text { and } a \neq x_{i} \\ \max _{b \neq a}\{c[i-1, j-1, a], c[i-1, j-1, b]+1\} & \text { if } i, j>0 \text { and } a=y_{j}=x_{i}\end{cases}
$$

Given the strings $X=x_{1} x_{2} \cdots x_{m}$ and $Y=y_{1} y_{2} \cdots y_{n}$, the maximum length will be determined by $\max _{a}\{c[m, n, a]\}$.
Note that in the fifth case the maximization can be reused for all $b \in S$ (except that a equals the b that is maximum solution, in which the second largest solution is chosen). Hence algorithm runs in $O(\mathrm{mns})$.

II (10 points)
Let T denote the 2-4 tree and k be the key to insert into T. The insertion is executed as:
1 From $\operatorname{root}(T)$ search downwardly to locate the leaf node x to be inserted into.
2 Insert k into x.
3 If x has 4 keys, say $\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$, repeat:
i. If x is the root, create new node as the root, move k_{3} to the root node, and split the rest of x into two nodes x_{1} and x_{2} such that x_{1} contains $\left\{k_{1}, k_{2}\right\}$ and x_{2} contains $\left\{k_{4}\right\}$. Let the two children of the root point to x_{1} and x_{2} respectively. Increase the hight of T by 1 , return T.
ii. Else, randomly select k_{2} or k_{3}, wlog let us take k_{3} for example, insert k_{3} into x 's parent node, denoted by y, and split the rest of x into two nodes x_{1} and x_{2} such that x_{1} contains $\left\{k_{1}, k_{2}\right\}$ and x_{2} contains $\left\{k_{4}\right\}$. Update the two pointers in y before k_{3} and after k_{3} to point to x_{2} and x_{3}, respectively, then update x by y.
till x has less than 4 keys.

4 Return T.

Step 1 takes $O(\log n)$ time. Step 2 takes $O(1)$ time. Step 3 starts from a leaf node and runs at most to the root, therefore it takes $O(\log n)$ time. In sum the algorithm runs in $O(\log n)$.

