600.363/463 Algorithms - Fall 2013 Solution to Assignment 5

(20 points)

I (10 points)

Note that the optimal substructure of LCS holds. We introduce another variable to record the ending symbol of the common subsequence. Let c[i, j, a] be the length of the longest restricted common subsequence (LRCS) between two strings $x_1x_2\cdots x_i$ and $y_1y_2\cdots y_j$ ending with symbol a. Let S be the dictionary of alphabets and s be its size. Since the LRCS requires that no two consecutive symbols are equal, the recursion formula becomes:

$$c[i, j, a] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i - 1, j - 1, a] & \text{if } i, j > 0 \text{ and } a \notin \{x_i, y_j\}, \\ c[i, j - 1, a] & \text{if } i, j > 0 \text{ and } a = x_i \text{ and } a \neq y_j \\ c[i - 1, j, a] & \text{if } i, j > 0 \text{ and } a = y_j \text{ and } a \neq x_i \\ \max_{b \neq a} \{c[i - 1, j - 1, a], c[i - 1, j - 1, b] + 1\} & \text{if } i, j > 0 \text{ and } a = y_j = x_i \end{cases}$$

Given the strings $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$, the maximum length will be determined by $\max_a \{c[m, n, a]\}$.

Note that in the fifth case the maximization can be reused for all $b \in S$ (except that a equals the b that is maximum solution, in which the second largest solution is chosen). Hence algorithm runs in O(mns).

II (10 points)

Let T denote the 2-4 tree and k be the key to insert into T. The insertion is executed as:

- 1 From root(T) search downwardly to locate the leaf node x to be inserted into.
- 2 Insert k into x.
- 3 If x has 4 keys, say $\{k_1, k_2, k_3, k_4\}$, repeat:
 - i. If x is the root, create new node as the root, move k_3 to the root node, and split the rest of x into two nodes x_1 and x_2 such that x_1 contains $\{k_1, k_2\}$ and x_2 contains $\{k_4\}$. Let the two children of the root point to x_1 and x_2 respectively. Increase the hight of T by 1, return T.
 - ii. Else, randomly select k_2 or k_3 , wlog let us take k_3 for example, insert k_3 into x's parent node, denoted by y, and split the rest of x into two nodes x_1 and x_2 such that x_1 contains $\{k_1, k_2\}$ and x_2 contains $\{k_4\}$. Update the two pointers in y before k_3 and after k_3 to point to x_2 and x_3 , respectively, then update x by y.
 - till x has less than 4 keys.

4 Return T.

Step 1 takes $O(\log n)$ time. Step 2 takes O(1) time. Step 3 starts from a leaf node and runs at most to the root, therefore it takes $O(\log n)$ time. In sum the algorithm runs in $O(\log n)$.