
600.363/463 Algorithms - Fall 2013

Solution to Assignment 5

(20 points)

I (10 points)
Note that the optimal substructure of LCS holds. We introduce another variable to record
the ending symbol of the common subsequence. Let c[i, j, a] be the length of the longest
restricted common subsequence (LRCS) between two strings x1x2 · · ·xi and y1y2 · · · yj ending
with symbol a. Let S be the dictionary of alphabets and s be its size. Since the LRCS requires
that no two consecutive symbols are equal, the recursion formula becomes:

c[i, j, a] =

0 if i = 0 or j = 0,

c[i− 1, j − 1, a] if i, j > 0 and a /∈ {xi, yj},
c[i, j − 1, a] if i, j > 0 and a = xi and a 6= yj

c[i− 1, j, a] if i, j > 0 and a = yj and a 6= xi

maxb 6=a{c[i− 1, j − 1, a], c[i− 1, j − 1, b] + 1} if i, j > 0 and a = yj = xi

Given the strings X = x1x2 · · ·xm and Y = y1y2 · · · yn, the maximum length will be determined
by maxa{c[m,n, a]}.
Note that in the fifth case the maximization can be reused for all b ∈ S (except that a
equals the b that is maximum solution, in which the second largest solution is chosen). Hence
algorithm runs in O(mns).

II (10 points)

Let T denote the 2-4 tree and k be the key to insert into T . The insertion is executed as:

1 From root(T) search downwardly to locate the leaf node x to be inserted into.

2 Insert k into x.

3 If x has 4 keys, say {k1, k2, k3, k4}, repeat:

i. If x is the root, create new node as the root, move k3 to the root node, and split the
rest of x into two nodes x1 and x2 such that x1 contains {k1, k2} and x2 contains {k4}.
Let the two children of the root point to x1 and x2 respectively. Increase the hight of T
by 1, return T .

ii. Else, randomly select k2 or k3, wlog let us take k3 for example, insert k3 into x’s parent
node, denoted by y, and split the rest of x into two nodes x1 and x2 such that x1 contains
{k1, k2} and x2 contains {k4}. Update the two pointers in y before k3 and after k3 to
point to x2 and x3, respectively, then update x by y.

till x has less than 4 keys.

1

4 Return T .

Step 1 takes O(log n) time. Step 2 takes O(1) time. Step 3 starts from a leaf node and runs
at most to the root, therefore it takes O(log n) time. In sum the algorithm runs in O(log n).

2

