600.363/463 Algorithms - Fall 2013
Solution to Assignment 6

(30 points)

I (10 points) 21-1 Off-line minimum

a The values in the extracted array are 4, 3, 2, 6, 8, 1.

b Note that each key is inserted only once. Since the loop starts from the smallest value of
i = 1, for each i, if it is in some K, which means it is inserted by I;, then before I; the
dynamic set T' does not contain %, and after I; it is inserted into 7', therefore in the the
EXTRACT-MIN after I;, ¢ is the smallest in 7', so it must be extracted out; if ¢ is not in
any key set, it will be skipped. Hence eztracted[j] contains the value in T which the j-th
EXTRACT-MIN returns.

¢ Using disjoint-set data structure, we can construct an efficient implementation of the algo-
rithm. Initially create disjoint-sets for the subsequences I, ...I,4+1 and place the representa-
tive of each set in a linked list in sorted order. Additionally, label each representative with
its subsequence number. Then line 2 is implemented by FIND-SET operation; in line 5 the
next set is obtained from the root as the next set in the linked list; line 6 is implemented by
UNION operation.
Since the OFF-LONE-MINIMUM can be implemented by a sequence of disjoint-set opera-
tions, the running time for OFF-LINE-MINIMUM is O(ma(n))(or O(mlog* n)).

IT (10 points) 21-2 Depth determination

a If we use disjoint-set data structure, MAKE-TREE takes O(1) time; GRAFT is basically a
union operation, thus it takes ©(1) time; the cost of FIND-DEPTH depends on the depth
of the given node. For a sequence of m operations, the depth of a node is O(m), thus for
the worst case T'(n) = mO(m) = O(m?).

Wlog let £ = m/3 be an integer, considering a sequence of operations with £ + 1 MAKE-
TREES creating k + 1 single-node trees, ¥k GRAFTs forming a single path, and k — 1 FIND-
DEPTH for the leaf node, then the running time of the m operations is T'(n) = (k + 1) *
O(1) + kO(1) + (k — 1) x k = Q(m?).

Hence the worst case running time is ©(m?).

b MAKE-TREE can be implemented by creating a disjoint set with a single node v. d[v] is
set to be 0 inside MAKE-TREE.

¢ According to the definition of d[v] that the sum of the psudodistances along the path from
v to root of its set S; equals to the depth of v in T;, FIND-DEPTH can be implemented by

modifying FIND-SET in such a way: assume the path is composed of vg,v1, -+, v where
vy is the root, for every node v; along the path, update d[v;] = Z.];:z d[vj], i.e., with path



compression, whenever the parent pointer of a node changes, the psudodistance is updated
by the sum of its ancestor’s psudodistances.

d Let the path from v to root of the tree is v = vy, v1,v9, -+ ,v = w, where w is the root.
If rank(r) < rank(w), using UNION operations to make r’s parent pointer point to w,
and updating d[r] by d[r] + Zf:_ol d[v;]; If rank(r) > rank(w), using UNION operations to
make w’s parent pointer point to r, updating d[r] by d[r] + Zf;ll d[v;] and updating d[w] by
d[w] — d[r]. Note that the updating operation does not require extra cost in UNION.

e Since the sequence of m MAKE-TREE, FIND-DEPTH and GRAFT operations can be

implemented by a sequence of m disjoint-set operations, the runing time is O(ma(n))(or
O(mlog*n)).

IIT (10 points)

1 Let T'(1) =T(2) = 1. Assume T'(n) = ¢". Since T'(n) = 2T(n — 1) + 3T (n — 2), for n > 2,
we have

¢ =2c""1 4302

Solving this equation we get ¢; = 3 and ¢o = —1.
Let T'(n) = a3™ + b(—1)", then by the initial values:

T(1) =3a—-b=1
T(2) =9a+b=1

Solving this equation we get a =1/6 and b= —1/2.
Therefore,

T(n) = é:sn - %(—1)" —o@3m).

2 Intuitively, since 2-1/3+1/441/12 = 1, claim that T'(n) < cnlogn, then prove by induction:

T(n) <2T(n/3)+T(n/4) +T(n/12) +n

§2cﬁlogﬁ+cﬁlogﬁ+cﬁlog£+n
3 3 4 4 12 12
2 1 1
=cnlogn — <<Slog3+4log4+1210g12> c—1>n

When ¢ > 1, (%10g3+ ilog4+ %10g12)c— 1> 0, then
T(n) <cnlogn

Hence T'(n) = O(nlogn).



3 Intuitively, since 2% 1/3 +1/4 = 11/12 < 1, claim that T'(n) < cn — d, then prove by
induction
T(n) <2T(n/3) +T(n/4) +n
<2%cn/3—2d+cn/d—d+n

11
:Ecn +n—3d
< ! 1 d
<en 120 n
<cn—d

when ¢ > 12. Hence T'(n) = O(n).
4 Assume T'(1) =1, then

) + (%)2 log g) +n?logn
) + 4(;)2 logg +n%logn

+n?logn + n’logn

-+ - (by substitutions)
logn

< 4losmp(1) + Z n?logn
i=1

= O(n?log? n)

Remark: The series in the second-to-last line also can be obtained by recursion tree method.



