
600.363/463 Algorithms - Fall 2013

Solution to Assignment 6

(30 points)

I (10 points) 21-1 Off-line minimum

a The values in the extracted array are 4, 3, 2, 6, 8, 1.

b Note that each key is inserted only once. Since the loop starts from the smallest value of
i = 1, for each i, if it is in some Kj , which means it is inserted by Ij , then before Ij the
dynamic set T does not contain i, and after Ij it is inserted into T , therefore in the the
EXTRACT-MIN after Ij , i is the smallest in T , so it must be extracted out; if i is not in
any key set, it will be skipped. Hence extracted [j] contains the value in T which the j-th
EXTRACT-MIN returns.

c Using disjoint-set data structure, we can construct an efficient implementation of the algo-
rithm. Initially create disjoint-sets for the subsequences I1, ...Im+1 and place the representa-
tive of each set in a linked list in sorted order. Additionally, label each representative with
its subsequence number. Then line 2 is implemented by FIND-SET operation; in line 5 the
next set is obtained from the root as the next set in the linked list; line 6 is implemented by
UNION operation.

Since the OFF-LONE-MINIMUM can be implemented by a sequence of disjoint-set opera-
tions, the running time for OFF-LINE-MINIMUM is O(mα(n))(or O(m log∗ n)).

II (10 points) 21-2 Depth determination

a If we use disjoint-set data structure, MAKE-TREE takes Θ(1) time; GRAFT is basically a
union operation, thus it takes Θ(1) time; the cost of FIND-DEPTH depends on the depth
of the given node. For a sequence of m operations, the depth of a node is O(m), thus for
the worst case T (n) = mO(m) = O(m2).

Wlog let k = m/3 be an integer, considering a sequence of operations with k + 1 MAKE-
TREEs creating k+ 1 single-node trees, k GRAFTs forming a single path, and k− 1 FIND-
DEPTH for the leaf node, then the running time of the m operations is T (n) = (k + 1) ∗
Θ(1) + kΘ(1) + (k − 1) ∗ k = Ω(m2).

Hence the worst case running time is Θ(m2).

b MAKE-TREE can be implemented by creating a disjoint set with a single node v. d[v] is
set to be 0 inside MAKE-TREE.

c According to the definition of d[v] that the sum of the psudodistances along the path from
v to root of its set Si equals to the depth of v in Ti, FIND-DEPTH can be implemented by
modifying FIND-SET in such a way: assume the path is composed of v0, v1, · · · , vk where
vk is the root, for every node vi along the path, update d[vi] =

∑k
j=i d[vj], i.e., with path

1

compression, whenever the parent pointer of a node changes, the psudodistance is updated
by the sum of its ancestor’s psudodistances.

d Let the path from v to root of the tree is v = v0, v1, v2, · · · , vk = w, where w is the root.
If rank(r) < rank(w), using UNION operations to make r’s parent pointer point to w,
and updating d[r] by d[r] +

∑k−1
i=0 d[vi]; If rank(r) ≥ rank(w), using UNION operations to

make w’s parent pointer point to r, updating d[r] by d[r] +
∑k−1

i=1 d[vi] and updating d[w] by
d[w] − d[r]. Note that the updating operation does not require extra cost in UNION.

e Since the sequence of m MAKE-TREE, FIND-DEPTH and GRAFT operations can be
implemented by a sequence of m disjoint-set operations, the runing time is O(mα(n))(or
O(m log∗ n)).

III (10 points)

1 Let T (1) = T (2) = 1. Assume T (n) = cn. Since T (n) = 2T (n − 1) + 3T (n − 2), for n > 2,
we have

c2 = 2cn−1 + 3cn−2

Solving this equation we get c1 = 3 and c2 = −1.
Let T (n) = a3n + b(−1)n, then by the initial values:{

T (1) = 3a− b = 1

T (2) = 9a+ b = 1

Solving this equation we get a = 1/6 and b = −1/2.
Therefore,

T (n) =
1

6
3n − 1

2
(−1)n = O(3n).

2 Intuitively, since 2·1/3+1/4+1/12 = 1, claim that T (n) ≤ cn log n, then prove by induction:

T (n) ≤ 2T (n/3) + T (n/4) + T (n/12) + n

≤ 2c
n

3
log

n

3
+ c

n

4
log

n

4
+ c

n

12
log

n

12
+ n

= cn log n−
((

2

3
log 3 +

1

4
log 4 +

1

12
log 12

)
c− 1

)
n

When c ≥ 1,
(
2
3 log 3 + 1

4 log 4 + 1
12 log 12

)
c− 1 > 0, then

T (n) ≤ cn log n

Hence T (n) = O(n log n).

2

3 Intuitively, since 2 ∗ 1/3 + 1/4 = 11/12 < 1, claim that T (n) ≤ cn − d, then prove by
induction

T (n) ≤2T (n/3) + T (n/4) + n

≤2 ∗ cn/3 − 2d+ cn/4 − d+ n

=
11

12
cn+ n− 3d

≤cn−
(

1

12
c− 1

)
n− d

≤cn− d

when c ≥ 12. Hence T (n) = O(n).

4 Assume T (1) = 1, then

T (n) ≤ 4T (
n

2
) + n2 log n

≤ 4(4T (
n

22
) + (

n

2
)2 log

n

2

)
+ n2 log n

= 42T
(n

22

)
+ 4(

n

2
)2 log

n

2
+ n2 log n

≤ 42T
(n

22

)
+ n2 log n+ n2 log n

≤ 43T
(n

24

)
+ n2 log n+ n2 log n+ n2 log n

· · · (by substitutions)

≤ 4lognT (1) +

logn∑
i=1

n2 log n

= O(n2 log2 n)

Remark: The series in the second-to-last line also can be obtained by recursion tree method.

3

