600.363/463 Algorithms - Fall 2013 Solution to Assignment 6

(30 points)

I (10 points) 21-1 Off-line minimum

a The values in the extracted array are $4,3,2,6,8,1$.
b Note that each key is inserted only once. Since the loop starts from the smallest value of $i=1$, for each i, if it is in some K_{j}, which means it is inserted by I_{j}, then before I_{j} the dynamic set T does not contain i, and after I_{j} it is inserted into T, therefore in the the EXTRACT-MIN after I_{j}, i is the smallest in T, so it must be extracted out; if i is not in any key set, it will be skipped. Hence extracted[j] contains the value in T which the j-th EXTRACT-MIN returns.
c Using disjoint-set data structure, we can construct an efficient implementation of the algorithm. Initially create disjoint-sets for the subsequences $I_{1}, \ldots I_{m+1}$ and place the representative of each set in a linked list in sorted order. Additionally, label each representative with its subsequence number. Then line 2 is implemented by FIND-SET operation; in line 5 the next set is obtained from the root as the next set in the linked list; line 6 is implemented by UNION operation.
Since the OFF-LONE-MINIMUM can be implemented by a sequence of disjoint-set operations, the running time for OFF-LINE-MINIMUM is $O(m \alpha(n))\left(\right.$ or $\left.O\left(m \log ^{*} n\right)\right)$.

II (10 points) 21-2 Depth determination
a If we use disjoint-set data structure, MAKE-TREE takes $\Theta(1)$ time; GRAFT is basically a union operation, thus it takes $\Theta(1)$ time; the cost of FIND-DEPTH depends on the depth of the given node. For a sequence of m operations, the depth of a node is $O(m)$, thus for the worst case $T(n)=m O(m)=O\left(m^{2}\right)$.
Wlog let $k=m / 3$ be an integer, considering a sequence of operations with $k+1$ MAKETREEs creating $k+1$ single-node trees, k GRAFTs forming a single path, and $k-1$ FINDDEPTH for the leaf node, then the running time of the m operations is $T(n)=(k+1) *$ $\Theta(1)+k \Theta(1)+(k-1) * k=\Omega\left(m^{2}\right)$.
Hence the worst case running time is $\Theta\left(m^{2}\right)$.
b MAKE-TREE can be implemented by creating a disjoint set with a single node $v . d[v]$ is set to be 0 inside MAKE-TREE.
c According to the definition of $d[v]$ that the sum of the psudodistances along the path from v to root of its set S_{i} equals to the depth of v in T_{i}, FIND-DEPTH can be implemented by modifying FIND-SET in such a way: assume the path is composed of $v_{0}, v_{1}, \cdots, v_{k}$ where v_{k} is the root, for every node v_{i} along the path, update $d\left[v_{i}\right]=\sum_{j=i}^{k} d\left[v_{j}\right]$, i.e., with path
compression, whenever the parent pointer of a node changes, the psudodistance is updated by the sum of its ancestor's psudodistances.
d Let the path from v to root of the tree is $v=v_{0}, v_{1}, v_{2}, \cdots, v_{k}=w$, where w is the root. If $\operatorname{rank}(r)<\operatorname{rank}(w)$, using UNION operations to make r 's parent pointer point to w, and updating $d[r]$ by $d[r]+\sum_{i=0}^{k-1} d\left[v_{i}\right]$; If $\operatorname{rank}(r) \geq \operatorname{rank}(w)$, using UNION operations to make w 's parent pointer point to r, updating $d[r]$ by $d[r]+\sum_{i=1}^{k-1} d\left[v_{i}\right]$ and updating $d[w]$ by $d[w]-d[r]$. Note that the updating operation does not require extra cost in UNION.
e Since the sequence of m MAKE-TREE, FIND-DEPTH and GRAFT operations can be implemented by a sequence of m disjoint-set operations, the runing time is $O(m \alpha(n))$ (or $\left.O\left(m \log ^{*} n\right)\right)$.
III (10 points)
1 Let $T(1)=T(2)=1$. Assume $T(n)=c^{n}$. Since $T(n)=2 T(n-1)+3 T(n-2)$, for $n>2$, we have

$$
c^{2}=2 c^{n-1}+3 c^{n-2}
$$

Solving this equation we get $c_{1}=3$ and $c_{2}=-1$.
Let $T(n)=a 3^{n}+b(-1)^{n}$, then by the initial values:

$$
\left\{\begin{array}{l}
T(1)=3 a-b=1 \\
T(2)=9 a+b=1
\end{array}\right.
$$

Solving this equation we get $a=1 / 6$ and $b=-1 / 2$.
Therefore,

$$
T(n)=\frac{1}{6} 3^{n}-\frac{1}{2}(-1)^{n}=O\left(3^{n}\right) .
$$

2 Intuitively, since $2 \cdot 1 / 3+1 / 4+1 / 12=1$, claim that $T(n) \leq c n \log n$, then prove by induction:

$$
\begin{aligned}
T(n) & \leq 2 T(n / 3)+T(n / 4)+T(n / 12)+n \\
& \leq 2 c \frac{n}{3} \log \frac{n}{3}+c \frac{n}{4} \log \frac{n}{4}+c \frac{n}{12} \log \frac{n}{12}+n \\
& =c n \log n-\left(\left(\frac{2}{3} \log 3+\frac{1}{4} \log 4+\frac{1}{12} \log 12\right) c-1\right) n
\end{aligned}
$$

When $c \geq 1,\left(\frac{2}{3} \log 3+\frac{1}{4} \log 4+\frac{1}{12} \log 12\right) c-1>0$, then

$$
T(n) \leq c n \log n
$$

Hence $T(n)=O(n \log n)$.

3 Intuitively, since $2 * 1 / 3+1 / 4=11 / 12<1$, claim that $T(n) \leq c n-d$, then prove by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 3)+T(n / 4)+n \\
& \leq 2 * c n / 3-2 d+c n / 4-d+n \\
& =\frac{11}{12} c n+n-3 d \\
& \leq c n-\left(\frac{1}{12} c-1\right) n-d \\
& \leq c n-d
\end{aligned}
$$

when $c \geq 12$. Hence $T(n)=O(n)$.
4 Assume $T(1)=1$, then

$$
\begin{aligned}
T(n) & \leq 4 T\left(\frac{n}{2}\right)+n^{2} \log n \\
& \leq 4\left(4 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2} \log \frac{n}{2}\right)+n^{2} \log n \\
& =4^{2} T\left(\frac{n}{2^{2}}\right)+4\left(\frac{n}{2}\right)^{2} \log \frac{n}{2}+n^{2} \log n \\
& \leq 4^{2} T\left(\frac{n}{2^{2}}\right)+n^{2} \log n+n^{2} \log n \\
& \leq 4^{3} T\left(\frac{n}{2^{4}}\right)+n^{2} \log n+n^{2} \log n+n^{2} \log n \\
& \cdots(\text { by substitutions }) \\
& \leq 4^{\log n} T(1)+\sum_{i=1}^{\log n} n^{2} \log n \\
& =O\left(n^{2} \log ^{2} n\right)
\end{aligned}
$$

Remark: The series in the second-to-last line also can be obtained by recursion tree method.

