600.363/463 Algorithms - Fall 2013 Solution to Assignment 7

(40 points)
23.2-2 Suppose that we represent the graph $G=(V, E)$ as an adjacency matrix. Give a simple implementation of Prims algorithm for this case that runs in $O\left(V^{2}\right)$ time.

Solution. If Graph $G=(V, E)$ is represented as an adjacency matrix, for an vertex u, to find its adjacent vertices, instead of searching the adjacency list, we search the row of u in the adjacency matrix. We assume that the adjacency matrix stores the edge weights, and those unconnected edges have weights 0 . The Prim's algorithms is modified as:

```
Algorithm 1: MST-PRIM2(G, r)
    for each \(u \in V[G]\) do
        \(k e y[u]=\infty ;\)
        \(\pi[u]=N I L ;\)
    end
    \(k e y[r]=0\);
    \(\mathrm{Q}=\mathrm{V}[\mathrm{G}]\);
    while \(Q \neq \emptyset\) do
        \(\mathrm{u}=\mathrm{EXTRACT}-\mathrm{MIN}(\mathrm{Q})\);
        for each \(v \in V[G]\) do
            if \(A[u, v] \neq 0\) and \(v \in Q\) and \(A[u, v]<k e y[v]\) then
                \(\pi[v]=u ;\)
                \(k e y[v]=A[u, v] ;\)
            end
        end
    end
```

The outer loop (while) has $|V|$ variables and the inner loop (for) has $|V|$ variables. Hence the algorithm runs in $O\left(V^{2}\right)$.
Remarks There are several ways to implement Prim's algorithm in $O\left(V^{2}\right)$ algorithm:
(a) Using the priority queue as above;
(b) Using an array so each time extracting the minimum by one-by-one comparison, which takes $O(V)$ time;
(c) Converting the adjacency matrix into adjacency list representation in $O\left(V^{2}\right)$ time, then using the implementation in textbook.

All above methods run in $O\left(V^{2}\right)$ time.
23.2-8 Professor Borden proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph $G=(V, E)$, partition the set V of vertices into two sets V_{1} and V_{2} such that $\left|V_{1}\right|$ and $\left|V_{2}\right|$ differ by at most 1 . Let E_{1} be the set of edges that are incident only on vertices in V_{1}, and let E_{2} be the set of edges that are incident only on vertices in V_{2}. Recursively solve a minimum-spanning-tree problem on each of the two subgraphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Finally, select the minimum-weight edge in E that crosses the cut V_{1}, V_{2}, and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.
Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide an example for which the algorithm fails.

Solution. We claim that the algorithm will fail. A simple counter example is shown in Figure 1. Graph $G=(V, E)$ has four vertices: $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and is partitioned into subsets

Figure 1: An counter example.
$G 1$ with $V_{1}=\left\{v_{1}, v_{2}\right\}$ and G_{2} with $V_{2}=\left\{v_{3}, v_{4}\right\}$. The minimum-spanning-tree(MST) of G_{1} has weight 4 , and the MST of G_{2} has weight 5 , and the minimum-weight edge crossing the cut (V_{1}, V_{2}) has weight 1 , in sum the spanning tree forming by the proposed algorithm is $v_{2}-v_{1}-v_{4}-v_{3}$ which has weight 10 . On the contrary, it is obvious that the MST of G is $v_{4}-v_{1}-v_{2}-v_{3}$ with weight 7 . Hence the proposed algorithm fails to obtain an MST.
22.5-1 How can the number of strongly connected components of a graph change if a new edge is added?

Solution. The number of strongly connected components (SCCs) may remain the same or reduced to any number no less than 1 , i.e. let m be the number of SCCs in the original graph, and m^{\prime} be the number of SCCs of the new graph after adding the edge, then

$$
m^{\prime} \leq m \text { and } m^{\prime} \geq 1
$$

An explanatory example is shown in Figure 2. The left figure shows the original graph in which each node is an SCC, thus total n SCCs. If the new added edge is a self-loop of any node, or if the new added edge is pointing down, then then number of SCCs will not change. If the new added edge is a pointing up, it forms an SCC, and it may reduce the number of SCC to any number between 1 and n.

Figure 2: Examples for changing of the strongly connected component by adding an edge.
22.5-3 Professor Bacon claims that the algorithm for strongly connected components would be simpler if it used the original (instead of the transpose) graph in the second depth-first search and scanned the vertices in order of increasing finishing times. Does this simpler algorithm always produce correct results?

Solution. This simpler algorithm cannot always produce correct results. Figure 3 shows an example that will leads to a incorrect result. Assuming that we start DFS from v_{1}, then after the first DFS the order of increasing finishing time is v_{2}, v_{1}, v_{3}. In the second DFS, if using the original graph and scanning the vertices in order of increasing finishing time, that is, starting from v_{2}, will lead to one strongly connected component(SCC) of $\left\{v_{1}, v_{2}, v_{3}\right\}$. In fact there are two SCCs in the graph: $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{3}\right\}$.

Figure 3: An example disproving the proposed algorithm.

