
600.363/463 Algorithms - Fall 2013

Solution to Assignment 7

(40 points)

23.2-2 Suppose that we represent the graph G = (V,E) as an adjacency matrix. Give a simple
implementation of Prims algorithm for this case that runs in O(V 2) time.

Solution. If Graph G = (V,E) is represented as an adjacency matrix, for an vertex u, to
find its adjacent vertices, instead of searching the adjacency list, we search the row of u in the
adjacency matrix. We assume that the adjacency matrix stores the edge weights, and those
unconnected edges have weights 0. The Prim’s algorithms is modified as:

Algorithm 1: MST-PRIM2(G, r)

1 for each u ∈ V[G] do
2 key[u] =∞;
3 π[u] = NIL;

4 end
5 key[r] = 0;
6 Q=V[G];
7 while Q 6= ∅ do
8 u=EXTRACT-MIN(Q);
9 for each v ∈ V[G] do

10 if A[u,v]6= 0 and v ∈ Q and A[u,v] < key[v] then
11 π[v] = u;
12 key[v] = A[u, v];

13 end

14 end

15 end

The outer loop (while) has |V | variables and the inner loop (for) has |V | variables. Hence the
algorithm runs in O(V 2).
Remarks There are several ways to implement Prim’s algorithm in O(V 2) algorithm:

(a) Using the priority queue as above;

(b) Using an array so each time extracting the minimum by one-by-one comparison, which
takes O(V) time;

(c) Converting the adjacency matrix into adjacency list representation in O(V 2) time, then
using the implementation in textbook.

All above methods run in O(V 2) time. �

1

23.2-8 Professor Borden proposes a new divide-and-conquer algorithm for computing minimum span-
ning trees, which goes as follows. Given a graph G = (V,E), partition the set V of vertices
into two sets V1 and V2 such that |V1| and |V2| differ by at most 1. Let E1 be the set of edges
that are incident only on vertices in V1, and let E2 be the set of edges that are incident only
on vertices in V2. Recursively solve a minimum-spanning-tree problem on each of the two
subgraphs G1 = (V1, E1) and G2 = (V2, E2). Finally, select the minimum-weight edge in E
that crosses the cut V1, V2, and use this edge to unite the resulting two minimum spanning
trees into a single spanning tree.
Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide
an example for which the algorithm fails.

Solution. We claim that the algorithm will fail. A simple counter example is shown in
Figure 1. Graph G = (V,E) has four vertices: {v1, v2, v3, v4}, and is partitioned into subsets

v1 v2

v3v4

4

2

5
1

G1

G2

Figure 1: An counter example.

G1 with V1 = {v1, v2} and G2 with V2 = {v3, v4}. The minimum-spanning-tree(MST) of G1

has weight 4, and the MST of G2 has weight 5, and the minimum-weight edge crossing the
cut (V1, V2) has weight 1, in sum the spanning tree forming by the proposed algorithm is
v2 − v1 − v4 − v3 which has weight 10. On the contrary, it is obvious that the MST of G is
v4 − v1 − v2 − v3 with weight 7. Hence the proposed algorithm fails to obtain an MST. �

22.5-1 How can the number of strongly connected components of a graph change if a new edge is
added?

Solution. The number of strongly connected components (SCCs) may remain the same or
reduced to any number no less than 1, i.e. let m be the number of SCCs in the original graph,
and m′ be the number of SCCs of the new graph after adding the edge, then

m′ ≤ m and m′ ≥ 1.

An explanatory example is shown in Figure 2. The left figure shows the original graph in
which each node is an SCC, thus total n SCCs. If the new added edge is a self-loop of any
node, or if the new added edge is pointing down, then then number of SCCs will not change.
If the new added edge is a pointing up, it forms an SCC, and it may reduce the number of
SCC to any number between 1 and n.

2

v1

v2

...

vn−1

vn

v1

v2

...

vn−1

vn

v1

v2

...

vn−1

vn

Figure 2: Examples for changing of the strongly connected component by adding an edge.

�

22.5-3 Professor Bacon claims that the algorithm for strongly connected components would be sim-
pler if it used the original (instead of the transpose) graph in the second depth-first search
and scanned the vertices in order of increasing finishing times. Does this simpler algorithm
always produce correct results?

Solution. This simpler algorithm cannot always produce correct results. Figure 3 shows an
example that will leads to a incorrect result. Assuming that we start DFS from v1, then
after the first DFS the order of increasing finishing time is v2, v1, v3. In the second DFS, if
using the original graph and scanning the vertices in order of increasing finishing time, that
is, starting from v2, will lead to one strongly connected component(SCC) of {v1, v2, v3}. In
fact there are two SCCs in the graph: {v1, v2} and {v3}.

v2 v1 v3

Figure 3: An example disproving the proposed algorithm.

�

3

