600.363/463 Algorithms
 Mid Semester Examination 1
 October 11, 2013
 1 hr 10 mins ; closed book

I. Specify whether the following equations hold or not. Give an intuitive jusfification for your answer. Formal proofs are not needed.

1. $3 n^{2}+5 n=O\left(n^{2} \log n\right)$
2. $2^{n}=O\left(n^{4} \log \log n\right)$
3. $10 n^{2}=O\left(n^{2}-100 n\right)$
4. $\left(n^{2}+n\right)\left(n \log n+n^{1.1}\right)=O\left(n^{3}\right)$
5. $n^{3} \log n=\Theta\left(n^{3}\right)$
6. $n^{3} \log ^{5} n=O\left(n^{3.01}\right)$
7. $4^{n}=\Theta\left(3^{n}\right)$
8. $n^{2} \log n(\log \log n)^{4}=O\left(n^{2} \log ^{2} n\right)$
9. $\log ^{2} n=O\left(n^{0.05}\right)$
10. $n^{2}+n^{1.9}=O\left(n^{2}+n^{0.5}\right)$
II. Solve the following recurrences. You can invoke a known result and write down the answer, or you can justify the answer by repeated substitutions or by induction. When needed you can assume approve initial values.
11. $T(n) \leq 3 T\left(\frac{n}{2}\right)+n^{2}$
12. $T(n) \leq 5 T\left(\frac{n}{2}\right)+n^{2}$
13. $T(n) \leq 2 T\left(\frac{n}{4}\right)+T\left(\frac{n}{3}\right)$
14. $T(n) \leq 2 n T(n-1)$
15. $T(n) \leq 2 T(n-1)+T(n-2)$
III. Let δ be a positive-valued affinity function between pairs of symbols. Then for any pair of equal length strings $X=a_{1} a_{2} \cdots a_{\ell}$ and $Y=b_{1} b_{2} \cdots b_{\ell}, \delta(X, Y)=\sum_{i=1}^{\ell} \delta\left(a_{i}, b_{i}\right)$. For any 2 strings $X=a_{1} a_{2} \cdots a_{n}, Y=b_{1} b_{2} \cdots b_{m}, n \leq m, \delta(X, Y)$ is defined as

$$
\max _{|Z|=n, Z \text { a subsequence of } Y} \delta(X, Z)
$$

For example, if $\delta(a, a)=2, \delta(a, b)=\delta(b, a)=1, \delta(b, b)=3$, then $\delta(a b a b, b b a b)=1+3+2+3=9$; $\delta(a b b a, \underline{b b} a \underline{a a})=7$, and a subsequence that maximizes the value is underlined.

Design a dynamic programming based algorithm which for a given δ, X and Y computes $\delta(X, Y)$.

Hint: If $X=x_{1} x_{2} \cdots x_{n}, Y=y_{1} y_{2} \cdots y_{m}$, for any $i \leq j$, let $c[i, j]=\delta\left(x_{1} x_{2} \cdots x_{i}, y_{1} y_{2} \cdots y_{j}\right)$.
a) Specify a computation formula for $c[i, j]$,
b) Specify an order in which the entries of the c matrix can be computed, and
c) What is the speed of the algorithm?
IV.

1. Assume that a set S of n numbers are stored in some form of balanced binary search tree; i.e. the depth of the tree is $O(\log n)$. In addition to the key value and the pointers to children, assume that every node contains the number of nodes in its subtree. Design $O(\log n)$ step algorithms for performing the following operations.
(a) Given a positive integer $k, 1 \leq k \leq n$, compute the $k^{t h}$ smallest element of S, and
(b) Given 2 numbers x and y, compute the size of the subset $\{z \mid z \in S, x \leq z \leq y\}$.
2. Specify a reason why a balanced binary tree is better than a complete binary tree for storing the set S :
(a) A balanced binary tree is more space efficient,
(b) Inserts and Deletes can be performed faster, or
(c) Implementation of a balanced binary tree requires less RAM space
