Toward Tree Substitution Grammars with Latent Annotations

Francis Ferraro, Benjamin Van Durme and Matt Post

Motivation

- Treebanks are coarse in multiple dimensions
- Complementary solutions have been proposed
 - Latent annotations (symbol refinements)
 - Tree substitution grammars
- Can we combine these approaches?

```
it her he me we they ...
```


- Can we compensate for PCFG permissiveness?
- Johnson (1998): parent annotation
- Klein and Manning (2003): linguistically motivated annotations

- Can we learn them automatically?
- Split all categories equally and learn weights via EM (Matsuzaki et al., 2005)
- Iteratively improve refinements: "splitmerge" framework (Petrov et al., 2006)
 - Intuitive lexical clusterings

 Non-terminals rewrite as tree fragments

 Non-terminals rewrite as tree fragments

- Non-terminals rewrite as tree fragments
- Extended domain of locality
- Capture long-range grammatical dependencies

- Non-terminals rewrite as tree fragments
- Extended domain of locality
- Capture long-range grammatical dependencies

- Learning TSGs is not straightforward
- DOP: All fragments (Bod, 1993)

X Even with heuristic selection, get large, over-fit grammars (Bod, 2001)

- Learning TSGs is not straightforward
- DOP: All fragments (Bod, 1993)
 - X Even with heuristic selection, get large, over-fit grammars (Bod, 2001)
- Non-parametric: DP Prior (Cohn et al., 2009; Post et al., 2009)
 - √ Compact fragments
 - X Non-deterministic
 - Complex to implement.

- Build within the Berkeley parser codebase
- Make the root of every internal depth-one subtree unique
 - Place the entirety of the TSG weight on the root depth-one rule.

- Build within the Berkeley parser codebase
- Make the root of every internal depth-one subtree unique
 - Place the entirety of the TSG weight on the root depth-one rule.

- Build within the Berkeley parser codebase
- Make the root of every internal depth-one subtree unique
 - Place the entirety of the TSG weight on the root depth-one rule.

- Build within the Berkeley parser codebase
- Make the root of every internal depth-one subtree unique
 - Place the entirety of the TSG weight on the root depth-one rule.

- Build within the Berkeley parser codebase
- Make the root of every internal depth-one subtree unique
 - Place the entirety of the TSG weight on the root depth-one rule.

Algorithm Overview

Algorithm Overview

Control Exponential Growth

- Use binary trees
- Forbid multiple frontier nodes from simultaneously becoming internal nodes ("chained" couplings)
- Allow couplings only if permitted by a constraint set c.

Control Exponential Growth

- Use binary trees
- Forbid multiple frontier nodes from simultaneously becoming internal nodes ("chained" couplings)

 Allow couplings only if permitted by a constraint set c.

Given a grammar **G**, constraint set **c**:

Given a grammar **G**, constraint set **C**:

Given a grammar **G**, constraint set **C**:

Given a grammar **G**, constraint set **C**:

I. Construct a grammar **G**' from **G** and allowed couplings from **C**

$$G' = G \cup \{X \circ Y \in C \mid X \in G\}$$

Given a grammar **G**, constraint set **C**:

I. Construct a grammar **G**' from **G** and allowed couplings from **C**

$$G' = G \cup \{X \circ Y \in C \mid X \in G\}$$

NP VP

Given a grammar **G**, constraint set **c**:

I. Construct a grammar **G**' from **G** and allowed couplings from **C**

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

Given a grammar **G**, constraint set **c**:

I. Construct a grammar **G**' from **G** and allowed couplings from **C**

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

VBD NP

NP VP

Given a grammar **G**, constraint set **C**:

I. Construct a grammar **g**' from **g** and allowed couplings from **c**

$$G' = G \cup \{X \circ Y \in C \mid X \in G\}$$

Given a grammar **G**, constraint set **c**:

I. Construct a grammar **G**' from **G** and allowed couplings from **C**

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

VBD NP

VBD

heard

Given a grammar **G**, constraint set **C**:

I. Construct a grammar **g**' from **g** and allowed couplings from **c**

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

heard

VBD NP

Given a grammar **G**, constraint set **C**:

I. Construct a grammar **g**' from **g** and allowed couplings from **c**

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

Given a grammar **G**, constraint set **C**:

I. Construct a grammar **G**' from **G** and allowed couplings from **C**

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

2. Estimate initial **G**' fragment weights

Coupling

Given a grammar **G**, constraint set **C**:

I. Construct a grammar **G**' from **G** and allowed couplings from **C**

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

- 2. Estimate initial **G**' fragment weights
 - Uniform redistribution not appropriate

Coupling

Given a grammar **G**, constraint set **C**:

 Construct a grammar G' from G and allowed couplings from C

$$\mathbf{G'} = \mathbf{G} \cup \{X \circ Y \in \mathbf{C} \mid X \in \mathbf{G}\}$$

- 2. Estimate initial **G**' fragment weights
 - Uniform redistribution not appropriate
- 3. Fit weights of **G**' via inside/outside

Deriving the Constraint Set

- Deterministically count compact TSG fragments
- Iteratively extract the K most frequent subtrees of size R
- R, K enforce sparsity and control what can and cannot couple

EXTRACTFRAGMENTS(R,K)

```
S \leftarrow \emptyset
\mathbf{F}(1,K) \leftarrow \text{top } K \text{ CFG rules used}
\mathbf{for } r = 2 \text{ to } R \text{ do}
S \leftarrow \{F \in \mathbf{F}(r-1, K), \text{ extended by 1 rule}\}
\mathbf{F}(r,K) \leftarrow \text{top } K \text{ elements of } \mathbf{F}(r-1, K) \text{ U S}
\mathbf{end for}
```

- Korean Treebank v2.0
- Sect. 2-3 of Penn Treebank (WSJ)

- Korean Treebank v2.0
- Sect. 2-3 of Penn Treebank (WSJ)
 - Petrov et al. (2011)'s universal tag set

- Korean Treebank v2.0
- Sect. 2-3 of Penn Treebank (WSJ)
 - Petrov et al. (2011)'s universal tag set
 - Replace all preterminals with a single symbol, X.

Korean Treebank v2.0

Sect. 2-3 of Penn Treebank (WSJ)

 Replace all preterminals with a single symbol, X.

Modals

Modals

Perfectives

Modals

Perfectives

Nominals

Universal Tag Set, WSJ, §2-3

	PRON
1	its, his, your
5	it, he, they
6	it, them, him

Universal Tag Set, WSJ, §2-3

	PRON
1	its, his, your
5	it, he, they
6	it, them, him

Universal Tag Set, WSJ, §2-3

	PRON
1	its, his, your
5	it, he, they
6	it, them, him

Thank you!