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Motivation
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• Treebanks are coarse in multiple dimensions

• Complementary solutions have been 
proposed

• Latent annotations (symbol refinements)

• Tree substitution grammars

• Can we combine these approaches?
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Learning Latent Annotations

• Can we compensate for PCFG 
permissiveness?

• Johnson (1998): parent annotation

• Klein and Manning (2003): linguistically 
motivated annotations
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• Can we learn them automatically?

• Split all categories equally and learn 
weights via EM (Matsuzaki et al., 2005) 

• Iteratively improve refinements: “split-
merge” framework (Petrov et al., 2006)

• Intuitive lexical clusterings
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Tree Substitution Grammars
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• Learning TSGs is not straight-
forward

• DOP: All fragments (Bod, 1993)

✗ Even with heuristic 
selection, get large, over-fit 
grammars (Bod, 2001)

• Non-parametric: DP Prior (Cohn 
et al., 2009; Post et al., 2009)

✓Compact fragments

✗ Non-deterministic

✗ Complex to implement.



Framework

• Build within the Berkeley parser codebase

• Make the root of every internal depth-one 
subtree unique 

• Place the entirety of the TSG weight on 
the root depth-one rule.
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Framework

• Build within the Berkeley parser codebase

• Make the root of every internal depth-one 
subtree unique 

• Place the entirety of the TSG weight on 
the root depth-one rule.
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Algorithm Overview
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Split symbols 
in two

Run EMPetrov et 
al., 2006

Merge back 
some 

refinements

Run EM

Couple 
existing 

fragments

Run EM



Control Exponential Growth

• Use binary trees

• Forbid multiple frontier nodes from 
simultaneously becoming internal nodes 
(“chained” couplings)

• Allow couplings only if permitted by a 
constraint set C.
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Coupling

Given a grammar G, constraint 
set C:

1. Construct a grammar G’ from G 
and allowed couplings from C 

G’= G ∪ {X◦Y ∈ C | X ∈ G}

2. Estimate initial G’ fragment 
weights

- Uniform redistribution not 
appropriate

3. Fit weights of G’ via inside/
outside
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C

X= Y=◦ ✓

✗
X= ◦ Y=

G

G’



Deriving the Constraint Set
• Deterministically count compact TSG 

fragments 

• Iteratively extract the K most frequent 
subtrees of size R

• R, K enforce sparsity and control what 
can and cannot couple
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EXTRACTFRAGMENTS(R,K)

S ← ∅
F(1,K) ← top K CFG rules used
for r = 2 to R do
! S ← {F ∈ F(r-1, K), extended by 1 rule}
! F(r,K) ← top K elements of F(r-1, K) ∪ S
end for
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Nominals
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Thank you!
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