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Motivation

® Treebanks are coarse in multiple dimensions

® Complementary solutions have been
proposed

® |atent annotations (symbol refinements)
® [ree substitution grammars

® Can we combine these approaches?
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Learning Latent Annotations

e Can we compensate for PCFG
permissiveness?

® Johnson (1998): parent annotation

e Klein and Manning (2003): linguistically
motivated annotations
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Learning Latent Annotations

Can we learn them automatically?

Split all categories equally and learn
weights via EM (Matsuzaki et al., 2005)

[teratively improve refinements: “split-
merge” framework (Petrov et al., 2006)

e [ntuitive lexical clusterings
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Tree Substitution Grammars

Learning TSGs is not straight-
forwarc

DOP: All fragments (Bod, 1993)

X Even with heuristic

selection, get large, over-fit
grammars (Bod, 2001)

Non-parametric: DP Prior (Cohn
et al., 2009; Post et al., 2009)

v Compact fragments
X Non-deterministic

X Complex to implement.
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e Build within the Berkeley parser codebase

e Make the root of every internal depth-one
subtree unique

® Place the entirety of the TSG weight on
the root depth-one rule.
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e Build within the Berkeley parser codebase

e Make the root of every internal depth-one
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Forbid multiple frontier nodes from
simultaneously becoming internal nodes
(“chained” couplings)

Allow couplings only if permitted by a
constraint set C.
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Coupling

Given a grammar G, constraint
set C:

Construct a grammar ¢’ from G
and allowed couplings from ¢

G'=Gu<i{XYecCc | XeG}

Estimate initial G’ fragment
weights

- Uniform redistribution not
appropriate

Fit weights of ¢’ via inside/
outside
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Deriving the Constraint Set

® Deterministically count compact TSG
fragments

e Jteratively extract the K most frequent
subtrees of size R

® R, K enforce sparsity and control what
can and cannot couple

EXTRACTFRAGMENTS(R,K)

S < O
F(l1,K) « top K CFG rules used
for r = 2 to R do
S « {F € F(r-1, K), extended by 1 rule}
F(r,K) « top K elements of F(r-1, K) U S
end for
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e Korean Treebank v2.0
—> e Sect. 2-3 of Penn Treebank (WSJ)
-> ® Petrov et al. (2011)’'s universal tag set

® Replace all preterminals with a single
symbol, X.
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Universal Tag Set, W5/, §2-3

PRON
its, his, your
it, he, they
it, them, him

VP,

PN VERB- ADVP, VERB, NP,
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Thank you!




