
OROCOS: design and implementation of a robot control

software framework

Herman Bruyninckx
K.U.Leuven, Mechanical Engineering

Leuven, Belgium
http://www.orocos.org

April, 2002

Abstract

This document discusses the shortcomings in the cur-
rent state of robot control software, and explains how
the Orocos project works towards more open software
systems. This project builds a flexible and distributed
framework for robot control, consisting of object li-
braries and components, and a standard middleware.
The project targets multiple levels of “users ” and large
portability through availability of source code. The
most important short-term results of the project will
be: (i) a solid design basis for further development, and
(ii) real-time motion control functionality for manipu-
lators and mobile robots.

1 Introduction

The current commercial robot market is characterized
by extreme incompatibilities between robot program-
ming languages of different vendors. Moreover, the se-
mantic richness of these languages is quite limited, and
not much more advanced than what is offered by clas-
sical machine tools (i.e., point-to-point motions with-
out much feedback opportunities from external sensors).
This situation is reasonably viable for the current mar-
ket of robot users (i.e., large-scale “motion control”
applications without much flexibility needs), but is of
little use for robotics researchers wanting to program
advanced sensor-based robot tasks. Motion control of
robotic devices is a quite mature field, ranging from
off-the-shelf single-axis PID controllers, to customized
systems with full dynamic, friction and elasticity com-
pensations, multi-degrees of freedom trajectory genera-
tion, closed kinematic loops, etc. In practice, commer-
cial robot controllers are invariably black-box products
(hardware and software), in which the users have only
access to some tuning parameters and the setpoint in-
puts. Moreover, while some open standards and open

and modularly extensible APIs (Application Program-
ming Interfaces) exist at the level of motion control
primitives, e.g., [10, 11, 1], users lack available imple-
mentations of these APIs, that is, access to source code
and the possibility to adapt that code. This results in:

• significant “user lock-in.” That is, once users pur-
chase a controller from one vendor, it becomes hard
to integrate it with products of other vendors, or
to switch to a new vendor.

• a market that is closed to small innovative compa-
nies with specific niche market developments, be-
cause the set-up cost for robot control software
development (and subsequent commercial distribu-
tion and support) is huge.

• small-scale users with advanced or unique robot
control needs having difficulties to find solutions on
the market.

Moreover, the fact that no open source solutions exist
leads to:

• de facto centralized controllers. Because the con-
trol software is available in binary form only, ven-
dors cannot provide their software for exactly the
distributed computer network that the customer
wants to use.

• one-size-fits-all solutions. Binary distribution of
software also limits their configuration capabilities
to be adapted to the exact functional and perfor-
mance needs of the customer. This often results in
sub-optimal use of software and equipment.

This situation is especially critical for research insti-
tutes, which most often don’t get the needed support
from the control vendors to extend existing equipment
to prototype and validate their research on servo al-
gorithms, motion interpolators, inter-process commu-

1



nication between distributed control components, “in-
telligent” sensor processing, advanced robotic devices,
etc. The few cases in which they do get this support
are cooperative developments, where the innovative de-
velopments are protected by non-disclosure agreements.
Hence, progress in the field is slower than needed.

2 Long-term vision and short-
term goals

The Orocos project is ambitious in its long-term goals:

• Cover all robot control software needs.

• Be accepted by academia and industry. Of course,
industrial acceptance can only start with small
and/or start-up companies, that see an advantage
in using an existing open source code base to build
a new (service-oriented) business. The goal is to
be complementary to the ABBs and Kukas of this
world, not to strive to compete with them in their
own markets.

• Fully distributable over LANs and WANs, by com-
pile time configuration. In this respect, the avail-
ability of the source code is a strong competitive
advantage with respect to binary commercial pack-
ages.

• Satisfying the needs of four categories of users:

1. End users. For example, a SME that uses one
or two robots for a visual inspection task.

2. Application builders. For example, the com-
pany that programs, services and maintains
this visual inspection application.

3. Component builders. For example, the re-
searcher who codes an algorithm for visually
guided motion control, and makes it available
as a component.

4. Framework builders. The people that develop
the Orocos framework.

• Ported to all Common-off-the-Shelf hardware, and
(real-time) operating systems.

The short-term goals must pave the road for this ambi-
tious vision. Hence, they aim at building a working sys-
tem, with a relatively limited set of features, but with
the large potential for scalability provided by the de-
sign issues discussed in Section 5. The current, concrete
activities of the project are: real-time motion control;
kinematics and dynamics library; sensor processing li-
brary; task specification and execution; middleware for
communication. More details are given in Section 6.

3 Flexibility

The Orocos project has investigated a lot of time to de-
sign. The envisaged flexibility is difficult to reach by
the traditional open source approach to software devel-
opment, i.e., starting from a working system developed
by an individual programmer or a small group, opening
the source code can bring a lot of contributions from
interested people, but these contributions seldom lead
to fundamental changes in the original design of the
software. The success stories in open source all started
from more or less mature examples, for which the basic
design issues had been solved.

This situation is partially true for robot control soft-
ware too: real-time motion control is a quite mature and
stable field; and there are not many new things to be
said about robot kinematics and dynamics. But many
other aspect of robot control software have been much
neglected by the commercial robot control manufactur-
ers: distribution; tight integration between sensing and
control; complex control tasks; multi-level task specifi-
cation and execution monitoring; etc.

The presented framework design does not cover just
one single system architecture, nor does it provide one
single software component. The framework is rather
an application generating code base, i.e., a set of com-
ponents from which the skeleton of any robot control
application can be constructed.

The major question in this framework design task
is: How to design the framework components such that
they provide maximum flexibility for building robot con-
trol system architectures? This paper uses “flexibility”
as the common term for the following requirements:

1. How to support distribution? Developers may want
to distribute software components over different
networked processors (“decentralization”). Or they
may want part of the implementation to run on
very dedicated hardware, in order to get optimal
performance. Therefore, the framework provides
the flexibility to make the distribution of an appli-
cation over multiple computing nodes as transpar-
ent as possible for the user.

2. How to support modularity? Different users require
different sets of features, and want to rewrite only
a minimum of existing code. Therefore, the frame-
work components should have the “right” granu-
larity.

3. How to support configurability? Different users
want the available features to be configured dif-
ferently, or even want to reconfigure a running sys-
tem. Therefore, the design provides an appropriate
granularity, and a far-reaching configuration abil-

2



ity. That is, the ability to adapt the software sys-
tem in an anticipated way, without redesign or re-
coding, in several possible directions: architecture
(how to connect components together), distribution
(how to distribute components over a network),
communication (choice of communication primi-
tives between components), functionality (choice of
control algorithms).

4. How to support portability? The presented design
can be implemented and configured on a variety
of hardware and software platforms. Care is taken
to use only common operating system functionali-
ties and to provide abstraction layers for hardware
devices and operating system functionalities.

5. How to support scaling? A system scales well if its
performance reduces not (much) more than pro-
portional to the applied load. One important fac-
tor in the context of distributed robot control is the
load increase generated by distributing components
over a network. Different component communica-
tion architectures scale drastically different under
distribution.

6. How to support maintainability? Every software
system is in almost continuous evolution, and peo-
ple that are not the original developers will be re-
sponsible for this maintenance. High-quality doc-
umentation of the system design and implemen-
tation is very important for maintainability, and
hence, the presented framework builds its design
as much as possible in terms of well-documented
Software Patterns.

3.1 Component architectures

Some of the flexibility specified in the above-mentioned
requirements is extremely difficult to achieve with tra-
ditional “binary-only” distribution of software. It can
only be realised when application developers and users
have access to the source code.

But also the architecture of the whole system deter-
mines the flexibility that can eventually be achieved:
How is the functionality of the system divided over com-
ponents? How flexible are the components themselves?
What is the most appropriate granularity of “messages”
exchanged between components? . . .

“Component architecture” is the modern buzzword
in the literature on flexible and complex systems. But
much confusion still exists about what a component-
based architecture really is, and what component-based
architecture is most appropriate in a particular applica-
tion domain. This Section gives a short answer to these
questions for the robot control application domain.

Roughly speaking, a component is a piece of software
that delivers a service that other programs can use. And
delivering this service can be done with several degrees
of flexibility. Internet services is the major area of ap-
plication for component architectures, and in that area
flexibility usually means “the ease with which one im-
plementation of the service can be replaced by another
implementation of the same service.” This, however,
is not the only meaning this text is interested in, as
described in the previous Section.

3.2 Flexibility of component architec-
tures

In order of increasing “replacement flexibility,” one has
the following three architectures:

1. Client–server. The “client” is any program that
wants to make use of the service offered by a
“server” component. In order to use the service,
the client must know both the identity and the pro-
gramming interface of the server.

2. Object request broker (ORB). The client doesn’t
have to know the identity of the server, but asks
its local ORB program to connect it to the server.
This connection can be achieved if the server has
previously announced itself to its local ORB. The
ORB “middleware” (i.e., the software that links
all local ORBs together, e.g., using CORBA [12],
Java-RMI/JavaBeans [], or DCOM [3, 9] imple-
mentations) takes care of realising the connection
transparantly over a network or within one single
computer. Once the connection is established, the
client calls the methods of the server as if both were
running on the same computer platform.

The advantage of using an ORB architecture is that
clients and servers can be replaced without recom-
pilation or reconfiguration of all components they
interact with (as long as the published interface
doesn’t change!). The disadvantages are that: (i)
client and server still have to know each other’s
exact interface (changing the interface requires re-
compilation of all servers and clients!), and (ii) all
method calls on a remote object must pass through
the network between both components.

3. Service request broker (SRB). In a SRB architec-
ture, the components don’t do method calls on each
other’s interface, and they even don’t have to know
the exact API of the interface. Instead, the client
launches a request for a service (often also called
a transaction), the SRB middleware interprets this
request, looks for a server that can deliver the ser-
vice, translates the client request in a format that

3



the server can understand, connects to the server
to start the execution, and returns the result to the
client.

The request and the answer consist of one single
data structure, so the granularity with which client
and server talk to each other is much larger than
in the ORB case. This reduces the overhead of
method calling over the network, and it relieves
the server from the burden of keeping state infor-
mation about the client. Moreover, changing the
interface of a server doesn’t require recompilation
of its clients, because only the middleware must
be informed about the changes. This can be done
by simple adaptation of description files, without
recompilation.

The SRB concept exists for a very long time already
(e.g., on mainframes, which are typically used for
large-scale “batch” processing jobs), but re-gains
popularity through the Jini and .NET initiatives.

A client–server architecture scales less than an ORB
architecture, which scales less than a SRB architecture.
“Scaling” is only one aspect of flexibility: the ability
to (transparantly) add more server components under
higher loads of service requests.

3.3 Flexibility in robot control systems

The previous Sections discussed flexibility issues of gen-
eral component-based software systems. The flexibili-
ties that are important in the context of robot control
are:

• the possibility to replace components by alterna-
tives with the same interface but with different im-
plementations. This is particularly useful on the
commercial market, to enhance competition be-
tween commercial component vendors.

• the fact that the larger part of the infrastructural
design and software can be reused when extensions
are needed for new or special-purpose applications.

• the possibility to re-use the same design but opt
for different optimizations. For example: hard real-
time; large-scale distribution and reduction in pro-
cessing power available on each distributed proces-
sor; secure access; large number of synchronized
axes; reduced network capacity; etc.

These flexibility requirements will be the major inspira-
tion for the design choices made in the presented robot
control software framework, Section 5. The rest of the
paper will not discuss the scalability issue, because the
robot control applications that are the subject of this

paper typically don’t need the kind of scaling flexibility
provided by SRB middleware. At least not at the hard
and soft real-time levels of robot control discussed in
this paper: the goal of a robot control system is not to
have a robot control task executed by whatever robot
control server is available, because the system that must
execute the robot task is exactly specified. However,
part of the above-mentioned SRB scaling would be use-
ful in robot control applications such as:

• remote robot control. For example, controlling the
motions of a robot arm on Mars, or on an un-
manned submarine. The significant time delays in-
volved in these tasks call for autonomous “batch
processing” at the remote system.

• “intelligent” robot systems. These systems have to
do more than just execute a specified motion, be-
cause they have to observe the (largely unknown)
environment in which they move, and take deci-
sions on how to adapt the specified motion in order
to avoid catastrophic interaction with the environ-
ment.

These advanced control systems are somewhat beyond
the scope of this paper, which focuses on the hard and
soft real-time components, and not on the (autonomous)
decision making aspects. In any case, it remains use-
ful to think about all of the above-mentioned scaling
issues when designing a robot control API. An API
that requires many method calls will perform worse in
a distributed environment than one that has a more
“transaction-oriented” API, i.e., one with a coarser
granularity in its method interface.

4 Terminology

This paper uses terminology that may have different
meanings in different contexts. This Section explains
what meaning is used in the context of this paper.

4.1 Architecture

The architect of a system is the person who decides
which components to put together, and in which way,
in order to build a system that performs according to
the specifications of the customer. Classical architects
construct diverse “systems,” such as houses, schools and
theaters, from more or less standardized building blocks;
similarly, software architects (should) build very diverse
software products from standardized software compo-
nents. (However, the software industry has not yet
reached the level of mature standards in component-
based system building.) In both cases, there is a need

4



for at least two complementary kinds of architectural
design:

• System architecture (“architecture-in-the-large”):
a specific choice of connecting functional building
blocks (“components”) together, in order to build
a software system that performs according to spec-
ification.

• Component architecture (“architecture-in-the-
small”): the internal design of one single compo-
nent, in order to guarantee that the component
performs according to its interface “contract.”

Of course, the system designed by one architect can be
used as one single component in the design of another
architect.

This paper focuses on the software component archi-
tecture of a robot control system. The system architec-
ture is the responsibility of the system builders, and is
outside the scope of this paper. The paper also doesn’t
consider the problem of software verification, [2, 15, 14].

4.2 Components and Objects

“Components” and “objects” are terms that show up
in every modern software engineering textbook, [16].
While the meaning of the term “object” is currently
quite well understood and agreed on, there is still dis-
cussion about what exactly is the difference between an
“object” and a “component.”

This text uses the following interpretation for “com-
ponent.” A component is a piece of software that can
execute its functionality (“deliver its service”) indepen-
dently of the context in which it is used, i.e., without
having to know during design and implementation who
is going to use its services, and how the’re going to be
used. This independence is related to the functional as-
pects of the component, i.e., the services it offers, but
it is not absolute: there probably are implementation
dependencies on the underlying operating system, and
the service offered by the component probably requires
some “boundary conditions” to be fullfilled, e.g., mini-
mum processing power or memory resources. The com-
ponent provides its functionality in the form of a well-
defined method and event interface (“contract”) that
other components can use. The contract also states
what the component expects from its context, e.g., qual-
ity of service required from the operating system.

Internally, the component implements its interface
by one particular, configurable architecture of objects
or other components (also called sub-components, or
atomic components), but it does not depend on the
knowledge of the internal workings of other components.

Components can have different acces points, each
with its own interface, and each delivering a different

service, catering to the needs of different clients. Often,
the interfaces required in a particular system architec-
ture are not exactly the interfaces offered by already
available components, i.e., the interface “contracts” are
more often than not imposed by the customer, not by
the component builders, who have to comply to the
required interface. So putting a matching “facade”
around these components (in order to make them fit
in the overall design) is a commonly encountered need.
And availability of the components’ source code is a
major advantage in this case.

Components are for the user what objects are for
the programmer: components are meant to interact
with, while objects are the building blocks the inter-
nals of components are made from. Components are
used through service requests (events and messages),
not through method calls. They also don’t have a per-
sistent state (while objects do), i.e., you should not rely
on knowing what the state of the component is when
you make a service request. The state of the service it-
self is kept in the message objects given to, and received
from, a component. As such, components are much bet-
ter suited for the higher-level, coarse grain distribution
of Service Request Brokers than the lower-level, fine-
grained remote method invocation of Object Request
Brokers and Client–Server systems. This does certainly
not mean that the idea of a component is not useful at
these “lower level”! It only means that objects are not
useful as atomic building block at the “higher” level.

4.3 Coupling

The design of both components and objects should max-
imize loose coupling between components: one compo-
nent or object should try not to use knowledge about the
identity, the method or service interface, the location, or
the internal state of other components or objects. For
example: the IPC between components is decoupled if
the “sender” doesn’t have to know the identity of the
“receiver”; component A can cause component B to ex-
ecute a certain action also by sending an event (which
doesn’t require A to know B) to which B reacts, and not
only by directly calling the corresponding method of B.
Coupling comes in two forms, syntactic and semantic:

• Syntactic coupling. This is coupling at the level
of the programming language: object A uses some
syntactical means available in the programming
language (a method call, for example) to identify
object B.

Syntactical coupling leads to less flexible software.

• Semantic coupling. This is coupling at the level of
the meaning of the program: object A uses some

5



service of object B, whose respons depends on cou-
pling between the “states” and/or “activities” of
other objects, possibly including A.

Semantical coupling is a human design error, that
gives rise to erroneous software: sooner or later,
the objects’ behaviour is not deterministic, because
it depends on irreproducible, accidental couplings
between objects.

One typical example of semantic coupling is a software
system where component B bases its decision on the
fact whether component A is in either state “1” or state
“2,” while component A is in no well-defined state at all
because its “state” is that it has requested a service from
component B and this service has not been completed
yet!

4.4 Framework

A framework is a design and an implementation provid-
ing one possible solution in a specific problem domain.
So, it is possible to compile the code provided by the
framework and solve some real problems. Application-
dependent implementation parts are localized in so-
called “hot spots” [4, 7, 8]. The framework itself is
portable, but the hot spots should in general be rewrit-
ten when porting to a new hardware platform. Typical
hot spots in the context of robot control systems are:

• The device interface layer of the framework, i.e.,
device drivers for sensors and actuators.

• The OS interface layer, i.e., the API of the under-
lying (real-time) operating system.

• The protocol interface layer, i.e., the communica-
tion protocols (XML-RPC, SOAP, CORBA, . . . ),
the motion specification (G-code, Step-NC, . . . ),
and the user interfaces.

The flexibility of a framework is improved by: (i) a good
identification and description of its hot spots (portabil-
ity and maintainability), (ii) a component-based design
(modularity, scalability and distributability).

4.5 Software Pattern

A Software Pattern, [6, 13], is a proven design solution
(not an implementation!) to a general problem, result-
ing from years of real-world experience in balancing a
number of opposing “forces.” The terminology “forces”
is used in the Software Pattern literature to describe
the aspects of the application domain that drive the
design into different directions. For example, timing
constraints, the ability to execute services as an atomic
transaction, resource constraints, etc.

A Software Pattern is not an implementation but a
design; the same pattern can have multiple implemen-
tations, depending on the application context. The use
of Software Patterns in the design of a new framework
has the advantage that these patterns are very well doc-
umented and scrutinized in the literature, by develop-
ers with different backgrounds and applications. So,
refering to this Software Patterns literature whenever
possible helps developers decrease their documentation
efforts while at the same time increasing the quality
of their documentation, and hence the portability and
maintainability of their implementation.

4.6 Module—Library

A module (or library) is a coherent set of implemented
functionality, using an object-oriented data encapsula-
tion as a useful (but not necessary) design paradigm. A
module can be compiled separately, and is portable to
different platforms given compatible compiler and oper-
ating system support. Of course, inherently hardware-
dependent modules such as device drivers are not
portable.

Examples of modules in the context of this paper are:
trajectory generation algorithms, feedback control laws,
device kinematics, interprocess communication support,
motion estimation algorithms, etc.

4.7 Users and Builders

This paper presents a software framework for dis-
tributed robot control. “Distribution,” however, means
more than the ability to run the software on multi-
ple networked processors: also the human activities of
building a robot control application are distributed, over
three categories of “users” with complementary needs
and responsibilities:

End Users The End Users only focus on the function-
ality of their application, that means configuring
the available motion generation and robot control
components, within the context of the robot control
system given to them by some Builders.

Application Builders The Application Builders use
the infrastructure and the components offered by
the framework to assemble a specific robot con-
trol application. Application Builders could be: a
robot control service company; or a PhD student in
need of a controller for his new humanoid robot; or
a manufacturing company adding its in-house de-
signed peripheral machinery to a legacy machining
centre.

The assembly activity of the Builders consists of:
(i) the configuration of components and IPC in the

6



framework; (ii) the implementation of the hot spots;
(iii) the implementation of a specific architecture
and default implementations for the targeted user
base; (iv) the specification of the “language” with
which Users interact with the application.

Component Builders These people develop func-
tionility, make it available in a module, and wrap
it in a component, for use by the Application
Builders.

Framework Builders Finally, there is also this third
party involved, who design and write the code with
which Component Builders, Application Builders
and End Users can work.

The Orocos project is mainly focused on the Component
and Framework Builders.

5 Design

This Section discusses the design considerations under-
lying the presented robot control framework. These
choices are inspired by the issues discussed in the pre-
vious Sections.

5.1 Separation of architecture and func-
tionality

Only the Developer of the framework must worry about
how to implement the most appropriate component
architecture, making sure the best software engineer-
ing practice and programming language constructs are
used. The application Builders using the framework are
themselves also developers, but only of the system ar-
chitecture (i.e., they decide which components of the
framework to use, and how to connect them), and the
component functionality (i.e., they code the algorithms
in the sub-components).

5.2 Separation of mechanism and policy

All developers should make a clear distinction between
implementing functionality (what can be done, i.e., the
mechanism of the system) on the one hand, and decid-
ing how to use this functionality on the other hand (i.e.,
the policy). Too much focus on one particular applica-
tion leads to policy-based trade-offs early in a software
project’s lifetime, inevitably compromising its flexibility
and maintainability.

5.3 Separation of data flow and execu-
tion control

Complex, distributed systems typically have several ac-
tive components, that need to communicate with each
other, and that rely on each other’s services. Because
several components can want to access the functional-
ity of one specific component, each component should
encapsulate the execution of its functionality from the
communication with other components, [5]. In other
words, the data flow (i.e., exchange of objects through
messages) should be decoupled from the execution con-
trol (i.e., the sequencing and synchronization of activ-
ities within the internals of a component). Of course,
this decoupling does not mean that the communication
of an object (with an event being the simplest possible
object exchange) could not influence the execution con-
trol: it only means that it is the component architecture
of the server that decides how and when to service the
event, and not the calling client component. In addition,
with respect to the execution control, each component
should guarantee that:

• well-defined parts of its execution can take place
without interruption by communication (or, in
other words, atomically).

• dynamic reconfiguration of the component’s func-
tionality (e.g., transition from one control law to
another) can take place, in synchronization with
other components.

5.4 Separation of Builder and User ser-
vices

The framework targets decentralized, portable and dy-
namic systems, hence, on-line reconfiguration must be
possible. This requires different interfaces for “supervi-
sor” and “normal” user access to the same component.
The supervisor user is, in fact, a Builder (Section 4.7) as
far as (re)configuration of the framework is concerned.

5.5 Separation of Quality-of-Service
and OS primitives

Most operating systems offer a powerful but primitive
interface to the application programmer. That is, an
application program with the appropriate privileges can
access and control each and every resource in the sys-
tem. In this way, it could perform its task in exactly
the way it likes (given sufficient resources). But this is
not really what an application program should do: it
should focus on its core functionality, and the comput-
ing services it requests should be “outsourced” to the
operating system. However, there currently are very

7



few Quality of Service operating systems available, let
alone a standardized API to access such a QoS operat-
ing system. This implies that the presented framework
will have to implement its own QoS interface hot spot
to operating systems.

5.6 Architecture instead of manage-
ment

This paper presents the design of robot control compo-
nents; it does not present a full robot control system
architecture, but concentrates on the component archi-
tecture of the robot control components. This compo-
nent architecture should be such that the component
performs its contract without the need for a “supervi-
sor” or “manager” sub-component. The task of such a
supervisor would be to make sure that all actions within
the component are done in the correct order, that the
correct events are signalled at the correct times, that the
produced values are checked for correctness, etc. How-
ever, it is way better to have a component architecture
that produces correct behavior by design rather than by
management. Some real-world examples should make
the fundamental difference between both approaches
more tangible:

• World-wide express courier services: after one
hands in a package for delivery, there is not a man-
ager taking care of your package, but it is rather the
organisation (“architecture”) of the express courier
that steers your package through countless manip-
ulations and transfers.

• Traffic: one can put traffic officers on a large square
to keep the traffic coming from all directions under
control, or implement an infrastructure of lanes and
traffic lines.

A manager is more flexible, but encourages unstable
adaptations (“I’ll fix it, and fix it quickly!”) and doesn’t
scale well (because it needs centralized communication).

6 Progress

This Section explains the current state of the active
parts in the Orocos project. The project is finan-
cially supported by a small grant from the European
Union (IST 31064), with three partners: LAAS in
Toulouse, France; KTH in Stockholm, Sweden; and
K.U.Leuven in Leuven, Belgium. But much of the de-
sign and implementation work is performed by devel-
opers that are not paid by this project money. The
project’s progress can be followed through the webpages
at http://www.orocos.org.

6.1 Real-time motion control

This task has reached the level of basic real-time mo-
tion and force control of a 6DOF robot arm. The basic
features are:

• Running on top of RTAI and RTlinux, on PC hard-
ware, with a control frequency of more than 1 kHZ.

• Pluggable component architecture with Trajectory
interpolator, Servo, Event Handler, Time Server,
and Task Execution.

• Data monitoring and reporting.

6.2 Task execution and specification

Each controller can accept a specification that requires
strictly synchronized execution of sub-task. To this end,
each part of a feedback control module (Trajectory in-
terpolator, Servo, . . . ) is running through an event-
driven state machine.

6.3 Kinematics and dynamics

The basic kinematic routines are implemented, but the
design allows scaling to general dynamic systems be-
yond the mechanical domain. The design is also scalable
in the sense that geometric visualisation can be dynam-
ically added to a kinematic structure. The kinematics
can handle serial, parallel, hybrid and mobile structures.

6.4 Communication and middleware

A distributed system has a large need for communica-
tion functionality and middleware that allows distribu-
tion transparancy. The evolution of the CORBA stan-
dard [12] is very promising in this respect: CORBA 3.0
has standardized most of the needs for distributed com-
ponents in the Orocos project.

References

[1] Open system architecture for controls within au-
tomation systems (OSACA). http://osaca.
isbe.ch/osaca.

[2] F. Boussinot and R. De Simone. The ESTEREL
language. Proceedings of the IEEE, 79(9):1293–
1304, 1991.

[3] P. E. Chung, Y. Huang, S. Yajnik, D. Liang,
J. C. Shih, C.-Y. Wang, and Y.-M. Wang. DCOM
and CORBA side by side, step by step, and layer
by layer. http://www.cs.wustl.edu/~schmidt/
submit/Paper.html.

8



[4] M. E. Fayad, D. C. Schmidt, and R. E. Johnson.
Building application frameworks: object-oriented
foundations of framework design. Wiley, 1999.

[5] S. Fleury, M. Herrb, and R. Chatila. GenoM: a
tool for the specification and the implementation
of operating modules in a distributed robot archi-
tecture. In Int. Conf. Intel. Robots and Systems,
pages 842–848, Grenoble, France, 1997.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Reading, MA,
1995.

[7] R. E. Johnson. Frameworks = (components + pat-
terns). Communications of the ACM, 40(10):39–42,
1997.

[8] M. E. Markiewicz and C. J. P. de Lucena.
Object oriented framework development. ACM
Crossroads, 7(4), 2001. http://www.acm.org/
crossroads/xrds7-4/frameworks.html.

[9] Microsoft. Distributed Component Object
Model (DCOM). http://www.microsoft.com/
com/tech/DCOM.asp.

[10] National Institute of Standards and Technology.
Open modular architecture controls (OMAC).
http://www.isd.mel.nist.gov/projects/
teamapi/.

[11] OPC Foundation. OLE for process control (OPC).
http://www.opcfoundation.org/.

[12] Open Management Group. CORBA: Common Ob-
ject Request Broker Architecture. http://www.
corba.org/.

[13] D. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-oriented software ar-
chitecture. Patterns for concurrent and networked
objects. Wiley, 2001.

[14] D. Simon, B. Espiau, K. Kapellos, and R. Pissard-
Gibollet. The orccad architecture. Int. J. Robotics
Research, 17:338–359, 1998.

[15] A. Sowmya and S. Ramesh. Extending statecharts
with temporal logic. IEEE Trans. Software Engi-
neering, 24(3):216–231, 1998.

[16] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley,
1998.

9


