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Abstract 

We explore the relationship between weighted aver- 
aging and stochastic approximation algorithms, and 
study their convergence via a sample-path analysis. 
We prove that the convergence of a stochastic approx- 
imation algorithm is equivalent to the convergence of 
the weighted average of the associated noise sequence. 
We also present necessary and sufficient noise condi- 
tions for convergence of the average of the output of a 
stochastic approximation algorithm in the linear case. 
We show that the averaged stochastic approximation 
algorithms can tolerate a larger class of noise sequences 
than the stand-alone stochastic approximation algo- 
rithms. 

1. Introduction 

Recently, there has been significant interest in using 
averaging to “accelerate” convergence of stochastic ap- 
proximation algorithms; see, for example, [2, 5, 6, 11, 
17, 22, 231. It has been shown that the simple arith- 
metic average ixL=lzk of the estimates (2,) ob- 
tained from a stochastic approximation algorithm con- 
verges to the desired point x* with optimal rate [6, 111. 
Under appropriate assumptions, the choice of the step 
size does not affect this optimal rate of convergence. 
Most of the results focus on the asymptotic optimal- 
ity of stochastic approximation algorithms with various 
averaging schemes. 

The central property of the stochastic approximation 
procedure is its ability to deal with noise. Therefore, 
from both theoretical and practical points of view, it is 
important to characterize the set of all possible noise 
sequences that a stochastic approximation algorithm 
can tolerate. In [19], Wang et al. establish four equiv- 
alent necessary and sufficient noise condition for con- 
vergence of a standard stochastic approximation algo- 
rithms. Convergence of the weighted average of the 
noise sequence has been used as a sufficient condition 
for convergence of stochastic approximation algorithms 
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in [8, 181. In this paper, we prove that this sufficient 
condition is equivalent to the four necessary and suffi- 
cient conditions studied in [19], and hence also neces- 
sary for convergence of stochastic approximation algo- 
rithms (see Theorems 3 and 4). Moreover, we establish 
necessary and sufficient noise conditions for the conver- 
gence of the averaged output of a stochastic approxima- 
tion algorithm (see Theorem 5). The established noise 
conditions for convergence of the averaged stochas- 
tic approximation algorithms are considerably weaker 
than the conditions for convergence of the stand-alone 
stochastic approximation. This result illustrates an im- 
portant aspect of the averaging scheme: it allows us to 
relax conditions on noise sequences for convergence of 
stochastic approximation algorithms. Our analysis is 
deterministic-we study the sample-path behavior of 
the algorithms. We believe that applications of the 
weighted averaging techniques presented here are not 
limited to the area of stochastic approximation. The 
results will be useful in general parameter estimation 
problems with uncertainty. 

In Section 2, we define the weighted averaging opera- 
tor and introduce two important properties of the op- 
erator: regularity and effectiveness. In Section 3, we 
establish necessary and sufficient conditions on a se- 
quence for convergence of its average. In Section 4, we 
apply the results in the previous sections to the anal- 
ysis of stochastic approximation algorithms. Specifi- 
cally, in Section 4.1, we establish the convergence of 
the weighted average of the noise sequence as a nec- 
essary and sufficient condition for convergence of the 
standard stochastic approximation algorithms. In Sec- 
tion 4.2, we present a necessary and sufficient noise 
condition for convergence of the averaged stochastic 
approximation algorithms in the linear case. Finally, 
we state some conclusions and remarks in Section 5. 

2. Weighted Averaging 

We first define what we mean by “weighted averages.” 
Let W be a real Hilbert space and JL = @ be the vector 
space containing all sequences on H. We denote the 
inner product on W by (e, e) and the corresponding norm 
by I( . I/, and assume that the index set for elements in 
IL is N = {1,2, . . .} . For a sequence x E JL, we write 
(x), to denote the nth element of the sequence x, and 
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x -i c to mean that x converges to c E IHI 
Definition 1. The weighted averaging operator with 
respect to a positive real sequence a = {a,} (with a1 = 
1) is the operator A,: IL --+ IL defined by 

if n = 1, 
= (1 - an) (Aax),-l + U,%, otherwise, 

(1) 

for x = {x,} E IL. Given x E IL, we call A,x the 
weighted average of x. 

We will refer to the sequence a in the definition as 
the averaging sequence of the corresponding weighted 
average. Note that we assume that a1 = 1 only for 
simplicity of analysis; the assumption is not crucial to 
the results. The following lemma gives a useful repre- 
sentation for the weighted average defined above. Note 
that this result was established in earlier work; see, for 
example, [7, 91. 

Lemma 1. Given a real sequence a = {a,} satisfying 
a1 = 1 and 0 < a,  < 1 for  all n 2 2; define real 
sequences {p,} and {y,} by 

(3) 

1. o n  = Et==, Yk; 
00 2. a,  = co if and only if limn+cx, Pn = CO; 

and 

Suppose that x is a sequence of estimates of an un- 
known parameter x*, obtained from some algorithm. 
There are two motivations behind the application of 
weighted averaging to a sequence: 

1. If x does not converge to z* but is sufficiently well- 
behaved, then it may be possible that a weighted 
average of x converges to x*. 

2. Suppose that x converges to x* slowly. It may be 
possible to speed up the convergence by taking the 
weighted average of x. 

In other words, weighted averaging serves as a post- 
filter for the sequence of estimates x. In this paper, 
we focus on the first issue. Specifically, we provide 
necessary and sufficient conditions on z for convergence 
of its weighted average. We first define two important 
properties of a weighted average and give necessary and 
sufficient conditions for them to hold. 

~ 
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Definition 2. A weighted average A, is regular if for 
any sequence x converging to x*, Aax also converges 
to x*. 

Definition 3. A weighted average A, is effective if it 
is regular and d,x converges for some non-convergent 
sequence x. 

The regularity of a weighted averaging operator guar- 
antees that the weighted average of every convergent 
sequence also converges to the same limit of the orig- 
inal sequence-the weighted averaging will not im- 
pair convergence. In addition, the effectiveness of 
a weighted averaging operator makes sure that some 
non-convergent sequence can be made convergent via 
weighted averaging-the weighted averaging will im- 
prove convergence. We give necessary and sufficient 
conditions for regularity and effectiveness of weighted 
averaging in Propositions 1 and 2 below, respectively. 

Proposition 1. A weighted average A, with a = {a,} 
is regular if and only if an = 00. 

The next proposition gives us a necessary and sufficient 
condition for the effectiveness of a weighted average. 

Proposition 2. A regular weighted average A, is ef- 
fective if and only if a has a subsequence converging to 
0. 

Note that the notion of regularity is an important con- 
cept in summability theory; see, for example, [3,12,21]. 
A necessary and sufficient condition for the regularity 
of a general summability method is provided by the 
Toeplitz Limit Theorem [3, 121. The above two propo- 
sitions can in fact be proven by applications of this 
theorem. 

3. Convergence of Weighted Averages 

In this section, we study conditions on {x,} for the 
convergence of its weighted average. Throughout the 
paper, we assume that the associated weighted averag- 
ing is both regular and effective. In other words, the 
averaging sequence is not summable and has a subse- 
quence converging to 0. Without loss of generality, we 
assume that the desired limit for sequences of interest 
is 0, that is, x* = 0. For ease of presentation, we define 
an operators Sa:  IL t IL, as follows: For a sequence 
x = {x,} E IL, defined 

n 

k=l 

3.1. First-Order Condition 
We now present a necessary and sufficient condition on 
a sequence for convergence of its weighted average. 



Theorem 1. Let x = {z,} be a sequence on W. The 
weighted average d , x  converges to 0 if and only i f  there 
exist sequences U = {U,} and v = {U,} such that x = 
U + U, limn-,- U ,  = 0, and Sav converges. 

Proof. See [2O]. 17 

We define the condition stated in Theorem 1 as the 
first-order decomposition condition that we will refer 
to in the subsequent discussion. 

Definition 4. Fix a sequence of positive real numbers 
{a,}. We say a sequence x E IL satisfies the first-order 
decomposition condition (or simply the DC, condition) 
if there exist sequences U = {U,} and v = {U,} such 
that x = U + U, limn-too U, = 0, and S,v converges. 

Note that if a does not have a subsequence converging 
to 0, the DC, condition reduces to the convergence of 
x .  This fact is consistent with Proposition 2. In the 
subsequent discussion, we may drop the subscript when 
the associated averaging sequence does not affect the 
result. 

To see how averaging can improve the convergence 
property of a sequence, consider the following classical 
example: Suppose a, = and z, = (-l)n+l. Then 
d a x  4 0 although x oscillates between -1 and 1. This 
situation may correspond to the case where the esti- 
mate wanders around the desired parameter value but 
does not converges to it. 

3.2. Second-Order Condition 
We now study the situation where a second weighted 
average is needed to obtain a convergent sequence. We 
present a necessary and sufficient condition on the se- 
quence for convergence of its “second-order weighted 
average.” We need an additional assumption on the 
behavior of the averaging sequence {a,} to establish 
the second-order condition (Theorem 2). We define 
the notion of bounded variation of a sequence that will 
be used to state our assumption. 

Definition 5. A sequence {a,} is said to have bounded 
variation if E,”==, la,+l - a,l < CO. 

The set of sequences with bounded variation is a fairly 
large class of sequences. For example, any bounded 
and eventually monotone scalar sequence has bounded 
variation. To establish the second-order condition we 
need the following lemmas, Lemmas 2 and 3, which 
concern the relationship among weighted averages with 
different averaging sequences. 
Lemma 2. Let a = {a,} and b = {b,} be given se- 
quences. Suppose that the sequence { e} has bounded 
variation. If x satisfies the DCb condition, then at also 
satisfies the DC, condition. 

Since the DCa condition is necessary and sufficient for 
convergence of d a x ,  Lemma 2 relates the convergence 
of weighted averages of a sequence with different av- 
eraging sequences. As a direct corollary of the above 
lemma, we obtain the following useful result. 

Lemma 3. Let a = {a,} and b = {b , }  be given se- 
quences. Suppose that the sequence { ?} has bounded 
variation. If dbx + 0, d , x  -b 0. 

With the above lemmas, we can prove the following 
theorem that establishes the necessary and sufficient 
condition for convergence of the L‘second-order” aver- 
age. 

Theorem 2. Suppose that the sequences { and {e} have bounded Variation. Then, f o r  x E IL, the 
following are equivalent: 

1.  d , x  satisfies the DCb condition; 

2. There exist sequences U and v such that x = u i v ,  
and U and sav satisfy the DCb condition; and 

3. db (d ,x )  converges to 0. 

Proof. See [2O]. 0 

We state the condition 2 on x in Theorem 2 in the next 
definition for later reference. 

Definition 6. Fix sequences of positive real numbers 
{a,} and {b,}. We say a sequence x E IL satisfies 
the second-order decomposition condition (or simply 
the DCib condition) if there exist sequences U and v 
such that x = U + U, and U and S,v satisfy the DCb 
condition. 

Again, we may omit the subscripts when the associated 
averaging sequences are clear from the context. 

In the next section, we explore the close relationship 
between weighted averaging and stochastic approxima- 
tion, and present a necessary and sufficient noise con- 
dition for convergence of the averaged stochastic ap- 
proximation for a class of linear problems. 

4. Stochastic Approximation and Averaging 

In [19], Wang et al. show that the DC condition on the 
noise sequence is necessary and sufficient for conver- 
gence of a stochastic approximation algorithm under 
appropriate assumptions. This result, together with 
Theorem 1 in the previous section, establishes a form 
of equivalence between weighted averaging and stochas- 
tic approximation in terms of convergence. More pre- 
cisely, we show that the convergence of weighted av- 
erage of the noise sequence is necessary and sufficient 
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for convergence of stochastic approximation algorithms 
(Theorems 3 and 4). Based on this equivalence, we fur- 
ther show that the DC2 condition on the sequence is 
a necessary and sufficient condition for convergence of 
the averaged stochasticapproximation algorithm (The- 
orem 5) .  As mentioned in the beginning, there has been 
significant interest in using averaging to accelerate con- 
vergence of stochastic approximation algorithm. The 
result here illustrates another important aspect of the 
averaging scheme: it allows us to relax the condition on 
noise sequences for convergence of stochastic approxi- 
mation algorithms. We prove that, with a weighted av- 
eraging, stochastic approximation can tolerate a larger 
class of noise. 

4.1. Weighted Averaging as a Noise Condition 
The close relationship between stochastic approxima- 
tion and weighted averaging has been reported in the 
literature. In [SI, Ljung shows that convergence of 
the weighted average of the noise sequence, with the 
step size being the averaging sequence, is sufficient for 
convergence of a stochastic approximation algorithm. 
Walk and &id6 prove a similar result for a class of lin- 
ear problems in [18]. In [4, 13, 161, it is shown that the 
stochastic approximation algorithm can be represented 
as a weighted average of the noise sequence when it con- 
verges. In the case where the step size a, = c /n ,  Clark 
proves in [I] that the convergence of the true average of 
the noise sequence is necessary and sufficient for con- 
vergence of Robbins-Monro algorithms. Here, we gen- 
eralize Clark's result to general step size sequences by 
applying results in the last section and [19]. 

In [19], Wang et al. show that the DC, condition on 
the noise sequence {e,} is necessary and sufficient for 
convergence of the stochastic approximation algorithm 
described by 

xn+1 = 5, - a,f (2,) + anen + a&,, (4) 

where b, E H with b, + 0, and f : W -+ W satisfies 

(A) There exists z* E W such that for all 6 > 0, there 
exists hg > 0 such that 

11x-x*11 2 dimplies ( f ( x ) , x - x * )  2 hg11x-x2*11. 

This result, together with Theorem 1, gives us the 
following theorem that establishes the desired equiv- 
alence. 

Theorem 3. Let {a,} satisfy Er='=, a, = CO and 
a, t 0. Suppose that {x,} is  generated according 
to  the algorithm (4) and { f ( z , ) }  is  bounded. Then 
x, -+ x* f o r  all f satisfying (A) and all x1 E M[ i f  and 
only if A,e -+ 0.  

Proof. See [20]. 0 

We now establish the same equivalence for a class of 
linear problems, without the assumption that {f(x,)} 
be bounded. Consider the problem of recursively esti- 
mating the zero of an unknown linear function Ax - 6, 
A :  MI -+ JHI and b E W, via the following stochastic 
approximation algorithm 

~ , + 1  = Zn - anAnxn + anbn + anen, (5) 
where x1 E W is arbitrary; A, and b, are estimates of 
A and b, respectively; and {e,} is the noise sequence. 
We assume that the step size {a,} is a sequence of 
nonnegative real number with a1 = 1, a, < 1 for 
n 2 2 ,  a, -+ 0, and ~ ~ = l u n  = CO. Furthermore we 
assume that A, : W j. W is a sequence of bounded lin- 
ear operators, and {b,} and {e,} are sequences on the 
Hilbert space W. Following Walk and Zsid6 [18], we as- 
sume that A, and b, satisfy the following assumptions 
throughout: 

A is a bounded linear operator with inf{Re A:  X E 
o(A)}  > 0, where a ( A )  denotes the spectrum of 
A. 

1 limsup,,, E C L  YkllAkll  < 00; 

I1 llz C k = l  %Ak - A -+ 0; i n  

11 & xi==, Y k b k  - bll -+ 0. 

Assumption (Al) guarantees that A is invertible. As- 
sumption (A2) is a technical condition that will be used 
in the proof of convergence. Following Walk and Zsid6 
[18], letting z; = 2, - A-lb and b; = b, - A,A-'b, 
we can rewrite (5) as 

= xk - a,zk + a,bk + a,e,. 
Assumptions (A3) and (A4) imply that & xi==, Ykbk 
converges to 0. Therefore we can assume that b = 0 
without loss of generality. In fact, by Assumption (A4) 
and the linearity of A,, we can ignore the term b, in 
( 5 )  in considering the convergence of the stochastic ap- 
proximation algorithm. In other words, we can simply 
focus on the algorithm described by 

%,+I = x, - anAnxn + anen. (6) 
This will be clear when we present our convergence 
results (Theorem 4 and 5) later. 

In the following, we show that convergence of the 
weighted average of the noise is necessary and sufficient 
for convergence of the algorithm described by ( 5 ) .  Note 
that the sufficiency is proved by Walk and Zsid6 in [18]. 

Theorem 4. Suppose that assumptions (AI-3) hold. 
Then { x n }  defined by (5 )  converges to  A-lb i f  and only 
if A,e converges to  0. 

Proof. See [20]. U 
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4.2. Averaged Stochastic Approximation 
Recently, Polyak and Ruppert independently proposed 
the idea of speeding up convergence of stochastic ap- 
proximation by means of averaging in [lo] and [14], 
respectively. They show that the average of the output 
of a stochastic approximation algorithm, $ xi==, X k ,  

converges with the optimal rate, together with the op- 
timal asymptotic covariance matrix. The optimality 
can be achieved with a slowly varying step size, and is 
independent of the design constant for step size. Since 
then, other authors have further explored the benefits 
of using averaging for stochastic approximation; see, 
for example, [2, 6, 5, 11, 15, 17, 22, 231. Most of the 
results focus on the asymptotic optimality of stochas- 
tic approximation algorithms with various averaging 
schemes. Except for results in [15, 171, a probabilis- 
tic approach is used in the analyses. 

In this paper, we explore a different aspect of the aver- 
aging scheme. We show that the averaging technique, if 
properly designed, allows us to relax the noise condition 
for convergence of stochastic approximation. Specifi- 
cally, we establish a necessary and sufficient noise con- 
dition for convergence of an averaged stochastic ap- 
proximation algorithm in the linear case. This condi- 
tion is substantially weaker than the known necessary 
and sufficient noise conditions for convergence of the 
standard stochastic approximation without averaging. 
Our analysis is deterministic. 

We consider the algorithm described by 

xn+1 = xn - a n A x n  + anbn + anen, (7) 
and study the convergence of the weighted average 
{Zn}  of { x n } ,  where 

3, = ( 1  - U n ) f n - l  + a+,. (8) 
We present a necessary and sufficient noise condition 
for convergence of the weighted average of {Xn} in the 
following theorem. We will use dzx = d,(d,x) to de- 
note the second-order weighted averaging of a sequence 
2 with the same averaging sequence {an}  for both av- 
eragings. 

Theorem 5. Suppose that A: W -+ W satisfies as- 
sumption (AI ) ,  assumption (Ad) holds, and {%} 
and {e} have bounded variation. Then, for  x and 
{%n} defined by (7) and (8), the following are equiva- 
lent: 

1. {Zn}  = Aax converges to  A-lb.  

2. die converges to 0. 

3. {e,} satisfies the DC: condition. 

Proof. See [20]. 0 

Note that the assumptions on the step size stated in 
Theorem 5 hold for the step sizes of the form 5, 0 < 
a 5 1. 

In the case where different sequences are used for 
stochastic approximation and weighted averaging, a 
tight result analogous to Theorem 5 is not easy to ob- 
tain. However, with the help of Lemma 2, we can es- 
tablish a sufficient noise condition for convergence. 

Corollary 1. Suppose that A :  W -+ W satisfies as- 
sumption (AI),  assumption (Ad) holds, and (?} 
and { 2) have bounded variation. Then, for x de- 
fined by (7), d,x converges to A-’b if d:e converges 
to 0. 

Theorem 5 and Corollary 1 assert that a stochastic 
approximation algorithm with averaging can tolerate 
any noise sequence that satisfies the DC2 condition. 
Due to the regularity and effectiveness of weighted av- 
eraging, it is clear that the second-order averaging di 
is more “powerful” than the first-order averaging d,, 
in the sense that the former can transform a larger 
class of sequences into convergent sequences. In fact, 
it is straightforward to establish the inclusion relation: 
DC, c DC:, where we abuse the notation by adopting 
DCa and DC: to denote the sets of sequences satisfy- 
ing the corresponding conditions. Consider an example 
where an = and zn = (-1)”+’(2n - 1). Although 
the sequence x oscillates with increasing magnitude, 
we have dix -+ 0. Note that d,x = ((-l)nc’} does 
not converge. Since the DCa condition is necessary 
and sufficient for convergence of stochastic approxima- 
tion, the fact that weighted averaging relaxes the noise 
condition is evident by Theorem 5 and Corollary 1. 

5. Conclusion 

In this paper, we study properties of weighted aver- 
aging and present necessary and sufficient conditions 
on a sequence for convergence of its average. We view 
the weighted averaging as a means to weaken the noise 
condition for convergence of stochastic approximation 
and present a necessary and sufficient noise condition 
for convergence of stochastic approximation with aver- 
aging for a special linear case. 

Although averaging has been applied to accelerate con- 
vergence in [5,  6, 111, it is not clear that averaging can 
always guarantee a speedup of convergence in the de- 
terministic setting adopted in this paper. Consider the 
case where a, = and xn, en E I& if 2 = nxn + 0, 
that is, x,  = o(a,), and liminf,,, 11 xi==, xkII > 0,  
then + 00. In other words, averaging actually slows 
down convergence in this situation. Another situation 
where averaging cannot speed up convergence is when 

1075 



{Xn} monotonically decreases to  0. From the equation 

n n- 1 
1 

k=l k=l 

we see that the average (3,)  does not converge faster 
than {z,} since the first term at the right-hand side is 
always positive. A more detailed analysis is needed 
to characterize situations where a speedup can be 
achieved. 
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