Constraint Programming

Constraint Programming: Extending the SAT language
- We've seen usefulness of SAT and MAX-SAT
- Candidate solutions are assignments
- Clauses are a bunch of competing constraints on assignments
- Constraint programming offers a richer language:
 - convenient
 - Don't have to express each constraint as a disjunction of literals
 - Encodings closer to how you think about problem
 - maybe more efficient
 - Fewer constraints: saves on storage, indexing, and propagation
 - Special handling for particular types of constraints
 - maybe more general
 - Leads toward generalizations, e.g., real-valued variables

ECLiPSe
(= ECLiPSe Constraint Logic Programming System)
- One of many constraint programming software packages
- Free for academic use
- Nice constraint language
- Several solver libraries
- Extensible – you can define your own new constraint types and new solvers

Integer constraints
What happens if you don’t say this?
- X :: [2,4,6,8,10..20] % X has one of these vals
- X #= Y % # for a constraint
- X #< Y % less than
- X #= 3 % inequality
- X + Y #= Z % arithmetic
- X*Y + Z^2 #= 70
- ordered([A,B,C,D])
- alldifferent([A,B,C,D])
- sum([A,B,C,D], E)
- minlist([A,B,C,D], C)
- minlist([A,B,C,D], 3)
- occurrences(…)

Which of these are syntactic sugar?
Global constraints

Real-number constraints
- X :: 1.0 .. Inf % X has a real value in this range
- X $= Y % $ for a constraint on real numbers
- X $< Y % less than
- X $= 3 % inequality
- X + Y $= Z % arithmetic
- X*Y + Z^2 $= 70
- ordered([A,B,C,D])
- alldifferent([A,B,C,D])
- sum([A,B,C,D], E)
- minlist([A,B,C,D], C)
- minlist([A,B,C,D], 3)
- occurrences(…)

Logical operators
- A #= B or A #= C
- A #= B and neg A #= C
- Cost #= (A #= B) + (A #= C)
 - Cost has value 0, 1, or 2
 - If we know A,B,C, we have information about Cost ...
 and vice-versa!
 - Another constraint might say Cost #< 1.
Set constraints

- Variables whose values are sets (rather than integers or reals)
- Constrain A to be a subset of B
- Constrain intersection of A, B to have size 2
- Etc.

Constraint Logic Programming

- ECLiPSe is an extension of Prolog
 - actually a full-fledged language with recursion, etc.
 - So a typical ECLiPSe program does the encoding as well as the solving. Advantages?
 - don’t have to read/write millions of constraints
 - don’t have to store millions of constraints at once (generate new constrained variables during search, eliminate them during backtracking)
 - easier to hide constraint solving inside a subroutine
 - less overhead for small problems
 - But for simplicity, we’ll just worry about the “little language” of constraints.
 - You can do the encoding yourself in Perl.

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: \(D_i = \{\text{red, green, blue}\} \)
- Constraints: adjacent regions must have different colors
 - e.g., WA ≠ NT, or (WA,NT) in \(\{(\text{red,green}), (\text{red,blue}), (\text{green,red}), (\text{green,blue}), (\text{blue,red}), (\text{blue,green})\} \)

Example: Map-Coloring

- Solutions are complete and consistent assignments
 - e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

We’ll talk about solvers next week

Varieties of CSPs

- Discrete variables
 - finite domains:
 - \(n \) variables, domain size \(d \rightarrow O(d^n) \) complete assignments
 - e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., \(\text{StartJob}_1 + 5 \text{StartJob}_3 \)
 - Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by Linear Programming
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., SA ≠ green in the map coloring example

- **Binary** constraints involve pairs of variables,
 - e.g., SA ≠ WA in the map coloring example

- **Higher-order** constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints (next slide)

Example: Cryptarithmetic

\[
\begin{array}{c}
\text{T} \\
\text{W} \\
\hline
\text{O}
\end{array}
\quad
\begin{array}{c}
\text{T} \\
\text{W} \\
\hline
\text{F}
\end{array}
\quad
\begin{array}{c}
\text{U} \\
\text{R} \\
\hline
\text{O}
\end{array}
\]

- **Variables:** F, T, U, W, R, O
- **Domains:** \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- **Constraints:**
 - \(O + O = R + 10 \cdot X_1 \)
 - \(X_1 + W + W = U + 10 \cdot X_2 \)
 - \(X_2 + T + T = O + 10 \cdot X_3 \)

More examples

- At the ECLiPSe website:
 - http://eclipseclp.org/examples/

- Let’s play with these in a running copy of ECLiPSe!