Mathematical Programming

especially Integer Linear Programming and Mixed Integer Programming
Transportation Problem in ECLiPSe

- Vars = [A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4];
- Vars :: 0.0..inf,
- A1 + A2 + A3 + A4 \leq 500, % supply constraints
- B1 + B2 + B3 + B4 \leq 300,
- C1 + C2 + C3 + C4 \leq 400, % production capacity of producer “C”
- A1 + B1 + C1 \geq 200, % demand constraints
- A2 + B2 + C2 \geq 400,
- A3 + B3 + C3 \geq 300,
- A4 + B4 + C4 \geq 100, % total amount that must be sent to consumer “4”
- optimize(min(10*A1 + 8*A2 + 5*A3 + 9*A4 + 7*B1 + 5*B2 + 5*B3 + 3*B4 + 11*C1 + 10*C2 + 8*C3 + 7*C4), Cost).

Example adapted from ECLiPSe website
Here are some variables:
- Vars = [A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4];

And some hard constraints on them:
- Vars :: 0.0..inf,
- \(A1 + A2 + A3 + A4 \leq 500\), \(\%\) supply constraints
- \(B1 + B2 + B3 + B4 \leq 300\),
- \(C1 + C2 + C3 + C4 \leq 400\),
- \(A1 + B1 + C1 = 200\), \(\%\) demand constraints
- \(A2 + B2 + C2 = 400\),
- \(A3 + B3 + C3 = 300\),
- \(A4 + B4 + C4 = 100\),

Find a satisfying assignment that makes this objective function as large or small as possible:
- \(10*A1 + 8*A2 + 5*A3 + 9*A4 + 7*B1 + 5*B2 + 5*B3 + 3*B4 + 11*C1 + 10*C2 + 8*C3 + 7*C4\)
Mathematical Programming in General

- Here are some variables:

- And some hard constraints on them:

what kind of constraints?

- Find a satisfying assignment that makes this objective function as large or small as possible:

what kind of function?
Types of Mathematical Programming
Types of Mathematical Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>integer linear prog. (ILP)</td>
<td>integer</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>mixed integer prog. (MIP)</td>
<td>int&real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratic programming</td>
<td>real</td>
<td>linear inequalities</td>
<td>quadratic function (hopefully convex)</td>
</tr>
<tr>
<td>semidefinite prog.</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratically constrained</td>
<td>real</td>
<td>quadratic inequalities</td>
<td>linear or quadratic function</td>
</tr>
<tr>
<td>convex programming</td>
<td>real</td>
<td>convex region</td>
<td>convex function</td>
</tr>
<tr>
<td>nonlinear programming</td>
<td>real</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>
Linear Programming (LP)

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
</tbody>
</table>
Linear Programming in 2 dimensions

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
</tbody>
</table>

2 variables: feasible region is a convex polygon

for comparison here’s a non-convex polygon

boundary of feasible region comes from the constraints

image adapted from Keely L. Croxton
Linear Programming in \(n \) dimensions

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
</tbody>
</table>

3 variables:
feasible region is a convex polyhedron

In general case of \(n \) dimensions, the word is polytope

(n-1)-dimensional facet, imposed by a linear constraint that is a full \((n-1) \)-dimensional hyperplane

image adapted from Keely L. Croxton
Linear Programming in 2 dimensions

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
</tbody>
</table>

“level sets” of the objective $x+y$ (sets where it takes a certain value)

$x+y = 4$ \hspace{1cm} $x+y = 5$ \hspace{1cm} $x+y = 6$ \hspace{1cm} $x+y = 7$

images adapted from Keely L. Croxton
Linear Programming in n dimensions

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
</tbody>
</table>

If an LP optimum is finite, it can *always* be achieved at a corner ("vertex") of the feasible region.

(Can there be infinite solutions? Multiple solutions?)

Here level set is a plane (in general, a hyperplane)

Image from Keely L. Croxton
Simplex Method for Solving an LP

At every step, move to an adjacent vertex that improves the objective.
Integer Linear Programming (ILP)

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>integer linear prog. (ILP)</td>
<td>integer</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
</tbody>
</table>

Diagram:
- **Function to maximize:** $f(x, y) = 6 \cdot x + 5 \cdot y$
- **Optimum LP solution**: $(x, y) = (2.8, 3.3)$
- **Pareto optima**: $(0, 4), (2, 3), (3, 2), (4, 1)$
- **Optimum ILP solution**: $(x, y) = (4, 1)$

Questions:
- Round to nearest int $(3, 3)$? No, infeasible.
- Round to nearest feasible int $(2, 3)$ or $(3, 2)$? No, suboptimal.
- Round to nearest integer vertex $(0, 4)$? No, suboptimal.
Mixed Integer Programming (MIP)

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>integer linear prog. (ILP)</td>
<td>integer</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>mixed integer prog. (MIP)</td>
<td>int&real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
</tbody>
</table>

We’ll be studying MIP solvers.

SCIP mainly does MIP though it goes a bit farther.

x still integer but y is now real
Quadratic Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratic programming</td>
<td>real</td>
<td>linear inequalities</td>
<td>quadratic function (hopefully convex)</td>
</tr>
</tbody>
</table>

solution no longer at a vertex

level sets of $x^2 + y^2$ (try to minimize)

level sets of $(x-2)^2 + (y-2)^2$ (try to minimize)

same, but maximize (no longer convex)
Quadratic Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratic programming</td>
<td>real</td>
<td>linear inequalities</td>
<td>quadratic function (hopefully convex)</td>
</tr>
</tbody>
</table>

Note: On previous slide, we saw that the level sets of our quadratic objective x^2+y^2 were circles.

In general (in 2 dimensions), the level sets of a quadratic function will be conic sections: ellipses, parabolae, hyperbolae. E.g., x^2-y^2 gives a hyperbola.

The n-dimensional generalizations are called **quadrics**.

Reason, if you’re curious: The level set is $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = \text{const}$

Equivalently, $Ax^2 + Bxy + Cy^2 = -Dx -Ey + (\text{const} - F)$

Equivalently, (x,y) is in set if $\exists z$ with $z = Ax^2 + Bxy + Cy^2$ and $z = -Dx -Ey + (\text{const} - F)$

Thus, consider all (x,y,z) points where a **right cone** intersects a plane.
Semidefinite Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratic programming</td>
<td>real</td>
<td>linear inequalities</td>
<td>quadratic function (hopefully convex)</td>
</tr>
<tr>
<td>semidefinite prog.</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+semidefiniteness</td>
<td></td>
</tr>
</tbody>
</table>
Quadratically Constrained Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratic programming</td>
<td>real</td>
<td>linear inequalities</td>
<td>quadratic function (hopefully convex)</td>
</tr>
<tr>
<td>quadratically constrained programming</td>
<td>real</td>
<td>quadratic inequalities</td>
<td>linear or quadratic function</td>
</tr>
</tbody>
</table>

Curvy feasible region

Linear objective in this case, so level sets are again hyperplanes, but optimum is not at a vertex.
Convex Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>convex programming</td>
<td>real</td>
<td>convex region</td>
<td>convex function (to be minimized)</td>
</tr>
</tbody>
</table>

Non-convexity is hard because it leads to disjunctive choices in optimization (hence backtracking search).

- Infeasible in middle of line: which way to go?
- Objective too large in middle of line: which way to go?

![Diagram showing convex and non-convex regions](image)
Convex Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>convex programming</td>
<td>real</td>
<td>convex region</td>
<td>convex function (to be minimized)</td>
</tr>
</tbody>
</table>

Can minimize a convex function by methods such as gradient descent, conjugate gradient, or (for non-differentiable functions) Powell’s method or subgradient descent. No local optimum problem.

Here we want to generalize to minimization within a convex region. Still no local optimum problem. Can use subgradient or interior point methods, etc.

Note: If instead you want to maximize within a convex region, the solution is at least known to be on the boundary, if the region is compact (i.e., bounded).
Nonlinear Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>convex programming</td>
<td>real</td>
<td>convex region</td>
<td>convex function</td>
</tr>
<tr>
<td>nonlinear programming</td>
<td>real</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Non-convexity is hard because it leads to disjunctive choices in optimization.

Here in practice one often falls back on methods like simulated annealing.

To get an exact solution, you can try backtracking search methods that recursively divide up the space into regions.

(Branch-and-bound, if you can compute decent optimistic bounds on the best solution within a region, e.g., by linear approximations.)
Types of Mathematical Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming (LP)</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>integer linear prog. (ILP)</td>
<td>integer</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>mixed integer prog. (MIP)</td>
<td>int&real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratic programming</td>
<td>real</td>
<td>linear inequalities</td>
<td>quadratic function (hopefully convex)</td>
</tr>
<tr>
<td>semidefinite prog.</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratically constrained linear programming</td>
<td>real</td>
<td>quadratic inequalities</td>
<td>linear or quadratic function</td>
</tr>
<tr>
<td>convex programming</td>
<td>real</td>
<td>convex region</td>
<td>convex function</td>
</tr>
<tr>
<td>nonlinear programming</td>
<td>real</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>
Types of Mathematical Programming

<table>
<thead>
<tr>
<th>Name</th>
<th>Vars</th>
<th>Constraints</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint programming</td>
<td>discrete?</td>
<td>any</td>
<td>N/A</td>
</tr>
<tr>
<td>linear programming</td>
<td>real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>integer linear programming</td>
<td>integer</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>mixed integer programming</td>
<td>int & real</td>
<td>linear inequalities</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratic programming</td>
<td>real</td>
<td>quadratic inequalities</td>
<td>quadratic function (hopefully convex)</td>
</tr>
<tr>
<td>semidefinite programming</td>
<td>real</td>
<td>+ semidefiniteness</td>
<td>linear function</td>
</tr>
<tr>
<td>quadratically constrained linear programming</td>
<td>real</td>
<td>quadratic inequalities</td>
<td>linear or quadratic function</td>
</tr>
<tr>
<td>convex programming</td>
<td>real</td>
<td>convex region</td>
<td>convex function</td>
</tr>
<tr>
<td>nonlinear programming</td>
<td>real</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>

Lots of software available for various kinds of math programming!

Huge amounts of effort making it smart, correct, and fast - use it!

See the NEOS Wiki, the Decision Tree for Optimization Software, and the COIN-OR open-source consortium.
Terminology

<table>
<thead>
<tr>
<th>Constraint Programming</th>
<th>Math Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula / constraint system</td>
<td>model</td>
</tr>
<tr>
<td>variable</td>
<td>variable</td>
</tr>
<tr>
<td>constraint</td>
<td>constraint</td>
</tr>
<tr>
<td>MAX-SAT cost</td>
<td>objective</td>
</tr>
<tr>
<td>assignment</td>
<td>program</td>
</tr>
<tr>
<td>SAT</td>
<td>feasible</td>
</tr>
<tr>
<td>UNSAT</td>
<td>infeasible</td>
</tr>
<tr>
<td>programs</td>
<td>codes</td>
</tr>
<tr>
<td>backtracking search</td>
<td>branching / branch & bound</td>
</tr>
<tr>
<td>variable/value ordering</td>
<td>node selection strategy</td>
</tr>
<tr>
<td>propagation</td>
<td>node preprocessing</td>
</tr>
<tr>
<td>formula simplification</td>
<td>presolving</td>
</tr>
<tr>
<td>{depth, breadth, best, ...}-first</td>
<td>branching strategy</td>
</tr>
</tbody>
</table>
Linear Programming in ZIMPL
Formal Notation of Linear Programming

- **n** variables \(x_1, x_2, \ldots, x_n \)
- max or min objective \(c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \)
- **m** linear inequality and equality constraints

\[
\begin{align*}
 a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n & \leq b_1 \\
 a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n & = b_2 \\
 \vdots & \\
 a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n & \geq b_m
\end{align*}
\]

Note: if a constraint refers to only a few of the vars, its other coefficients will be 0
Formal Notation of Linear Programming

- **n** variables \(x_1, x_2, \ldots, x_n \)
- max or min objective \(c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \)
- **m** linear inequality and equality constraints
 \[
 a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \leq b_1 \\
 a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\
 \vdots \]
 Note: if a constraint refers to only a few of the vars, its other coefficients will be 0
 \[
 a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n \geq b_m
 \]
Formal Notation of Linear Programming

- **n** variables \(x_1, x_2, \ldots, x_n \)
- **max or min objective** \(c_1x_1 + c_2x_2 + \ldots + c_nx_n \)
- **m** linear inequality and equality constraints

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & \leq b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & \leq b_2 \\
 & \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & \leq b_m
\end{align*}
\]

- **Can we simplify** (much as we simplified SAT to CNF-SAT)?
Formal Notation of Linear Programming

- n variables x_1, x_2, \ldots, x_n
- objective: max $\vec{c} \cdot \vec{x}$
- m linear inequality constraints

\[A\vec{x} \leq \vec{b} \]

(where "\leq" means that $(\forall 1 \leq i \leq m) \ (A\vec{x})_i \leq b_i$)

- Now we can use this concise matrix notation
Formal Notation of Linear Programming

- **n** variables \(x_1, x_2, \ldots, x_n \)
- objective: max \(\vec{c} \cdot \vec{x} \)
- **m** linear inequality constraints

\[
A \vec{x} \leq \vec{b}
\]

(where “\(\leq \)” means that \((\forall 1 \leq i \leq m) \ (A \vec{x})_i \leq b_i \))

Some LP folks also assume constraint \(\vec{x} \geq 0 \)

- What if you want to allow \(x_3 < 0 \)? Just replace \(x_3 \) everywhere with \((x_{m+1} - x_{m+2}) \) where \(x_{m+1}, x_{m+2} \) are new variables \(\geq 0 \).
- Then solver can pick \(x_{m+1}, x_{m+2} \) to have either pos or neg diff.
Strict inequalities?

- **n** variables \(x_1, x_2, \ldots, x_n \)
- max or min objective \(c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \)
- **m** linear inequality and equality constraints

 \[
 \begin{align*}
 a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n & \leq b_1 \\
 a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n & = b_2 \\
 \vdots \ & \ & \\
 a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n & \geq b_m
 \end{align*}
 \]

How about using strict \(> \) or \(< \)?
But then you could say “min \(x_1 \) subject to \(x_1 > 0 \).”
No well-defined solution, so can’t allow this.
Instead, approximate \(x > y \) by \(x \geq y + 0.001 \).
What little language and solver should we use? Quite a few options …

- **Our little language for this course is ZIMPL** (Koch 2004)
 - A free and extended dialect of AMPL = “A Mathematical Programming Language” (Fourer, Gay & Kernighan 1990)
 - Compiles into MPS, an unfriendly punch-card like format accepted by virtually all solvers

- **Our solver for mixed-integer programming is SCIP** (open source)
 - Our version of SCIP will
 1. read a ZIMPL file (*.zpl)
 2. compile it to MPS
 3. solve using its own MIP methods
 - which in turn call an LP solver as a subroutine
 - our version of SCIP calls CLP (part of the COIN-OR effort)
Transportation Problem in ECLiPSe

- Vars = [A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4];
- Vars :: 0.0..inf,
- \(A1 + A2 + A3 + A4 \leq 500 \), % supply constraints
- \(B1 + B2 + B3 + B4 \leq 300 \)
- \(C1 + C2 + C3 + C4 \leq 400 \), Production capacity of producer “C”
- \(A1 + B1 + C1 = 200 \), % demand constraints
- \(A2 + B2 + C2 = 400 \)
- \(A3 + B3 + C3 = 300 \)
- \(A4 + B4 + C4 = 100 \), Total amount that must be sent to consumer “4”
- optimize(min(10*A1 + 8*A2 + 5*A3 + 9*A4 + 7*B1 + 5*B2 + 5*B3 + 3*B4 + 11*C1 + 10*C2 + 8*C3 + 7*C4), Cost).

Amount that producer “C” sends to consumer “4”
Can’t recover transportation costs by sending negative amounts

Total amount that must be sent to consumer “4”

Satisfiable?

Transport cost per unit

example adapted from ECLiPSe website
Transportation Problem in ZIMPL

- var a1; var a2; var a3; var a4;
- var b1; var b2; var b3; var b4;
- var c1; var c2; var c3; var c4;

subject to supply_a: a1 + a2 + a3 + a4 <= 500;
subject to supply_b: b1 + b2 + b3 + b4 <= 300;
subject to supply_c: c1 + c2 + c3 + c4 <= 400;

subject to demand_1: a1 + b1 + c1 == 200;
subject to demand_2: a2 + b2 + c2 == 400;
subject to demand_3: a3 + b3 + c3 == 300;
subject to demand_4: a4 + b4 + c4 == 100;

minimize cost: 10*a1 + 8*a2 + 5*a3 + 9*a4 + 7*b1 + 5*b2 + 5*b3 + 3*b4 + 11*c1 + 10*c2 + 8*c3 + 7*c4;

Amount that producer “C” sends to consumer “4”
Variables are assumed real and >= 0 unless declared otherwise
Production capacity of producer “C”
Total amount that must be sent to consumer “4”

Blue strings are just your names for the constraints and the objective (for documentation and debugging)

Transport cost per unit
Transportation Problem in ZIMPL

- set Producer := {1 .. 3};
- set Consumer := {1 to 4};
- var send[Producer*Consumer];

- subto supply_a: sum <c> in Consumer: send[1,c] <= 500;
- subto supply_b: sum <c> in Consumer: send[2,c] <= 300;
- subto supply_c: sum <c> in Consumer: send[3,c] <= 400;

- subto demand_1: sum <p> in Producer: send[p,1] == 200;
- subto demand_2: sum <p> in Producer: send[p,2] == 400;
- subto demand_3: sum <p> in Producer: send[p,3] == 300;
- subto demand_4: sum <p> in Producer: send[p,4] == 100;

- minimize cost: 10*send[1,1] + 8*send[1,2] + 5*send[1,3] + 9*send[1,4] +
 11*send[3,1] + 10*send[3,2] + 8*send[3,3] + 7*send[3,4];
Transportation Problem in ZIMPL

- set Producer := {“alice”, “bob”, “carol”};
- set Consumer := {1 to 4};
- var send[Producer*Consumer];

- subto supply_a: sum <c> in Consumer: send[“alice”,c] <= 500;
- subto supply_b: sum <c> in Consumer: send[“bob”,c] <= 300;
- subto supply_c: sum <c> in Consumer: send[“carol”,c] <= 400;

- subto demand_1: sum <p> in Producer: send[p,1] == 200;
- subto demand_2: sum <p> in Producer: send[p,2] == 400;
- subto demand_3: sum <p> in Producer: send[p,3] == 300;
- subto demand_4: sum <p> in Producer: send[p,4] == 100;

Variables are assumed real and >= 0 unless declared otherwise (indexed by members of a specified set). Variables are assumed real and >= 0 unless declared otherwise.
Transportation Problem in ZIMPL

- set Producer := {“alice”, “bob”, “carol”};
- set Consumer := {1 to 4};
- var send[Producer*Consumer] >= -10000; variables are assumed real and >= 0 unless declared otherwise
- unknowns (remark: mustn’t multiply unknowns by each other if you want a linear program)
- params demand[Consumer] := <1> 200, <2> 400, <3> 300, <4> 100;
- param transport_cost[Producer*Consumer] :=
 | 1, 2, 3, 4 |
 | “alice” | 10, 8, 5, 9 |
 | “bob” | 7, 5, 5, 3 |
 | “carol” | 11, 10, 8, 7 |
- knowns

- subto supply: forall <p> in Producer:
 (sum <c> in Consumer: send[p,c]) <= supply[p];
- subto demand: forall <c> in Consumer:
 (sum <p> in Producer: send[p,c]) == demand[c];
- minimize cost: sum <p,c> in Producer*Consumer:
 transport_cost[p,c] * send[p,c];

Collapse similar formulas that differ only in constants by using indexed names for the constants, too (“parameters”)
How to Encode Interesting Things in LP (sometimes needs MIP)
Slack variables

- What if transportation problem is UNSAT?
- E.g., total possible supply < total demand

- Relax the constraints. Change

 subto demand_1: a1 + b1 + c1 == 200;

 to

 subto demand_1: a1 + b1 + c1 <= 200 ?

 No, then we’ll manufacture nothing, and achieve a total cost of 0.
Slack variables

- What if transportation problem is UNSAT?
- E.g., total possible supply < total demand

- Relax the constraints. Change

 \[
 \text{subto demand}_1: a_1 + b_1 + c_1 = 200;
 \]

 to

 \[
 \text{subto demand}_1: a_1 + b_1 + c_1 \geq 200
 \]

 Obviously doesn’t help UNSAT. But what happens in SAT case?
 Answer: It doesn’t change the solution. Why not?

 Ok, back to our problem …

- This is typical: the solution will achieve equality on some of your inequality constraints. Reaching equality was what stopped the solver from pushing the objective function to an even better value.
- And \(=\) is equivalent to \(\geq\) and \(\leq\). Only one of those will be “active” in a given problem, depending on which way the objective is pushing. Here the \(\leq\) half doesn’t matter because the objective is essentially trying to make \(a_1+b_1+c_1\) small anyway. The \(\geq\) half will achieve equality all by itself.
Slack variables

- What if transportation problem is UNSAT?
- E.g., total possible supply < total demand

Relax the constraints. Change

\[
\text{subto demand}_1: a1 + b1 + c1 == 200;
\]

to

\[
\text{subto demand}_1: a1 + b1 + c1 + \text{slack1} == 200; \quad (\text{or} \geq 200)
\]

Now add a linear term to the objective:

\[
\text{minimize cost: } (\sum_{p,c} \text{transport_cost}[p,c] \times \text{send}[p,c])
+ (\text{slack1_cost}) \times \text{slack1} \quad \text{cost per unit of buying from an outside supplier}
\]
Slack variables

What if transportation problem is UNSAT?
E.g., total possible supply < total demand

Relax the constraints. Change

\[\text{subto demand}_1: a1 + b1 + c1 == 200; \]

To

\[\text{subto demand}_1: a1 + b1 + c1 == 200 - \text{slack1}; \]

Now add a linear term to the objective:

\[\text{minimize cost: } (\text{sum } \langle p,c \rangle \text{ in Producer*Consumer:} \]
\[\text{transport_cost}[p,c] * \text{send}[p,c]) \]
\[+ (slack1_cost) * \text{slack1}; \]

Also useful if we could meet demand but maybe would rather not: trade off transportation cost against cost of not quite meeting demand.
Piecewise linear objective

- What if cost of doing without the product goes up nonlinearly?
- It’s pretty bad to be missing 20 units, but we’d make do.
- But missing 60 units is really horrible (more than 3 times as bad) ...

- We can handle it still by linear programming:

 subto demand_1: a1 + b1 + c1 + slack1 + slack2 + slack3 == 200 ;
 subto s1: slack1 <= 20; # first 20 units
 subto s2: slack2 <= 10; # next 10 units (up to 30)
 subto s3: slack3 <= 30; # next 30 units (up to 60)

 Now add a linear term to the objective:

 minimize cost: (sum <p,c> in Producer*Consumer: transport_cost[p,c] * send[p,c])
 + (slack1_cost * slack1) + (slack2_cost * slack2) + (slack3_cost * slack3);
Piecewise linear objective

- subto demand_1: a1 + b1 + c1 + slack1 + slack2 + slack3 <= 200;
- subto s1: slack1 <= 20; # first 20 units
- subto s2: slack2 <= 10; # next 10 units (up to 30)
- subto s3: slack3 <= 30; # next 30 units (up to 60)

minimize cost: (sum <p,c> in Producer*Consumer:
 transport_cost[p,c] * send[p,c])
 + (slack1_cost * slack1) + (slack2_cost * slack2) + (slack3_cost * slack3);

Note: Can approximate any continuous function by piecewise linear. In our problem, slack1 <= slack2 <= slack3 (costs get worse).

- Increasing cost (diseconomies of scale) (resource is scarce or critical)
- Decreasing cost (economies of scale) (resource is cheaper in bulk)
- Arbitrary non-convex function (hmm, can we optimize this?)

Cost

Resource being bought (or amount of slack being suffered)
Piecewise linear objective

- subto demand_1: a1 + b1 + c1 + slack1 + slack2 + slack3 <= 200;
- subto s1: slack1 <= 20; # first 20 units
- subto s2: slack2 <= 10; # next 10 units (up to 30)
- subto s3: slack3 <= 30; # next 30 units (up to 60)

minimize cost: (sum <p,c> in Producer*Consumer: transport_cost[p,c] * send[p,c])
+ (slack1_cost * slack1) + (slack2_cost * slack2) + (slack3_cost * slack3);

Note: Can approximate any continuous function by piecewise linear.

In our problem, slack1_cost <= slack2_cost <= slack3_cost
(costs get worse).

It’s actually important that costs get worse. Why?

Answer 1: Otherwise the encoding is wrong!
(If slack2 is cheaper, solver would buy from outside supplier 2 first.)

Answer 2: It ensures that the objective function is convex!
Otherwise too hard for LP; we can’t expect any LP encoding to work.

Therefore: E.g., if costs get progressively cheaper, (e.g., so-called “economies of scale” – quantity discounts), then you can’t use LP. 😞

How about integer linear programming (ILP)?
Piecewise linear objective

- subto demand_1: a1 + b1 + c1 + slack1 + slack2 + slack3 <= 200;
- subto s1: slack1 <= 20; # first 20 units
- subto s2: slack2 <= 10; # next 10 units (up to 30)
- subto s3: slack3 <= 30; # next 30 units (up to 60)
- minimize cost: (sum <p,c> in Producer*Consumer:
 transport_cost[p,c] * send[p,c])
 + (slack1_cost * slack1) + (slack2_cost * slack2) + (slack3_cost * slack3);

- Need to ensure that even if the slack_costs are set arbitrarily (any function!),
 slack1 must reach 20 before we can get the quantity discount by using slack2.

- Use integer linear programming. How?
- var k1 binary; var k2 binary; var k3 binary; # 0-1 ILP
- subto slack1 <= 20*k1; # can only use slack1 if k1==1, not if k1==0
 subto slack2 <= 10*k2;
 subto slack3 <= 30*k3;
- subto slack1 >= k2*20; # if we use slack2, then slack1 must be fully used
 subto slack2 >= k3*10; # if we use slack3, then slack2 must be fully used

Can drop k1. It really has no effect, since nothing stops it from being 1.
Corresponds to the fact that we’re always allowed to use slack1.
Piecewise linear objective

- subto demand_1: a1 + b1 + c1 + slack1 + slack2 + slack3 <= 200;
- subto s1: slack1 <= 20; # first 20 units
- subto s2: slack2 <= 10; # next 10 units (up to 30)
- subto s3: slack3 <= 30; # next 30 units (up to 60)

minimize cost: (sum <p,c> in Producer*Consumer:
 transport_cost[p,c] * send[p,c])
 + (slack1_cost * slack1) + (slack2_cost * slack2) + (slack3_cost * slack3);

Note: Can approximate any continuous function by piecewise linear.

Divide into convex regions, use ILP to choose region.

![Graphs of piecewise linear functions]

- slack4_cost is negative
- slack5_costs is negative
- slack6_cost is negative

so in these regions, prefer to take more slack (if constraints allow)
Image Alignment
Image Alignment
as a transportation problem, via “Earth Mover’s Distance” (Monge, 1781)
Image Alignment

as a transportation problem, via “Earth Mover’s Distance” (Monge, 1781)
Image Alignment

as a transportation problem, via “Earth Mover’s Distance” (Monge, 1781)

- param N := 12; param M := 10; # dimensions of image
- set X := {0..N-1}; set Y := {0..M-1};
- set P := X*Y; # points in source image
- set Q := X*Y; # points in target image
- defnumb norm(x,y) := sqrt(x*x+y*y);
- defnumb dist(<x1,y1>,<x2,y2>) := norm(x1-x2,y1-y2);
- param movecost := 1;
- param delcost := 1000; param inscost := 1000;
- var move[P*Q]; # amount of earth moved from P to Q
- var del[P]; # amount of earth deleted from P in source image
- var ins[Q]; # amount of earth added at Q in target image

warning: this code takes some liberties with ZIMPL, which is not quite this flexible in handling tuples; a running version would be slightly uglier
Image Alignment
as a transportation problem, via “Earth Mover’s Distance” (Monge, 1781)

- define set Neigh := { -1 .. 1 } × { -1 .. 1 } - {<0,0>};

- minimize \(\text{emd} \):
 \[
 \text{emd} := \sum_{p,q \in P \times Q} \text{move}[p,q] \times \text{movecost} \times \text{dist}(p,q)
 + \sum_{p \in P} \text{del}[p] \times \text{delcost}
 + \sum_{q \in Q} \text{ins}[q] \times \text{inscost};
 \]

- subject to \(\text{source} \):
 \[
 \forall p \in P: \quad \text{source}[p] = \text{del}[p] + \sum_{q \in Q} \text{move}[p,q];
 \]

- subject to \(\text{target} \):
 \[
 \forall q \in Q: \quad \text{target}[q] = \text{ins}[q] + \sum_{p \in P} \text{move}[p,q];
 \]

- subject to \(\text{smoothness} \):
 \[
 \forall p \in P: \forall q \in Q: \forall d \in \text{Neigh}:
 \frac{\text{move}[p,q]}{\text{source}[p]} \leq 1.01 \times \frac{\text{move}[p+d,q+d]}{\text{source}[p+d]};
 \]

Don’t have to do it all by moving dirt: if that’s impossible or too expensive, can manufacture/destroy dirt

Warning: this code takes some liberties with ZIMPL, which is not quite this flexible in handling tuples; a running version would be slightly uglier

Constant, so ok for LP (if > 0)

No longer a standard transportation problem; solution might no longer be integers (even if 1.01 is replaced by 2)
L1 Linear Regression

- Given data \((x_1, y_1), (x_1, y_2), \ldots (x_n, y_n)\)
- Find a linear function \(y = mx + b\) that approximately predicts each \(y_i\) from its \(x_i\) (why?)
- Easy and useful generalization not covered on these slides:
 - each \(x_i\) could be a vector (then \(m\) is a vector too and \(mx\) is a dot product)
 - each \(y_i\) could be a vector too (then \(mx\) is a matrix and \(mx\) is a matrix multiplication)
L1 Linear Regression

- Given data \((x_1, y_1), (x_1, y_2), \ldots (x_n, y_n)\)
- Find a linear function \(y = mx + b\) that approximately predicts each \(y_i\) from its \(x_i\)

Standard “L2” regression:
- Minimize \(\sum (y_i - (mx_i + b))^2\)
- This is a convex quadratic problem. Can be handled by gradient descent, or more simply by setting the gradient to 0 and solving.

“L1” regression:
- Minimize \(\sum |y_i - (mx_i + b)|\), so \(m\) and \(b\) are less distracted by outliers
- Again convex, but not differentiable, so no gradient!
- But now it’s a linear problem. Handle by linear programming:
 \[
 \text{subject to } y_i = (mx_i + b) + (u_i - v_i); \quad \text{subject to } u_i \geq 0; \text{ subject to } v_i \geq 0; \\
 \text{minimize } \sum (u_i + v_i);
 \]
More variants on linear regression

- **L1 linear regression:**
 - minimize $\sum_i |y_i - (mx_i + b)|$, so m and b are less distracted by outliers
 - Handle by linear programming:
 - $y_i = (mx_i + b) + (u_i - v_i)$; subto $u_i \geq 0$; subto $v_i \geq 0$;
 - minimize $\sum_i (u_i + v_i)$;

- **Quadratic regression:** $y_i \approx (ax_i^2 + bx_i + c)$?
 - Answer: Still linear constraints! x_i^2 is a constant since (x_i, y_i) is given.

- **L_∞ linear regression:** Minimize the maximum residual instead of the total of all residuals?
 - Answer: minimize z; subto forall $<i>$ in I: $u_i + v_i \leq z$;
 - **Remark:** Including max(p,q,r) in the cost function is easy.
 Just minimize z subject to $p \leq z$, $q \leq z$, $r \leq z$. Keeps all of them small.
 - **But:** Including min(p,q,r) is hard! Choice about which one to keep small.
 - Need ILP. Binary a,b,c with $a+b+c=1$. Choice of $(1,0,0),(0,1,0),(0,0,1)$.
 - Now what? First try: min $ap+bq+cr$. But ap is quadratic, oops!
 - Instead: use lots of slack on unenforced constraints. Min z subj. to $p \leq z+M(1-a)$, $q \leq z+M(1-b)$, $r \leq z+M(1-c)$, where M is large constant.
CNF-SAT (using binary ILP variables)

- We just said “a+b+c==1” for “exactly one” (sort of like XOR).
- Can we do any SAT problem?
 - If so, an ILP solver can handle SAT … and more.
- Example: \((A \lor B \lor \neg C) \land (D \lor \neg E)\)
- SAT version:
 - constraints: \((a+b+(1-c)) >= 1, \ (d+(1-e)) >= 1\)
 - objective: none needed, except to break ties

- MAX-SAT version:
 - constraints: \((a+b+(1-c))-u_1 >= 1, \ (d+(1-e))+u_2 >= 1\)
 - objective: minimize \(c_1*u_1+c_2*u_2\)
 where \(c_1\) is the cost of violating constraint 1, etc.
Non-clausal SAT (again using 0-1 ILP)

- If A is a [boolean] variable, then A and ~A are “literal” formulas.
- If F and G are formulas, then so are
 - \(F \land G \) ("F and G")
 - \(F \lor G \) ("F or G")
 - \(F \rightarrow G \) ("If F then G"; "F implies G")
 - \(F \leftrightarrow G \) ("F if and only if G"; "F is equivalent to G")
 - \(F \oplus G \) ("F or G but not both"; "F differs from G")
 - \(\neg F \) ("not F")
- If we are given a non-clausal formula, easy to set up as ILP using auxiliary variables.
Non-clausal SAT (again using 0-1 ILP)

- If we are given a non-CNF constraint, easy to set up as ILP using auxiliary variables.

\[(A \land B) \lor (A \land \neg(C \land (D \lor E)))\]

\[P \leq A; \quad P \leq B; \quad P \geq A+B-1\]

\[Q \geq D; \quad Q \geq E; \quad Q \leq D+E\]

\[R \leq C; \quad R \leq Q; \quad R \geq C+Q-1\]

\[S \leq A; \quad S \leq (1-R); \quad S \geq A+(1-R)-1\]

\[T \geq P; \quad T \geq S; \quad T \leq P+S\]

Finally, require \(T=1\).

Or for a soft constraint, add \(\text{cost} \times (1-T)\) to the minimization objective.

Note: Introducing one intermediate variable per subexpression can be used in place of the CNF conversion tricks we learned long ago. Either approach would work in either setting. This approach has only \textit{linear} blowup in formula size! (But it introduces more variables.)
MAX-SAT example: Linear Ordering Problem

- Arrange these archaeological artifacts or fossils along a timeline
- Arrange a program’s functions in a sequence so that callers tend to be above callees
- Poll humans based on pairwise preferences: Then sort the political candidates or policy options or acoustic stimuli into a global order
- In short:
 Sorting with a flaky comparison function
 - might not be asymmetric, transitive, etc.
 - can be weighted
 - the comparison “a < b” isn’t boolean, but real
 - strongly positive/negative if we strongly want a to precede/follow b
 - maximize the sum of preferences
 - NP-hard
MAX-SAT example: Linear Ordering Problem

- set X := { 1 ... 50 }; # set of objects to be ordered
- param G[X * X] := read "test.lop" as "<1n, 2n> 3n";
- var LessThan[X * X] binary;
- maximize goal: sum <x,y> in X * X : G[x,y] * LessThan[x,y];
- subto irreflexive: forall <x> in X: LessThan[x,x] == 0;
- subto antisymmetric_and_total: forall <x,y> in X * X with x < y: LessThan[x,y] + LessThan[y,x] == 1; # what would <= and >= do?
- subto transitive: forall <x,y,z> in X * X * X: # if x<y and y<z then x<z LessThan[x,z] >= LessThan[x,y] + LessThan[y,z] - 1;

alternatively (get this by adding LessThan[z,x] to both sides)
subto transitive: forall <x,y,z> in X * X * X
with x < y and x < z and y != z: # merely prevents redundancy
LessThan[x,y] + LessThan[y,z] + LessThan[z,x] <= 2; # no cycles

ZIMPL code thanks to Jason Smith
Why isn’t this just SAT all over again?

- Different solution techniques (we’ll compare)
- Much easier to encode “at least 13 of 26”:
 - Remember how we had to do it in pure SAT?
Encoding “at least 13 of 26”
(without listing all 38,754,732 subsets!)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>...</th>
<th>L</th>
<th>M</th>
<th>...</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A≥1</td>
<td>A-B≥1</td>
<td>A-C≥1</td>
<td></td>
<td>A-L≥1</td>
<td>A-M≥1</td>
<td></td>
<td>A-Y≥1</td>
<td>A-Z≥1</td>
</tr>
</tbody>
</table>

26 original variables A ... Z, plus 26² new variables such as A-L≥3

- SAT formula should require that A-Z≥13 is true ... and what else?
- yadayada ^ \(A-Z ≥ 13 \) ^ \((A-Z ≥ 13 \rightarrow (A-Y ≥ 13 \lor (A-Y ≥ 12 \land Z))) \)
 ^ \((A-Y ≥ 13 \rightarrow (A-X ≥ 13 \lor (A-X ≥ 12 \land Y))) \) ^ ...

one “only if” definitional constraint for each new variable
Why isn’t this just SAT all over again?

- Different solution techniques (we’ll compare)
- Much easier to encode “at least 13 of 26”:
 - $a+b+c+\ldots+z \geq 13$ (and solver exploits this)
 - Lower bounds on such sums are useful to model requirements
 - Upper bounds on such sums are useful to model limited resources
 - Can include real coefficients (e.g., c uses up 5.4 of the resource):
 - $a + 2b + 5.4c + \ldots + 0.3z \geq 13$ (very hard to express with SAT)
 - MAX-SAT allows an overall soft constraint, but not a limit of 13
 (nor a piecewise-linear penalty function for deviations from 13)
- Mixed integer programming combines the power of SAT and disjunction with the power of numeric constraints
 - Even if some variables are boolean, others may be integer or real
 and constrained by linear equations (“Mixed Integer Programming”)
Logical control of real-valued constraints

- Want $\delta=1$ to force an inequality constraint to turn on: (where δ is a binary variable)
 - **Idea**: $\delta=1 \rightarrow a \cdot x \leq b$
 - **Implementation**: $a \cdot x \leq b + M(1-\delta)$ where M very large
 - Requires $a \cdot x \leq b + M$ always, so set M to upper bound on $a \cdot x - b$

Conversely, want satisfying the constraint to force $\delta=1$:

- **Idea**: $a \cdot x \leq b \rightarrow \delta=1$ or equivalently $\delta=0 \rightarrow a \cdot x > b$
- **Implementation**:
 - approximate by $\delta=0 \rightarrow a \cdot x \geq b + 0.001$
 - implement as $a \cdot x + \text{surplus}^*\delta \geq b + 0.001$
 - more precisely $a \cdot x \geq b + 0.001 + (m-0.001)^* \delta$ where m very negative
 - Requires $a \cdot x \geq b + m$ always, so set m to lower bound on $a \cdot x - b$
Logical control of real-valued constraints

- If some inequalities hold, want to enforce others too.
- ZIMPL doesn’t (yet?) let us write
 - subto foo: \((a.x \leq b \text{ and } c.x \leq d) \rightarrow (e.x \leq f \text{ or } g.x \leq h)\)
 but we can manually link these inequalities to binary variables:
 - \(a.x \leq b \rightarrow \delta_1\) implement as on bottom half of previous slide
 - \(c.x \leq d \rightarrow \delta_2\) implement as on bottom half of previous slide
 - \((\delta_1 \text{ and } \delta_2) \rightarrow \delta_3\) implement as \(\delta_3 \geq \delta_1 + \delta_2 - 1\)
 - \(\delta_3 \rightarrow (\delta_4 \text{ or } \delta_5)\) implement as \(\delta_3 \leq \delta_4 + \delta_5\)
 - \(\delta_4 \rightarrow e.x \leq f\) implement as on top half of previous slide
 - \(\delta_5 \rightarrow g.x \leq h\) implement as on top half of previous slide

- Partial shortcut in ZIMPL using “vif ... then ... else .. end” construction:
 - subto foo1: vif \((\delta_1==0)\) then \(a.x >= b+0.001\) end;
 - subto foo2: vif \((\delta_2==0)\) then \(c.x >= d+0.001\) end;
 - subto foo3: vif \(((\delta_1==1 \text{ and } \delta_2==1) \text{ and not } \((\delta_4==1 \text{ or } \delta_5==1))\) then \(\delta_1 \geq \delta_4 + 1\) end; # i.e., the “vif” condition is impossible
 - subto foo4: vif \((\delta_4==1)\) then \(e.x <= f\) end;
 - subto foo5: vif \((\delta_5==1)\) then \(g.x <= h\) end;
Integer programming beyond 0-1:
N-Queens Problem

- param queens := 8;
- set C := {1 .. queens};
- var row[C] integer >= 1 <= queens;

- set Pairs := {<i,j> in C*C with i < j};
- subto alldifferent: forall <i,j> in Pairs: row[i] != row[j];
- subto nodiagonal: forall <i,j> in Pairs: vabs(row[i]-row[j]) != j-i;
- # no line saying what to maximize or minimize

Instead of writing \(x \neq y \) in ZIMPL, or \((x-y) \neq 0\),
need to write \(vabs(x-y) \geq 1 \). (if \(x,y \) integer; what if they’re real?)
This is equivalent to \(v \geq 1 \) where \(v \) is forced (how?) to equal \(|x-y|\).

\(- v \geq x-y, v \geq y-x, \) and add \(v \) to the minimization objective.

No, can’t be right def of \(v \): LP alone can’t define non-convex feasible region.
And it is wrong: this encoding will allow \(x=y \) and just choose \(v=1 \) anyway!
Correct solution: use ILP. Binary var \(\delta \), with \(\delta=0 \rightarrow v=x-y, \delta=1 \rightarrow v=y-x. \)
Or more simply, eliminate \(v \): \(\delta=0 \rightarrow x-y \geq 1, \delta=1 \rightarrow y-x \geq 1. \)
Integer programming beyond 0-1: Allocating Indivisible Objects

- **Airline scheduling**
 (can’t take a fractional number of passengers)

- **Job shop scheduling** (like homework 2)
 (from a set of identical jobs, each machine takes an integer #)

- **Knapsack problems** (like homework 4)

- **Others?**
Harder Real-World Examples of LP/ILP/MIP
Unsupervised Learning of a Part-of-Speech Tagger

- based on Ravi & Knight 2009
Part-of-speech tagging

Input: the lead paint is unsafe
Output: the/Det lead/N paint/N is/V unsafe/Adj

- Partly supervised learning:
 - You have a lot of text (without tags)
 - You have a dictionary giving possible tags for each word
What Should We Look At?

correct tags

<table>
<thead>
<tr>
<th>PN</th>
<th>Verb</th>
<th>Det</th>
<th>Noun</th>
<th>Prep</th>
<th>Noun</th>
<th>Prep</th>
<th>Det</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>directed</td>
<td>a</td>
<td>cortege of autos</td>
<td>through the dunes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PN</th>
<th>Adj</th>
<th>Det</th>
<th>Noun</th>
<th>Prep</th>
<th>Noun</th>
<th>Prep</th>
<th>Det</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb</td>
<td>Verb</td>
<td>Noun</td>
<td>Verb</td>
<td>Adj</td>
<td>Prep</td>
<td>each word (maybe more)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each unknown tag is **constrained** by its word and by the tags to its immediate left and right. But those tags are unknown too ...
What Should We Look At?

correct tags

PN Verb Det Noun Prep Noun Prep Det Noun

Bill directed a cortege of autos through the dunes

PN Adj Det Noun Prep Noun Prep Det Noun

Verb Verb Noun Verb

Adj

Prep

...?

Each unknown tag is **constrained** by its word and by the tags to its immediate left and right. But those tags are unknown too ...
What Should We Look At?

correct tags

Bill directed a cortege of autos through the dunes

Each unknown tag is *constrained* by its word and by the tags to its immediate left and right. But those tags are unknown too ...
Unsupervised Learning of a Part-of-Speech Tagger

- Given k tags (Noun, Verb, ...)
- Given a dictionary of m word types (aardvark, abacus, ...)
- Given some text: n word tokens (The aardvark jumps over...)
- Want to pick: n tags (Det Noun Verb Prep..)

- Encoding as variables?
- How to inject some knowledge about types and tokens?
- Constraints and objective?
 - Few tags allowed per word
 - Few 2-tag sequences allowed (e.g., “Det Det” is bad)
 - Tags may be correlated with one another, or with word endings
Minimum spanning tree ++

- based on Martins et al. 2009
Traveling Salesperson

- Version with subtour elimination constraints
- Version with auxiliary variables