Building Finite-State Machines
Xerox Finite-State Tool

- You’ll use it for homework ...
- Commercial (we have license; open-source clone is Foma)
 - One of several finite-state toolkits available
 - This one is easiest to use but doesn’t have probabilities
- Usage:
 - Enter a regular expression; it builds FSA or FST
 - Now type in input string
 - FSA: It tells you whether it’s accepted
 - FST: It tells you all the output strings (if any)
 - Can also invert FST to let you map outputs to inputs
 - Could hook it up to other NLP tools that need finite-state processing of their input or output
Common Regular Expression Operators (in XFST notation)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>concatenation</td>
<td>EF</td>
</tr>
<tr>
<td>iteration</td>
<td>E*, E+</td>
</tr>
<tr>
<td>union</td>
<td>E</td>
</tr>
<tr>
<td>intersection</td>
<td>E & F</td>
</tr>
<tr>
<td>complementation, minus</td>
<td>~E, \x, F-E</td>
</tr>
<tr>
<td>crossproduct</td>
<td>E .x. F</td>
</tr>
<tr>
<td>composition</td>
<td>E .o. F</td>
</tr>
<tr>
<td>upper (input) language</td>
<td>E.u “domain”</td>
</tr>
<tr>
<td>lower (output) language</td>
<td>E.l “range”</td>
</tr>
</tbody>
</table>
Common Regular Expression Operators (in XFST notation)

concatenation

\[EF = \{ ef: e \in E, f \in F \} \]

- \(ef \) denotes the concatenation of 2 strings.
- \(EF \) denotes the concatenation of 2 languages.
 - To pick a string in \(EF \), pick \(e \in E \) and \(f \in F \) and concatenate them.
 - To find out whether \(w \in EF \), look for at least one way to split \(w \) into two “halves,” \(w = ef \), such that \(e \in E \) and \(f \in F \).

A language is a set of strings.
It is a regular language if there exists an FSA that accepts all the strings in the language, and no other strings.
If \(E \) and \(F \) denote regular languages, than so does \(EF \).
(We will have to prove this by finding the FSA for \(EF \!\!\!\)!)
Common Regular Expression Operators (in XFST notation)

- **concatenation**: EF
- **iteration**: E*, E+

\[
E^* = \{ e_1 e_2 \ldots e_n : n \geq 0, \ e_1 \in E, \ldots \ e_n \in E \}
\]

- To pick a string in \(E^* \), pick any number of strings in \(E \) and concatenate them.
- To find out whether \(w \in E^* \), look for *at least one* way to split \(w \) into 0 or more sections, \(e_1 e_2 \ldots e_n \), all of which are in \(E \).

\[
E^+ = \{ e_1 e_2 \ldots e_n : n > 0, \ e_1 \in E, \ldots \ e_n \in E \} = E E^*
\]
Common Regular Expression Operators (in XFST notation)

- **concatenation** \(EF \)
- **iteration** \(E^*, E^+ \)
- **union** \(E \mid F \)

\[E \mid F = \{ w : w \in E \text{ or } w \in F \} = E \cup F \]

- To pick a string in \(E \mid F \), pick a string from either \(E \) or \(F \).
- To find out whether \(w \in E \mid F \), check whether \(w \in E \) or \(w \in F \).
Common Regular Expression Operators (in XFST notation)

- concatenation \(EF \)
- iteration \(E^*, E^+ \)
- union \(E \cup F \)
- intersection \(E \cap F \)

\[E \cap F = \{ w : w \in E \text{ and } w \in F \} = E \cap F \]

- To pick a string in \(E \cap F \), pick a string from \(E \) that is also in \(F \).
- To find out whether \(w \in E \cap F \), check whether \(w \in E \) and \(w \in F \).

600.465 - Intro to NLP - J. Eisner
Common Regular Expression Operators (in XFST notation)

concatenation EF
* + iteration E^*, E^+
| union $E \mid F$
& intersection $E \& F$
~ \ \ complementation, minus $\sim E, \setminus x, F-E$

$\sim E = \{e: e \notin E\} = \Sigma^* - E$

$E - F = \{e: e \in E \text{ and } e \notin F\} = E \& \sim F$

$\setminus E = \Sigma - E$ (any single character not in E)

Σ is set of all letters; so Σ^* is set of all strings
Regular Expressions

A **language** is a set of strings.

It is a **regular language** if there exists an FSA that accepts all the strings in the language, and no other strings.

If E and F denote regular languages, than so do EF, etc.

Regular expression: \(EF^*|(F & G)^+ \)

Syntax:

![Syntax Tree]

Semantics:

Denotes a regular language. As usual, can build semantics compositionally bottom-up.

\(E, F, G \) must be regular languages. As a base case, \(e \) denotes \{e\} (a language containing a single string), so \(ef^*|(f&g)^+ \) is regular.
Regular Expressions for Regular Relations

A **language** is a set of strings.
It is a **regular language** if there exists an FSA that accepts all the strings in the language, and no other strings.
If E and F denote regular languages, than so do EF, etc.

A **relation** is a set of pairs – here, pairs of strings.
It is a **regular relation** if there exists an FST that accepts all the pairs in the language, and no other pairs.
If E and F denote regular relations, then so do EF, etc.

\[EF = \{(ef, e'f') : (e, e') \in E, (f, f') \in F\} \]

Can you guess the definitions for \(E^* \), \(E^+ \), \(E \mid F \), \(E \& F \) when E and F are regular relations?

Surprise: \(E \& F \) isn’t necessarily regular in the case of relations; so not supported.
Common Regular Expression Operators (in XFST notation)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>concatenation</td>
<td>EF</td>
</tr>
<tr>
<td>*</td>
<td>E*</td>
</tr>
<tr>
<td>+</td>
<td>E+</td>
</tr>
<tr>
<td>iteration</td>
<td>E*, E+</td>
</tr>
<tr>
<td>union</td>
<td>E</td>
</tr>
<tr>
<td>intersection</td>
<td>E & F</td>
</tr>
<tr>
<td>~ \ -</td>
<td>~E, \x, F-E</td>
</tr>
<tr>
<td>complementation, minus</td>
<td>E \ F</td>
</tr>
<tr>
<td>.x.</td>
<td>E .x. F</td>
</tr>
</tbody>
</table>

\[
E .x. F = \{(e,f): e \in E, f \in F\}
\]

- Combines two regular languages into a regular relation.
Common Regular Expression Operators (in XFST notation)

- **concatenation** EF
- **iteration** E^*, E^+
- **union** $E \mid F$
- **intersection** $E \& F$
- **complementation, minus** $\sim E, \setminus x, F-E$
- **crossproduct** $E \cdot x \cdot F$
- **composition** $E \cdot o \cdot F$

$E \cdot o \cdot F = \{(e,f): \exists m. (e,m) \in E, (m,f) \in F\}$

- Composes two regular relations into a regular relation.
- As we’ve seen, this generalizes ordinary function composition.
Common Regular Expression Operators (in XFST notation)

- **concatenation** \(EF \)
- **iteration** \(E^*, E^+ \)
- **union** \(E | F \)
- **intersection** \(E \& F \)
- **complementation, minus** \(\sim E, \setminus x, F-E \)
- **crossproduct** \(E \times F \)
- **composition** \(E \circ F \)
- **upper (input) language** \(E.u \) “domain”

\[
E.u = \{ e : \exists m. (e,m) \in E \}
\]
Common Regular Expression Operators (in XFST notation)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concatenation</td>
<td>EF</td>
<td></td>
</tr>
<tr>
<td>Iteration</td>
<td>E*, E+</td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Intersection</td>
<td>E & F</td>
<td></td>
</tr>
<tr>
<td>Complementation, minus</td>
<td>~E, \x, F-E</td>
<td></td>
</tr>
<tr>
<td>Crossproduct</td>
<td>E .x. F</td>
<td></td>
</tr>
<tr>
<td>Composition</td>
<td>E .o. F</td>
<td></td>
</tr>
<tr>
<td>Upper (input) language</td>
<td>E.u</td>
<td>“domain”</td>
</tr>
<tr>
<td>Lower (output) language</td>
<td>E.l</td>
<td>“range”</td>
</tr>
</tbody>
</table>
Function from strings to ...

Acceptors (FSAs)

Unweighted

- a
- c
- ε

- numbers
- a/.5
- c/.7
- ε/.5

Weighted

- {false, true}

- strings
- a:x
- c:z
- ε:γ

- (string, num) pairs
- a:x/.5
- c:z/.7
- ε:γ/.5

Transducers (FSTs)
Weighted Relations

- If we have a language [or relation], we can ask it: Do you contain this string [or string pair]?

- If we have a weighted language [or relation], we ask: What weight do you assign to this string [or string pair]?

- Pick a semiring: all our weights will be in that semiring.
 - Just as for parsing, this makes our formalism & algorithms general.
 - The unweighted case is the boolean semiring {true, false}.
 - If a string is not in the language, it has weight \circ.
 - If an FST or regular expression can choose among multiple ways to match, use \oplus to combine the weights of the different choices.
 - If an FST or regular expression matches by matching multiple substrings, use \otimes to combine those different matches.
 - Remember, \oplus is like “or” and \otimes is like “and”!
Which Semiring Operators are Needed?

- Concatenation: \(EF \)
- Iteration: \(E^*, E^+ \)
- Union: \(E \mid F \)
- Complementation, minus: \(\sim E, \setminus x, E-F \)
- Intersection: \(E \& F \)
- Crossproduct: \(E \times F \)
- Composition: \(E \circ F \)
- Upper (input) language: \(E.u \) “domain”
- Lower (output) language: \(E.l \) “range”
Common Regular Expression Operators (in XFST notation)

| union | \oplus to sum over 2 choices | $E | F$

$E | F = \{w: w \in E \text{ or } w \in F\} = E \cup F$

- Weighted case: Let’s write $E(w)$ to denote the weight of w in the weighted language E.

$$(E|F)(w) = E(w) \oplus F(w)$$
Which Semiring Operators are Needed?

- **concatenation** need both \oplus and \otimes
- **iteration** E^*, E^+
- **union** \oplus to sum over 2 choices $E \mid F$
- **complementation, minus** $\sim E, \setminus x, E-F$
- **intersection** \otimes to combine the matches against E and F $E \& F$
- **crossproduct** $E \times F$
- **composition** $E .o. F$
- **upper (input) language** $E.u$ “domain”
- **lower (output) language** $E.l$ “range”
Which Semiring Operators are Needed?

- concatenation
- + iteration

\[EF = \{ ef: e \in E, f \in F \} \]

- Weighted case must match two things (\(\otimes \)), but there's a choice (\(\oplus \)) about which two things:

\[(EF)(w) = \bigoplus_{e,f} (E(e) \otimes F(f)) \]

\(e,f \) such that \(w=ef \)
Which Semiring Operators are Needed?

- **concatenation**:
 - need both \oplus and \otimes
 - EF

- **iteration**:
 - E^*, E^+

- **union**:
 - $E \mid F$

- **complementation, minus**:
 - $\sim E, \setminus x, E-F$

- **intersection**:
 - $E \& F$

- **crossproduct**:
 - $E .x. F$

- **composition**:
 - both \oplus and \otimes (why?)
 - $E .o. F$

- **upper (input) language**:
 - $E.u$ “domain”

- **lower (output) language**:
 - $E.l$ “range”
Definition of FSTs

[Red material shows differences from FSAs.]

Simple view:
- An FST is simply a finite directed graph, with some labels.
- It has a designated initial state and a set of final states.
- Each edge is labeled with an “upper string” (in Σ^*).
- Each edge is also labeled with a “lower string” (in Δ^*).
- [Upper/lower are sometimes regarded as input/output.]
- Each edge and final state is also labeled with a semiring weight.

More traditional definition specifies an FST via these:
- a state set Q
- initial state i
- set of final states F
- input alphabet Σ (also define Σ^*, Σ^+, $\Sigma?$)
- output alphabet Δ
- transition function $d: Q \times \Sigma? \rightarrow 2^Q$
- output function $s: Q \times \Sigma? \times Q \rightarrow \Delta?$
How to implement?

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concatenation</td>
<td>EF</td>
</tr>
<tr>
<td>Iteration</td>
<td>$E^* \text{, } E_+$</td>
</tr>
<tr>
<td>Union</td>
<td>$E \mid F$</td>
</tr>
<tr>
<td>Complementation</td>
<td>$\sim E \text{, } \setminus x \text{, } E-F$</td>
</tr>
<tr>
<td>Intersection</td>
<td>$E & F$</td>
</tr>
<tr>
<td>Crossproduct</td>
<td>$E \times F$</td>
</tr>
<tr>
<td>Composition</td>
<td>$E \circ F$</td>
</tr>
<tr>
<td>Upper (input)</td>
<td>$E.u$ “domain”</td>
</tr>
<tr>
<td>Lower (output)</td>
<td>$E.l$ “range”</td>
</tr>
</tbody>
</table>

slide courtesy of L. Karttunen (modified)
Concatenation

example courtesy of M. Mohri
Union

example courtesy of M. Mohri
Closure (this example has outputs too)

why add new start state 4?
why not just make state 0 final?
Upper language (domain)

similarly construct lower language \(l \)
also called input & output languages

example courtesy of M. Mohri
Reversal

\[\text{Example courtesy of M. Mohri} \]
Inversion

example courtesy of M. Mohri
Complementation

- Given a machine M, represent all strings \textit{not} accepted by M
- Just change final states to non-final and vice-versa
- Works only if machine has been determinized and completed first (why?)
Intersection

Example adapted from M. Mohri

\[
\begin{align*}
\text{fat}/0.5 \\
0 & \rightarrow \text{pig}/0.3 \\ & \rightarrow 1 \\ & \rightarrow \text{eats}/0 \\ & \rightarrow 2/0.8 \\
& \rightarrow \text{sleps}/0.6 \\
\text{pig}/0.4 & \rightarrow 0 \\
& \rightarrow \text{fat}/0.2 \\ & \rightarrow 1 \\ & \rightarrow \text{sleps}/1.3 \\ & \rightarrow 2/0.5 \\
& \rightarrow \text{eats}/0.6 \\
\& & \rightarrow \text{fat}/0.7 \\ & \rightarrow 0,0 \\ & \rightarrow 0,1 \\ & \rightarrow 1,1 \\ & \rightarrow 2,0/0.8 \\ & \rightarrow \text{eats}/0.6 \\ & \rightarrow 2,2/1.3 \\ & \rightarrow \text{sleps}/1.9
\end{align*}
\]
Intersection

Paths \texttt{0012} and \texttt{0110} both accept \texttt{fat pig eats}
So must the new machine: along path \texttt{0,0 0,1 1,1 2,0}
Intersection

Paths 00 and 01 both accept fat
So must the new machine: along path 0,0 0,1
Intersection

Paths 00 and 11 both accept pig
So must the new machine: along path 0,1 1,1
Intersection

Paths 12 and 12 both accept fat
So must the new machine: along path 1,1 2,2
Intersection

fat/0.5

pig/0.3

1

eats/0

2/0.8

sleeps/0.6

&

pig/0.4

fat/0.2

1

sleeps/1.3

2/0.5

eats/0.6

=

0,0

fat/0.7

0,1

pig/0.7

1,1

2,0/0.8

eats/0.6

sleeps/1.9

2,2/1.3
What Composition Means

ab?d → f → 3 → abcd → g → 4 → αβγδ

2 → abed → 2 → αβεδ
6 → abjd → 8 → αβ∈δ

...
What Composition Means

Relation composition: $f \circ g$

$ab?d \rightarrow 3+4 \alpha\beta\gamma\delta$

$2+2 \alpha\beta\epsilon\delta$

$6+8 \alpha\beta\in\delta$

...
Relation = set of pairs

\{ ab?d \rightarrow abcd, ab?d \rightarrow abed, ab?d \rightarrow abjd \}

\{ abcd \rightarrow \alpha\beta\gamma\delta, abed \rightarrow \alpha\beta\varepsilon\delta, abed \rightarrow \alpha\beta\in\delta \}

\text{does not contain any pair of the form } abjd \rightarrow ...
Relation = set of pairs

Relation = set of pairs

\[\begin{align*}
\text{Relation} &= \text{set of pairs} \\
\{ \begin{align*}
\text{ab?d} &\rightarrow \text{abcd} \\
\text{ab?d} &\rightarrow \text{abed} \\
\text{ab?d} &\rightarrow \text{abjd} \\
\end{align*} \right\} \\
\{ \begin{align*}
\text{abcd} &\rightarrow \alpha\beta\gamma\delta \\
\text{abed} &\rightarrow \alpha\beta\varepsilon\delta \\
\text{abed} &\rightarrow \alpha\beta\in\delta \\
\end{align*} \right\} \\
\end{align*} \]

\[f \circ g = \{ x \rightarrow z : \exists y \ (x \rightarrow y \in f \text{ and } y \rightarrow z \in g) \} \]

where \(x, y, z \) are strings
Intersection vs. Composition

Intersection

\[\begin{align*}
0 \xrightarrow{\text{pig}/0.3} 1 \quad \& \quad 1 \xrightarrow{\text{pig}/0.4} 1 \, = \, 0,1 \xrightarrow{\text{pig}/0.7} 1,1
\end{align*} \]

Composition

\[\begin{align*}
\text{Wilbur:} \, \text{pig}/0.3 \quad \& \quad \text{pig:} \, \text{pink}/0.4 \quad = \quad \text{Wilbur:} \, \text{pink}/0.7
\end{align*} \]
Intersection vs. Composition

Intersection mismatch

[Diagram showing Intersection mismatch with examples involving "pig" and "elephant"]

Composition mismatch

[Diagram showing Composition mismatch with examples involving "Wilbur: pig" and "Wilbur: gray"]
Composition

Example courtesy of M. Mohri
Composition

\[\text{graph} \]

\[a:b \cdot o \cdot b:b = a:b \]
Composition

\[\text{a:b \cdot o \cdot b:a} = \text{a:a} \]
Composition

\[\text{Composition} \]

\[a:b \odot b:a = a:a \]
Composition

\[b:b \cdot o \cdot b:a = b:a \]
Composition

\[\text{a:b .o. b:a} = \text{a:a} \]
Composition

\[a:a \cdot o \cdot a:b = a:b \]
Composition

\[\text{b:b .o. a:b} = \text{nothing} \]
(since intermediate symbol doesn’t match)
Composition

\[b:b \circ b:a = b:a \]
Composition

\[a:b \cdot o \cdot a:b = a:b \]
Relation = set of pairs

\[
\begin{align*}
\text{ab?d} & \rightarrow \text{abcd} \\
\text{ab?d} & \rightarrow \text{abed} \\
\text{ab?d} & \rightarrow \text{abjd} \\
\end{align*}
\]

\[
\begin{align*}
\text{abcd} & \rightarrow \alpha\beta\gamma\delta \\
\text{abed} & \rightarrow \alpha\beta\varepsilon\delta \\
\text{abed} & \rightarrow \alpha\beta \in \delta \\
\end{align*}
\]

\[
f \circ g = \{ x \rightarrow z : \exists y \ (x \rightarrow y \in f \text{ and } y \rightarrow z \in g) \}
\]

where \(x, y, z\) are strings.
Composition with Sets

- We’ve defined $A \cdot o \cdot B$ where both are FSTs
- Now extend definition to allow one to be a FSA
- Two relations (FSTs):
 $$A \circ B = \{x \rightarrow z: \exists y (x \rightarrow y \in A \text{ and } y \rightarrow z \in B)\}$$
- Set and relation:
 $$A \circ B = \{x \rightarrow z: x \in A \text{ and } x \rightarrow z \in B \}$$
- Relation and set:
 $$A \circ B = \{x \rightarrow z: x \rightarrow z \in A \text{ and } z \in B \}$$
- Two sets (acceptors) – same as intersection:
 $$A \circ B = \{x: x \in A \text{ and } x \in B \}$$
Composition and Coercion

- Really just treats a set as identity relation on set
 \{abc, pqr, ...\} = \{abc\rightarrow abc, pqr\rightarrow pqr, ...\}

- Two relations (FSTs):
 \[A \circ B = \{x\rightarrow z: \exists y (x\rightarrow y \in A \text{ and } y\rightarrow z \in B)\} \]

- Set and relation is now special case (if \(\exists y\) then \(y=x\)):
 \[A \circ B = \{x\rightarrow z: \quad x\rightarrow x \in A \text{ and } x\rightarrow z \in B \} \]

- Relation and set is now special case (if \(\exists y\) then \(y=z\)):
 \[A \circ B = \{x\rightarrow z: \quad x\rightarrow z \in A \text{ and } z\rightarrow z \in B \} \]

- Two sets (acceptors) is now special case:
 \[A \circ B = \{x\rightarrow x: \quad x\rightarrow x \in A \text{ and } x\rightarrow x \in B \} \]
3 Uses of Set Composition:

- **Feed string into Greek transducer:**
 - \{abed \rightarrow abed\} \cdot \text{Greek} = \{abed \rightarrow \alpha \beta \varepsilon \delta, abed \rightarrow \alpha \beta \varepsilon \delta\}
 - \{abed\} \cdot \text{Greek} = \{abed \rightarrow \alpha \beta \varepsilon \delta, abed \rightarrow \alpha \beta \varepsilon \delta\}
 - \{\{abed\} \cdot \text{Greek}\}.l = \{\alpha \beta \varepsilon \delta, \alpha \beta \varepsilon \delta\}

- **Feed several strings in parallel:**
 - \{abcd, abed\} \cdot \text{Greek} = \{abcd \rightarrow \alpha \beta \gamma \delta, abed \rightarrow \alpha \beta \varepsilon \delta, abed \rightarrow \alpha \beta \varepsilon \delta\}
 - \{\{abcd, abed\} \cdot \text{Greek}\}.l = \{\alpha \beta \gamma \delta, \alpha \beta \varepsilon \delta, \alpha \beta \varepsilon \delta\}

- **Filter result via Noε = \{\alpha \beta \gamma \delta, \alpha \beta \varepsilon \delta, \alpha \beta \varepsilon \delta, \ldots\}**
 - \{abcd, abed\} \cdot \text{Greek} \cdot \text{Noε} = \{abcd \rightarrow \alpha \beta \gamma \delta, abed \rightarrow \alpha \beta \varepsilon \delta\}
What are the “basic” transducers?

- The operations on the previous slides combine transducers into bigger ones.
- But where do we start?

- $a:\varepsilon$ for $a \in \Sigma$
- $\varepsilon:x$ for $x \in \Delta$

Q: Do we also need $a:x$? How about $\varepsilon:\varepsilon$?