Finite-State and the Noisy Channel
Word Segmentation

theprophetsaidtothecity

- What does this say?
 - And what other words are substrings?
- Could segment with parsing (how?), but slow.

- Given L = a “lexicon” FSA that matches all English words.
- How to apply to this problem?
- What if Lexicon is weighted?
- From unigrams to bigrams?
- Smooth L to include unseen words?
Spelling correction

- Spelling correction also needs a lexicon L
- But there is distortion ...
 - Let T be a transducer that models common typos and other spelling errors
 - $\text{ance} \rightarrow \text{ence}$ (deliverance, ...)
 - $e \rightarrow \varepsilon$ (deliverance, ...)
 - $\varepsilon \rightarrow e // \text{Cons} _ \text{Cons}$ (athlete, ...)
 - $rr \rightarrow r$ (embarrass occurrence, ...)
 - $ge \rightarrow dge$ (privilege, ...)
 - etc.
 - Now what can you do with $L \cdot o \cdot T$?
 - Should T and L have probabilities?
 - Want T to include “all possible” errors ...
Noisy Channel Model

real language X

noisy channel $X \rightarrow Y$

yucky language Y

want to recover X from Y
Noisy Channel Model

real language X

noisy channel $X \rightarrow Y$

yucky language Y

want to recover X from Y
Noisy Channel Model

real language X

noisy channel $X \rightarrow Y$

yucky language Y

(lexicon space)*
delete spaces
text w/o spaces

want to recover X from Y
Noisy Channel Model

real language \(X \)

language model

noisy channel \(X \rightarrow Y \)

acoustic model

yucky language \(Y \)

(lexicon space)*

pronunciation

speech

want to recover \(X \) from \(Y \)
Noisy Channel Model

real language X

probabilistic CFG

noisy channel $X \rightarrow Y$

delete everything but terminals

tree
text

yucky language Y

want to recover X from Y
Noisy Channel Model

real language X

noisy channel $X \rightarrow Y$

yucky language Y

$p(X)$

$p(Y \mid X)$

$p(X,Y) = p(X,Y)$

want to recover $x \in X$ from $y \in Y$

choose x that maximizes $p(x \mid y)$ or equivalently $p(x,y)$
Noisy Channel Model

\[p(X) \]

\[* \]

\[p(Y \mid X) \]

\[= \]

\[p(X,Y) \]

Note \(p(x,y) \) sums to 1.

Suppose \(y=\text{“C”}; \) what is best “\(x \)?
Noisy Channel Model

Suppose y=“C”; what is best “x”?

\[
p(X) \ast p(Y | X) = p(X,Y)
\]
Noisy Channel Model

\[
p(X)
\] *

\[
p(Y \mid X)
\] *

\[(Y=y)\]?

\[
p(X, y)
\]
Morpheme Segmentation

- Let *Lexicon* be a machine that matches all Turkish words
 - Same problem as word segmentation
 - Just at a lower level: morpheme segmentation
 - Turkish word: `uygarlaştıramadıklarımızdan mış sınsınizcasına`
 = `uygar+laş+tır+ma+dık+ları+mız+dan+mış+sınız+ca+si+na`
 (behaving) as if you are among those whom we could not cause to become civilized
 - Some constraints on morpheme sequence: bigram probs
 - Generative model – concatenate then fix up joints
 - stop + -ing = stopping, fly + -s = flies, vowel harmony
 - Use a cascade of transducers to handle all the fixups
 - But this is just morphology!
 - Can use probabilities here too (but people often don’t)
Edit Distance Transducer

- \(O(k)\) deletion arcs
- \(O(k^2)\) substitution arcs
- \(O(k)\) insertion arcs
- \(O(k)\) no-change arcs
Stochastic Edit Distance Transducer

Likely edits = high-probability arcs
Stochastic Edit Distance Transducer

clara
.0.
a:b
ε:a
ε:b
b:a
ε:b
b:b
0.
caca

Best path (by Dijkstra’s algorithm)
Speech Recognition by FST Composition
(Pereira & Riley 1996)

trigram language model $p(\text{word seq})$

pronunciation model $p(\text{phone seq} | \text{word seq})$

acoustic model $p(\text{acoustics} | \text{phone seq})$

observed acoustics
Speech Recognition by FST Composition
(Pereira & Riley 1996)

trigram language model

\[p(\text{word seq}) \]

\[p(\text{phone seq} \mid \text{word seq}) \]

\[p(\text{acoustics} \mid \text{phone seq}) \]