CKY, recognizer version.

Input: string of n words.

Output: yes/no

Data structure: n x n table. Rows labeled 0 to n-1, columns labeled 1 to n. Cell (i, j) lists constituents found between i and j.

For each i from 1 to n:

- Add to (i-1, i) all categories allowed for the word between i-1 and i.

For width from 2 to n:

- For start from 0 to n-width:
 - Define end to be start + width
 - For mid from start + 1 to end - 1
 - For every constituent in (start, mid)
 - For every constituent in (mid, end)
 - For all ways of combining them (if any):
 - Add the resulting constituent (start, end) if it's not already there.
Earley's Algorithm (1970)

Nice combo of our previous ideas:
- incremental interpretation
- no restrictions on the form of the grammar
 \(A \to BC \) spoon \(D \) is a okay rule
 thanks to dotted rules
- \(O(n^3) \) worst case, but faster for
 many grammars
- uses left context and optionally right context
 to constrain search

Input: string of \(n \) words
Output: yes/no (i.e., recognizer, but can turn into parser)
Data Structure: columns 0 thru \(n \),
 corresponding to gaps between words
 column \(j \) is a list of entries like
 \((i, A \to X Y . Z W) \)
 meaning there could be an \(A \)
 starting at \(i \), and we have
 found the \(X Y \) part of it
 from \(i \) to \(j \).
Add \(\text{ROOT} \rightarrow .S \) to column 0.

For each \(j \) from 0 to \(n \):
- For each dotted rule in column \(j \), (including those we add as we go!), look at what's after the dot:
 - If it's a word \(w \), **SCAN**:
 - If \(w \) matches the input word between \(j \) and \(j+1 \), advance the dot and add the resulting rule to column \(j+1 \).
 - If it's a nonterminal \(X \), **PREDICT**:
 - Add all rules for \(X \) to the bottom of column \(j \), with the dot at the start: e.g., \(X \rightarrow .YZ \)
 - If there's nothing after the dot, **COMPLETE**:
 - We've finished some constituent \(A \) that started in column \(i < j \).
 - So for each rule in column \(i \) that has \(A \) after the dot:
 - Advance the dot and add the result to the bottom of column \(j \).

Output "yes" just if we have \(\text{ROOT} \rightarrow S \) in column \(n \).

Note: Don't add an entry to a column if it's already there!