
O
LD

VE
RS
IO
N

601.465/665 — Natural Language Processing

Homework 7: Finite-State Programming∗

Prof. Jason Eisner — Fall 2022
Due date: Friday 9 December, 11pm

This homework is a tutorial that walks you through some exercises in constructing finite-state machines.
All of the finite-state algorithms are provided for you via the OpenFST toolkit. Hence no conventional
programming will be needed, just regular expressions and command-line tools. You’ll construct a variety
of FSMs, primarily using the Thrax regular expression compiler and the Ngram utility for backoff language
modeling.

Homework goals: First, to get some experience in writing regular expressions for unweighted and weighted
languages and relations. Second, to get a feel for the range of problems that can be easily handled in this
declarative framework. After some intitial practice, you’ll get to try applying FSTs in various NLP situations,
some of which are new to you: syntactic chunking, pronunciations from a lexicon, language models, word
segmentation, character-level edit distance, and noisy-channel decoding.

Collaboration: You may work in pairs on this homework, as it is rather long: it may be more fun
to work through the exercises with a friend. That is, if you choose, you may collaborate with one partner
from the class, handing in a single homework with multiple names on it. However:

1. You are expected to do the work together, not divide it up: your solutions should emerge from collab-
orative real-time discussions with the whole group present.

2. Your README.pdf file should describe at the top what each of you contributed, so that we know you
shared the work fairly.

3. Your partner for homework 7 can’t be the same as your partner from homework 6 (tagging).
In any case, observe academic integrity and never claim any work by third parties as your own.

Reading: There is no separate reading this time. Instead, we’ll give you information and instructions as
you work through the homework.

What to hand in (via Gradescope): As usual, you should submit a README.pdf file with answers to all�
the questions in the text. We’ll also ask you to submit a .zip archive of all the grammar files you create:

File Questions Should contain

binary.grm 2, 3, First, Second, Disagreements, Triplets, NotPillars, Oddlets,

9 WFlip, WeightedMultipath

rewrite.grm 4, 5 Cross, BitFlip1, BitFlip2, Parity1, Parity2, Parity3, UnParity, Split

chunker.grm 6a NP, MakeNmod, TransformNP, BracketTransform, BracketResults

stress.grm 7 Stress (commented), StressWords
dactyls.grm 8d Results (modified)
rhyme.grm 8 Ending, WordEnding

noisy.grm 10, 11, 12 CompleteWord, DelSpaces, SpellText, Generate, RandomWord,

Spell (revised), PrintText (revised)

∗Many thanks to Frank Ferraro, who co-wrote this homework and wrote the accompanying scripts.

https://www.cs.jhu.edu/academic-programs/academic-integrity-code/

Software:

• OpenFST is a very efficient C++ toolkit for building and manipulating semiring-weighted FSMs.
You can use the C++ API to directly specify states, arcs, and weights, or to combine existing FSMs
through operations like union and composition. You can also store these FSMs in .fst files and
manipulate them with command-line utilities like fstunion and fstcompose.

A symbol table (.sym file, or part of some .fst files) specifies the integerized internal representation
of the upper or lower alphabet. E.g., the integers 1, 2, 3, . . . might internally represent the letters a,
b, c, . . . or perhaps the words aardvark, aback, abacus, OpenFST uses these integers to label
arcs in its data structures and file format (ε arcs are labeled with 0). It is only the symbol table that
reveals what a given FSM’s integer labels are supposed to mean.

However, we will not be using OpenFST directly (nor its Python interface, Pynini). Instead, we will use
two packages that provide a fairly friendly interface to OpenFST:

• Thrax is an extended regular expression language that you can use to define collections of finite-state
machines. A Thrax grammar can be created with any text editor and is stored in a .grm file. The
Thax compiler compiles this into a .far file—an “fst archive” that contains multiple named OpenFST
machines and symbol tables.

• Since regular expressions are not good at specifying the topology of n-gram models, there’s also the
NGram toolkit, which builds a n-gram backoff language model from a corpus. It supports many types
of smoothing. The resulting language model is represented as a weighted FSA in OpenFST format.

1. First, get set up!

(a) The nlp-class conda environment has been updated to include the OpenFST, Thrax, and
NGram packages. If you are running on your own machine rather than ugrad, then you should
get that update by typing

conda env update -f nlp-class.yml

using the latest version of nlp-class.yml from the course website.

(b) To view drawings of FSMs, download and install graphviz:
http://www.graphviz.org/Download.php

On Linux systems, you can just do sudo apt-get install graphviz.

(c) Download a copy of the homework directory hw-ofst, either from the ugrad network1 or the
web.2

(d) Look in the hw-ofst directory.1 Our scripts are in the bin subdirectory, which you should prob-
ably add to your PATH so that you can execute these scripts without saying where they live.
Run the following command3 (and maybe put it in your ~/.bashrc so that it will be executed
automatically next time you log in).

export PATH=${PATH}:/usr/local/data/cs465/hw-ofst/bin

1/usr/local/data/cs465/hw-ofst/. You can copy this directory to your local machine. Or just use it in place: we suggest
making a symlink to it in your working directory, to give yourself easy access to the files.

2http://cs.jhu.edu/~jason/465/hw-ofst
3This command assumes you’re using the nice bash shell. If it doesn’t work, switch shells (temporarily by typing bash or

permanently by typing chsh). Or if you really want to keep using tcsh, modify the command accordingly.

2

http://www.openfst.org/twiki/bin/view/GRM/PyniniDownload
https://www.cs.jhu.edu/~jason/465/hw-ofst/nlp-class.yml
http://www.graphviz.org/Download.php
http://cs.jhu.edu/~jason/465/hw-ofst

(e) We’ve given you a script grmtest to help streamline the compilation and testing of Thrax code.
Its usage is:

grmtest <grm file> <transducer_name> [max number output lines]

This script compiles the specified .grm file into a .far file (using a makefile produced by thraxmakedep),
and then passes the standard input through the input through the exported FST named by
<transducer_name>. You’ll get to try it out below.4

Warning: If the output string is the empty string ε, then for some reason grmtest skips printing
it. This seems to be a bug in thraxrewritetester, which grmtest calls. Just be aware of it.

2. Now get to know Thrax. We highly recommend looking through the online manual5 and perhaps the
commented examples that come with Thrax.6 The following tutorial leads you through some of the
basic FSM operations you can do in Thrax.

(a) Let’s first define some simple FSMs over a binary alphabet. Type the following declarations into
a new file binary.grm.

Zero = "0";

One = "1";

Bit = Zero | One;

export First = Optimize[Zero Zero* Bit* One One One One?];

This defines four named FSMs using Thrax’s regular expression syntax.7 Each definition ends in
a semicolon. The first and second FSMs accept only the strings 0 and 1, respectively. The third
defines our entire alphabet, and hence accepts either 0 or 1. The fourth accepts some subset of
Bit∗.
We can compile this collection of named FSMs into a fst archive (a “.far file”). More precisely,
the archive provides only the FSMs that have been marked with an export declaration; so here
Zero, One, and Bit are just intermediate variables that help define the exported FSM First.

i. Try compiling and running it using our grmtest script:

$ grmtest binary.grm First

[compiler messages appear here]

Input string: [type your input here]

The FSA First is interpreted as the identity FST on the corresponding language. So entering
an input string will transduce it to itself if it is in that language, and otherwise will fail to
transduce. Type Ctrl-D to quit.
You’ll get an error if you try running grmtest binary.grm Zero, because Zero wasn’t ex-
ported.

ii. What language does First accept (describe it in English)? Why are 0 and 1 quoted in the�1

4It will help to have a good shell such as bash that lets you recall and edit previous command lines. It will also help to have
a good terminal program that lets you scroll up to see earlier parts of the input. gnome-terminal does this, as does the Emacs
shell mode (ESC x shell).

5http://www.openfst.org/twiki/bin/view/GRM/ThraxQuickTour
6/usr/local/share/thrax/grammars/ on the ugrad or grad machines.
7Whereas XFST defines many special infix operators, Thrax instead writes most operators (and all user-defined functions)

using the standard form Function[arguments]. Thrax uses square brackets [] for these function calls, and parentheses () for
grouping. Optionality is denoted with ? and composition with @. There is apparently no way to write a wildcard that means
“any symbol”—you need to define Sigma = "a"|"b"|"c"|... and then you can use Sigma within other regular expressions.

3

http://www.openfst.org/twiki/bin/view/GRM/ThraxQuickTour#Standard Library Functions, Oper
http://www.openfst.org/twiki/bin/view/GRM/ThraxQuickTour

.grm file?

iii. Let’s get information about First. First, we need to extract the FSA First from the FST
archive:8

$ far2fst binary.far First

Now use the fstinfo shell command9 to analyze First.fst:

$ fstinfo First.fst

Look over this output: how many states are there? How many arcs?�2

iv. Optionally, look at a drawing of First (as an identity transducer over the alphabet {0, 1}):
$ fstview First.fst

Note that fstview is a wrapper script that we are providing for you.10 The picture will take
a few seconds to appear if the graphics pixels are being sent over a remote X connection.11

(b) Now let’s look at equivalent ways of describing the same language.

i. Can you find a more concise way of defining First’s language? Add it to binary.grm as a
new regexp Second, of the form

export Second = Optimize[...fill something in here...];

Run grmtest to check that First and Second seem to behave the same on some inputs.

ii. Here’s how to check that First and Second really act the same on all possible inputs—that
they define the same language:

export Disagreements = Optimize[(First - Second) | (Second - First)];

If First and Second are equivalent, then what strings should Disagreements accept?�3

To check that, run fstinfo on Disagreements.fst. From the output, can you conclude
that First and Second must be equivalent?�4

Note: The fstequal utility is another way to check:

if fstequal First.fst Second.fst; then echo same; else echo different; fi

One way to program fstequal would be to construct the Disagreements FSA.

(c) You might have wondered about those Optimize[...] functions. The Thrax documentation
notes that Optimize

. . . involves a combination of removing epsilon arcs, summing arc weights, and determinizing
and minimizing the machine . . . [Details are here.]

To find out what difference that made, make a new file binary-unopt.grm that is a copy of
binary.grm with the Optimize functions removed. Then try:

grmtest binary-unopt.grm First # and type Ctrl-D to exit

far2fst binary-unopt.far

fstview First.fst Second.fst Disagreements.fst

8Use far2fst binary.far to extract all exported FSTs, or far2fst binary.far First Second to extract multiple ones
that you specify.

9http://man.sourcentral.org/f14/1+fstinfo
10After printing fstinfo, it calls fstdraw to produce a logical description of the drawing, then makes the drawing using the

Graphviz package’s dot command, and finally displays the drawing using evince. Each of these commands has many tweakable
options. What if you’re running on your own machine and don’t have evince? Then edit the fstview script to use a different
PDF viewer such as xreader, atril, xpdf, or acroread.

11If you start getting “can’t open display” errors, then try connecting via ssh -Y instead of ssh -X. An alternative is to copy
the (small) .pdf file produced to your local machine and use your local PDF viewer.

4

http://www.openfst.org/twiki/bin/view/GRM/PyniniOptimizeDoc
http://man.sourcentral.org/f14/1+fstinfo

Questions:

i. Although First and Second may be equal, their unoptimized FSMs have different sizes and
different topologies, reflecting the different regular expressions that they were compiled from.
How big is each one?�5

ii. The drawing of the unoptimized Disagreements.fst shows that it immediately branches
at the start state into two separate sub-FSAs. Why? (Hint: Look back at the regexp that�6

defined Disagreements.)

iii. Now test some sample inputs with

grmtest binary-unopt.grm First

How are the results different from the optimized version? Why?�7

(d) You may not want to call Optimize on every machine or regular sub-expression. The documen-
tation offers the following warning:

When using composition, it is often a good idea to call Optimize[] on the arguments; some
compositions can be massively sped up via argument optimization. However, calling Optimize[]

across the board (which one can do via the flag --optimize all fsts) often results in redundant
work and can slow down compilation speeds on the whole. Judicious use of optimization is a bit
of a black art.

If you optimize Disagreements without first optimizing First and Second, what do you get and�8

why?

3. Now try some slightly harder examples. Extend your binary.grm to also export FSAs for the following
languages. (You are welcome to define helper FSAs beyond these.)

(a) Triplets: Binary strings where 1 only occurs in groups of three or more, such as 000000 and
0011100001110001111111.

(b) NotPillars: All binary strings except for even-length strings of 1’s: ε, 11, 1111, 111111,
11111111, . . . (These correspond to binary numbers of the form 22k − 1 written in standard
form.) Some strings that are in this language are 0, 1, 000011, 111, 0101, 011110.

(c) Oddlets: Binary strings where 1’s only appear in groups of odd length. Careful testing this one!
(Note that 0000 is in this language, because 1’s don’t appear in it at all.)

You will extend binary.grm further in question 9.

4. So far we have only constructed FSAs. But Thrax also allows FSTs. Create a new file rewrite.grm

in which you will define some FSTs for this question and the next question.

Complicated FSTs can be built up from simpler ones by concatenation, union, composition, and so
on. But where do you get some FSTs to start with? You need the built-in : operator:

input : output

which gives the cross-product of the input and output languages.

In addition, any FSA also behaves as the identity FST on its language.

Place the following definition into rewrite.grm:

5

export Cross = "a" (("b":"x")* | ("c"+ : "y"*) | ("":"fric")) "a";

Note that "" denotes the empty string ε.

(a) What is the input language of this relation (answer with an ordinary regexp)?�9

(b) Give inputs that are mapped by Cross to 0 outputs, 1 output, 2 outputs, and more than 2�10

outputs.

(c) How would you describe the Cross relation in English? (You do not have to hand in an answer
for this, but at least think about it.)

(d) Make an Optimized version of Cross and look at it with fstview. Is it consistent with your�11

answers above? How many states and arcs?

Check your answers by transducing some inputs, using the following commands:

grmtest rewrite.grm Cross

grmtest rewrite.grm Cross 3

The second version of the command limits the number of outputs that are printed for each input that
you enter.

5. If you have a simple FST, T, then you can make a more complicated one using context-dependent
rewriting. Thrax’s CDRewrite operator is similar to the -> operator in XFST. It applies T “every-
where it can” within the input string, until there are no unreplaced substrings that could have been
replaced. The following shows schematically how two substrings of might be replaced:

contains no
replaceable
substring︷ ︸︸ ︷

transduce
using T︷ ︸︸ ︷

contains no
replaceable
substring︷ ︸︸ ︷ transduce using T︷ ︸︸ ︷

contains no
replaceable
substring︷ ︸︸ ︷

︸ ︷︷ ︸
matches

Left

︸ ︷︷ ︸
matches input
language of T

︸ ︷︷ ︸
matches Right

︸ ︷︷ ︸
matches Left

︸ ︷︷ ︸
matches input
language of T

︸ ︷︷ ︸
matches
Right

The braces underneath the string show that each of the 2 replaced substrings appears in an appropriate
context—immediately between some substring that matches Left and some substring that matches
Right. The 2 replaced substrings are not allowed to overlap, but the contexts can overlap with the
replaced substrings and with one another, as shown in the picture.12

If you want to require that the maximal substring to the left matches Left, then start Left with the
special symbol [BOS], which can only match at the beginning of the string. Similarly for Right and
[EOS] (end of string).

12If you are wondering how this is accomplished, have a look at Mohri & Sproat (1996), section 3.1.

6

http://aclweb.org/anthology/P/P96/P96-1031.pdf

The above example shows only one way of dividing up the input string into regions that are transduced
by T and regions that are left alone. If there are other ways of dividing up this input string, then the
rewrite transducer will try them too—so it will map this input to multiple outputs.13

CDRewrite[T, Left, Right, Any, Dir, Force] specifies a rewrite transducer with arguments

• T : any FST

• Left, Right : unweighted FSAs describing the left and right contexts in which T should be
applied. They may contain the special symbols "[BOS]" and "[EOS]", respectively. (These
symbols are only to be used when describing contexts, as in these arguments to CDRewrite,
which interprets them specially. They do not appear in the symbol table.)

• Any : a minimized FSA for Σ∗, where Σ is the alphabet of input and output characters. The FST
produced by CDRewrite will only allow input or output strings that are in Any, so be carefu!l

• Dir : the direction of replacement.

– ’sim’ specifies “simultaneous transduction”: Left and Right are matched against the orig-
inal input string. So all the substrings to replace are identified first, and then they are all
transduced in parallel.

– ’ltr’ says to perform replacements “in left-to-right order.” A substring should be replaced
if Left matches its left context after any replacements to the left have been done, and Right

matches its right context before any replacements to the right have been done.

– ’rtl’ uses “right-to-left” order, the other way around.

• Force : how aggressive to be in replacement?

– ’obl’ (“obligatory,” like -> in XFST) says that the unreplaced regions may not contain any
more replaceable substrings, as illustrated above. That is, they may not contain a substring
that matches the input language of T and which falls between substrings that match Left

and Right.

– ’opt’ (“optional,” like (->) in XFST) says it’s okay to leave replaceable substrings unre-
placed. Since the rewrite transducer has the freedom to replace them or not, it typically has
even more outputs per input.

Define the following FSTs in your rewrite.grm, and test them out with grmtest:

(a) BitFlip1: Given a string of bits, changes every 1 to 0 and every 0 to 1. This is called the “1’s
complement” of the input string. Define this without using CDRewrite.

(b) BitFlip2: Like BitFlip1, but now it should work on any string of digits (e.g., transducing
1123401 to 0023410). Define this version using CDRewrite.

Hint: The Any argument in this case should be Digit* where

Bit = "0" | "1";

Digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

(c) Parity1: Transduces even binary numbers to 0 and odd binary numbers to 1. Write this one
without using CDRewrite.

It’s always good to think through the unusual cases. Some people think the empty string ε is a
valid binary number (representing 0), while others don’t. What does your transducer think?�12

13So there is no notion here of selecting the regions to transduce in some deterministic way, such as the left-to-right longest
match used by the XFST @-> operator.

7

(d) Parity2: Same thing as Parity1, but use the Reverse function in your definition. So start by
writing a tranducer that keeps the first bit of its input instead of the last bit.

(e) Parity3: Same thing as Parity1, but this use CDRewrite in your definition.

What does this transducer think about ε?�13

Hint: You may find it helpful to use [BOS] and [EOS], or the composition operator @.

(f) UnParity: Define this as Invert[Parity3]. What does it do?�14

(g) Split: Split up a binary string by nondeterministically inserting spaces into the middle, so that
input 0011 maps to the eight outputs

{0011, 001 1, 00 11, 00 1 1 , 0 011, 0 01 1, 0 0 11, 0 0 1 1}

Hint: Use CDRewrite["":" ",. . .] and figure out the other arguments.

(h) Extra credit: SplitThree: Similar to Split, but always splits the input string into exactly,15

three (nonempty) binary strings. This will produce multiple outputs for strings longer than 3
bits, and no outputs for strings shorter than 3 bits.

Hint: Compose Split with something else. The composition operator is @.

6. Bit strings are great, but let’s move on now to natural language. You know from Homework 1 that
precisely describing syntax can be challenging, and from Homework 4 that recovering the full parse of
a sentence can be slow. So, what if you just want a quick finite-state method for finding simple NPs in
a sentence? This could be useful for indexing text for search engines, or as a preprocessing step that
speeds up subsequent parsing. Or it could be part of a cascade of FSTs that do information extraction
(e.g., if you want to know who manufactures what in this world, you could scan the web for phrases
like “X manufactures Y ” where X and Y are NPs).

Identifying interesting substrings of a sentence is called “chunking.” It is simpler than parsing because
the “chunks” are not nested recursively. This tutorial question will lead you through building an FST
that does simple NP chunking.

We will assume that the input sentence has already been tagged (perhaps by a tagging FST, which
you could compose with this chunking FST). You’ll build the following objects:

• An FSA that accepts simple noun phrases: an optional determiner, followed by zero or more
adjectives Adj, followed by one or more nouns Noun. This will match a “base” NP such as the

ghastly orange tie, or Mexico—though not the recursive NP the ghastly orange tie from

Mexico that I never wear.

The regexp defining this FSA is a kind of simple grammar. To make things slightly more interest-
ing, we suppose that the input has two kinds of determiners: quantifiers (e.g., every) are tagged
with Quant whereas articles (e.g., the) are tagged with Art

• A transducer that matches exactly the same input as the previous regular expression, and outputs
a transformed version where non-final Noun tags are replaced by Nmod (“nominal modifier”) tags.
For example, it would map the input Adj Noun Noun Noun deterministically to Adj Nmod Nmod

Noun (as in delicious peanut butter filling). It would map the input Adj to no outputs at
all, since that input is not a noun phrase and therefore does not allow even one accepting path.

• A transducer that reads an arbitrary input string and outputs a single version where all the
maximal noun phrases (chosen greedily from left to right) have been transformed as above and
bracketed.

8

(a) You’ll be editing the provided file chunker.grm:

import ’byte.grm’ as bytelib;

import ’tags.grm’ as tags;

Sigma = (tags.Tags) | (bytelib.kBytes);

SigmaStar = Optimize[Sigma*];

Copy this file along with byte.grm and tags.grm from the grammars/ directory. Line 2 defines
tags to be the collection of FSMs that are exported by tags.grm. Expressions like tags.Tags

in line 3 then refer to individual FSMs in that collection. You should look at these other files
referenced by lines 1–2. Now:

i. Define an FSA NP that accepts an optional article (Art) or quantifier (Quant); followed by an
arbitrary number of adjectives (Adj); followed by at least one noun (Noun). We would like to
write:

export NP = Optimize[(Art|Quant)? Adj* Noun+];

What goes wrong? (Hint: look at importable FSMs from tags.) Fix the definition in�16

chunker.grm, and in your README, provide evidence of what you were able to accept.�17
You will use the fixed chunker.grm for the rest of this question.
(Note: Really we should be working over the alphabet of tags rather than the default alphabet
of ASCII characters. Later in the homework we’ll see how to define other alphabets using
symbol tables.)

ii. Have a look at NP:

far2fst chunker.far NP

fstview NP.fst

How many states and arcs are there? Comment on the structure of the machine.�18

(b) In a noun-noun compound, such as the old meat packing district, the nouns meat and
packing act as nominal modifiers. Define and try out a transducer MakeNmod, using CDRewrite,
that replaces Noun with Nmod immediately before any Noun. So ArtAdjNounNounNoun as in the
example becomes ArtAdjNmodNmodNoun.

To define MakeNmod, you’ll need to figure out what arguments to use to CDRewrite.

(c) Now define an FST

export TransformNP = Optimize[NP @ MakeNmod];

i. Describe in words what this composition is doing.�19

ii. What are the results on ArtAdjNounNounNoun and AdjNounNounNounVerb?�20

iii. What is the size of TransformNP compared to MakeNmod?�21
iv. How does the topology of TransformNP differ from that of NP?

�22

(d) This FST transduces a noun phrase to one that has <angle brackets> around it:

export BracketNP = ("" : "<") NP ("" : ">");

Here the NP language is being interpreted as the identity relation on that language, and concate-
nated with two other simple regular relations. So BracketNP reads ε, any NP, ε and writes <, the
same NP, >.

What, if anything, is the difference between the following?�23

9

export Brackets1 = Optimize[SigmaStar (BracketNP SigmaStar)*];

export Brackets2 = CDRewrite[BracketNP, "", "", SigmaStar,’sim’,’obl’];

Try them out on short and long strings, such as ArtAdj, AdjNoun,
and VerbArtAdjNounNounNounVerbPrepNoun.

(e) Now define BracketTransform to be like Brackets2, except that it should not only bracket noun
phrases but also apply the transformation defined by TransformNP within each noun phrase. This
should be a fairly simple change.

(f) One interesting thing about FSTs is that you can pass many strings through an FST at once.
Define BracketResults to be the regular language that you get by applying BracketTransform

to all strings of the form Quant Noun+ Verb at once.

(Hint: Check out the Project operator in the Thrax documentation.14 You may want to optimize
the result.

You can check the FSA by using fstview on BracketResults (note that it may be drawn as an
identity FST). To print out the strings it accepts (up to a limit), run grmtest on the cross-product
machine "":BracketResults, and enter an empty input string to see all the outputs.

(g) Extra credit: To get a sense of how CDRewrite might do its work, define your own version of
TransformNP that does not use CDRewrite. It should be a composition of three FSTs:

• Optionally replace each Noun with Nmod, without using CDRewrite. This will transduce a
single input to many outputs.

• Check that no Noun is followed by another Noun or Nmod. This filters outputs where you
didn’t replace enough nouns.

• Check that every Nmod is followed by a Noun or another Nmod. This filters outputs where
you replaced too many nouns. (Hint: It is similar to the XFST “restrict” operator that we
defined in class.)

Call your version TransformNP2.,24

7. Let’s learn a little bit about pronunciation, which will require some trickier rewriting. We will define

import ’byte.grm’ as bytelib; # copy it from grammars/byte.grm

Letter = bytelib.kAlpha; # kAlpha is defined in byte.grm

Sigma = Letter | "’"; # alphabet also includes stress mark

Vowel = "a" | "e" | "i" | "o" | "u" | "A" | "E" | "I" | "O" | "U";

Consonant = Letter - Vowel;

Nucleus = Vowel+;

Syllables have the form Consonant* Nucleus Consonant*. The word roundabout consists of three
syllables, round-a-bout, whose nuclei are ou, a, ou.

For this problem, we won’t have to worry about the complete rules for dividing a word into syllables
(e.g., why did the letters nd both belong to the first syllable of roundabout?). We will only care about

14This operator is used to “project” a relation onto the upper or lower language, like the .u and .l operators in XFST. Why
is that called projection? Consider a set of points on the plane: {(x1, y1), (x2, y2), . . .}. The projection of this set onto the x
axis is {x1, x2 . . .} and the projection onto the y axis is {y1, y2 . . .}. Same thing when projecting a regular relation, except that
each (xi, yi) pair is a pair of strings.

10

the nuclei. Let’s assume for this problem that adjacent vowels always belong to the same nucleus, as
in roundabout or tree. (This is an oversimplification since in truth, adjacent vowels are sometimes
the nuclei of adjacent syllables, as in cadmium or pancreatic.)

A conceptual flaw in the definitions above is that vowels are actually sounds, not letters. In English,
spelling is complicated: a letter does not reliably stand for a particular sound. The rules above will
therefore not find enough nuclei in happy or rhythm, and it will find too many in borehole. But let’s
pretend that they’re right.

Most spoken languages use both stressed and unstressed syllables. Stressed (or “accented”) syllables
tend to pronounce their nuclei louder and longer than adjacent unstressed syllables. Also, when the
intonation system assigns a “melody” to a sentence, it places the most emphatic high and low pitches
onto stressed syllables.

Stressed and unstressed syllables tend to roughly alternate with each other, but the exact pattern
depends on the language. We explain the pattern in a language by saying that stress is mostly
assigned by rules—which we can write as FSTs. A first approximation to the English stress system is
this:15

Visit the nuclei from left to right. Add stress to a nucleus if (1) it is not stressed yet, and (2)
we did not just visit a stressed nucleus, and (3) we are about to visit an unstressed nucleus.

Read those rules carefully! Here are some results of applying them. We indicate stress by placing the
mark ’ before the nucleus. (Try saying the words aloud.)

(2 syllables) m’ountain spl’endid

(3 syllables) c’annonball r’oundabout

(4 syllables) M’issis’ippi p’arab’olic

(5 syllables) ’oper’ational ’ophthalm’ology

(6 syllables) t’inntinn’abul’ation ’incomm’unic’ado

A final step makes sure that 1-syllable words are stressed:16

(4) Add a stress if there isn’t one anywhere in the word.

(1 syllable) j’ump t’oad

Now, many words might not seem to fit the pattern (say them aloud):

(2 syllables) contr’ol destr’oy

(3 syllables) c’abar’et sem’antics

(4 syllables) K’alamaz’oo carn’ivorous

(5 syllables) p’eripat’etic ev’apor’ating

But these exceptions still partly fit the pattern. We can describe them by saying that the underlined
stress marks ’ were already present in the lexicon—that is, an English speaker had memorized that
those syllables had to be stressed. Any remaining stress marks were still filled in automatically by

15This is not the whole story. Things get more complicated because of morphology. In a compound word like bl’ackb’oard,
f’antasyl’and, or v’ideot’aping, the rules apply to the two halves separately. Certain prefixes and suffixes similarly act as
if they were separate words. Other suffixes cause the syllable before them to be stressed. Other prefixes and suffixes are glued
onto a word after its stress has been assigned, but then the rules are applied again to possibly fill in additional stresses on the
new, compound word.

16There are exceptions for little function words such as the, a, of, with. We’ll ignore that here.

11

applying the rules above. Notice that the nucleus before ’ never gets stressed by the rules, because of
condition (3).

(a) Copy grammars/stress.grm into your working directory. Add a definition of an FST Stress

that adds stress marks according to the rules above. The input may or may not contain some
lexical stress marks. For example, it should map operational to ’oper’ational and either
Kalamaz’oo or K’alamaz’oo to K’alamaz’oo. Comment your Thrax code to explain how you
are solving the problem!

Your Stress transducer is really quite supercalifragilisticexpialidocious,17 and you can have
some fun trying it out on additional words. You will also find it interesting to view the FST.
The drawing may be frighteningly large at first, but to make it small and comprehensible, use
Optimize and try shrinking the alphabet to just one vowel and one consonant, by viewing
Optimize[("a"|"b")* @ Stress] instead.

Hint on how to define Stress: Use a single CDRewrite with the ’ltr’ option to implement
(1)–(3). Once you’ve got that working, compose with a separate step that handles (4). The
hardest part is (2), and there are several ways to solve it. You can try to translate the English
statement directly into a regular expression, or you can come up with an equivalent description.
One strategy is to use an FST to massage the input string into something easier to work with,
perhaps by marking the starts of nuclei, or prepending an extra syllable so that you don’t have
to worry about [BOS]; you’d later delete this extra material with another FST.

(b) Run the transducer backwards using Invert[Stress]. What possible inputs from the lexicon�25

could give rise to the observed pronunciation ev’apor’ating? How about ’incomm’unic’ado?

(c) Now that you can assign stress to a word, try assigning stress to a sentence. The domain of
Stress is Sigma* (where Sigma = Letter | "’"). Make a new transducer that will replace all
words in a sentence with their stressed forms:

export StressWords = CDRewrite[Stress, ...];

StressWords needs to use the larger alphabet bytelib.kBytes, which consists of all characters
including spaces and punctuation.

Note: This problem would be easier with directed replacement, but Thrax doesn’t have that yet.
It’s still not too hard.

(d) Extra credit: Make an improved FST Stressy that is like Stress but properly handles the,26

letter y (including Y), which is sometimes a vowel. You will have to look at examples of words
containing y to figure out a rule for when it is and isn’t a vowel. An obscure example is the city
of Ypsilanti (where it’s a vowel).

You may want to transduce the input so that y is split into two symbols (perhaps y for consonant
and ^ for vowel), and similarly Y; then use your old Stress; then convert the y’s back again.

Explain in your README what your rule is, and comment your stress.grm code, of course.

8. Now let’s make a rhyming dictionary. Two words rhyme if they have the same “rhyming endings.”
The rhyming ending of a word is the suffix that starts with its last stressed nucleus.

In this problem (unlike the Stress problem) we are really going to work with sound rather than
spelling. flight, contrite, and perhaps leukocyte all rhyme because they all have the same ending,

17Although for reasons discussed earlier, maybe you should spell that as “. . . expiyala. . . ”

12

which sounds like ’ite. However, they do not rhyme with bauxite or Semite, whose endings sounds
like ’auxite and ’emite. The difference is that they have stress on the next-to-last nucleus rather than
the last nucleus.

(a) The flight vs. site examples above demonstrated that words can rhyme even when they spell
their endings differently. Conversely, can you give an example of words that don’t rhyme even�27

when they spell their endings the same way?

We will represent the pronunciation of a word as a sequence of phonemes, where a phoneme represents
an indivisible unit of “meaningful” sound. The government agency ARPA18 defined an ASCII text
notation for English phonemes, known as the “ARPAbet.” You can look at the ARPAbet symbol table
in symbol tables/arpabet.sym. Each symbol in the left column is designed to represent an English
phoneme.19

But how do we map from English orthography (spelling) to phonemes? Rather than write a complicated
FST, we’ll just look it up in the CMU pronunciation dictionary: data/cmudict.txt.20 Take a look at
this two-column, tab-separated file:

academic AE2 K AH0 D EH1 M IH0 K

academy AH0 K AE1 D AH0 M IY0

...

Below we’ll use the StringFile function, which creates a finite relation from a file like this one. Each
line of the file has the format

input string <tab character> output string

and the relation (FST) is the union of all these input : output pairs. In this case, each input is an
English word and the output is its pronunciation. Notice again that there’s not a simple mapping
between letters and phonemes. There can be more letters than phonemes, one letter can map to many
phonemes, and many letters can map to one phoneme. There are some errors in the file, but it’s pretty
good and let’s assume it’s correct.

Each vowel includes a stress level: 0 for unstressed syllables, and 1 or 2 for stressed syllables, where 1

indicates the most strongly stressed syllable in the word.

(b) The words academic and academy contain four tokens of the letter a. How many of these are
pronounced differently? You do not have to hand in a written answer for this, but think carefully
about it. (Say the words repeatedly, focusing on what your tongue and mouth are doing. Is the
tip of the tongue near the top or bottom of your mouth? How open is your mouth? What’s
happening with your lips? Are they pulled back, or relaxed?)

(c) Warmup: The following Thrax grammar, grammars/dactyls.grm, illustrates a very useful way
to define regular languages with the help of regular relations. What regular language is defined�28

by Results below? Why?

18The Defense Advanced Projects Research Agency, now known as DARPA.
19Technically speaking, the ARPAbet vowel symbols represent entire nuclei, which may consist of 1 or 2 phonemes in English.

For example, the nucleus of bite is technically a pair of vowels (roughly, “ah” morphing into “ee”—try saying bite very slowly
if you don’t believe this!), but the ARPAbet represents this diphthong with the single symbol AY.

20The smaller version in data/cmumini.txt may be faster for getting your code working.

13

import ’byte.grm’ as bytelib;

Sigma = bytelib.kGraph | bytelib.kSpace;

Pronounce = StringFile[’data/cmudict.txt’];

StressPattern = CDRewrite[(Sigma-bytelib.kDigit) : "", "","",Sigma*,’sim’,’obl’];

Dacytl = ("1" | "2") "0" "0"; # what’s a dactyl? look it up!

export Results = Optimize[Project[Pronounce @ StressPattern @ (Dacytl*), ’input’]];

export ListResults = "" : Results;

Hint: You can see lots of strings from the Results language by running

grmtest dactyls.grm ListResults 100000

and giving the empty input string.

Hint: The general technique illustrated here is to say that x is in our language L iff a conveniently
modified version of x—as transduced by T—would fall in some other language L′ that is easier
to define. We then throw away that result of the tranduction as well as T and L′. We don’t care
about them for their own sake, only as helpers in defining L:

L
def
= {x : T (x) ∩ L′ 6= ∅}

This type of definition is not available in standard Unix regular expression syntax, which doesn’t
support transduction.

The previous grammar was a bit silly (and slow to compile), because it treated the pronunciation AE2

K AH0 D EH1 M IH0 K as a sequence of 23 bytes (ASCII characters), including spaces. We really want
to treat it as a sequence of 8 phonemes.

This should be possible because regular relations are just subsets of of Σ∗ ×∆∗, where Σ and ∆ are
the input and output alphabets. (This generalizes functions from Σ∗ → ∆∗.) Here, we would like to
define a new ∆, namely the ARPAbet.

OpenFST defines a new alphabet using a “symbol table.” The ARPAbet is defined in
symbol tables/arpabet.sym, which defines the ARPAbet phonemes to be the integers 1 through 70
(internally, just as ASCII characters are 1 through 255) and gives them string names for I/O purposes.

When Thrax encounters a string like AE2 K AH0 D EH1 M IH0 K, you need to tell it whether to inter-
pret that string as describing a sequence of ASCII characters (“byte mode”), a sequence of Unicode
characters (“utf8 mode”), or a sequence of symbols from some other specified alphabet (“symbol
mode”). It may encounter such strings in three settings:

• in a .txt file (like cmudict.txt) Specify mode with extra arguments to StringFile.

• in a .grm file (between double quotes) Specify mode using a modifier on the quoted string.

• in the input you enter into grmtest Use grmtest-with-symbols and specify the mode via ex-
tra command-line arguments. These are passed on to
thraxrewrite-tester.

(d) Modify your copy of dactyls.grm to accomplish the same thing as before, but using the actual
ARPAbet alphabet. You will need to do

14

arpa = SymbolTable[’arpabet.sym’];

PronounceArpa = StringFile[’data/cmudict.txt’, byte, arpa];

so that the second column of cmudict.txt will be parsed using arpabet.sym. You will also find
it useful to do

import ’arpabet.grm’ as arpabet;

so that you can use regexps defined therein, such as arpabet.Stressed. You’ll notice when
reading arpabet.grm that quoted strings over that alphabet must be followed by .arpa. You will
have to do the same in your grammar, even in the case of the empty string of phonemes, which is
written as "".arpa and has a different type (in the sense of programming language types) from
the empty string of bytes "".

Now it’s time to make our rhyming dictionary.

(e) Create a new file rhyme.grm. Start by include some definitions from the previous question, such
as arpa, Pronounce (the second version), and arpabet.

Define an FST Ending that maps a phoneme string to its rhyming ending. Both input and output
are strings over the ARPAbet alphabet—so to test out this FST, you will have to use a variant
of grmtest:

grmtest-with-symbols <grm file> <transducer>

<input symbol file>

<output symbol file>

[max number output lines]

This has two extra arguments—the input and output symbol files. So you will do

grmtest-with-symbols rhyme.grm Ending arpabet.sym arpabet.sym

(f) Now define an FST WordEnding that maps an ASCII word to the rhyming ending of its pronun-
ciation. It should map academic (8 letters) to EH1 M IH0 K (4 phonemes). Probably a good idea
to Optimize this machine. What are its domain and range?�29

You can test it with

grmtest-with-symbols rhyme.grm WordEnding byte arpabet.sym

where the special argument byte says to interpret the input string in byte mode, rather than
using a symbol table from a file. This means that the input symbols are individual characters
and do not have to be separated by spaces.

(g) What does WordEnding @ Invert[WordEnding] describe?�30

What are its input and output alphabets?�31

(h) What happens when you try to build the FSM for WordEnding @ Invert[WordEnding]? Why?�32
Be specific about what is happening in the machine composition.

(i) Luckily, we’re not stuck. Instead of using grmtest to pass an input word w through the compo-
sition above, i.e.,

w @ (WordEnding @ Invert[WordEnding])

you can pass it through one transducer at a time, i.e,

15

(w @ WordEnding) @ Invert[WordEnding]

which is equivalent since composition is an associative operator. Why is this more efficient?

You can do this via grmtest, by listing a pipeline of FSTs that the input string will pass through
in sequence:

grmtest rhyme.grm WordEnding,InvWordEnding

where you have defined InvWordEnding appropriately. Try it out and give some interesting�33

input/output examples. Does the dictionary have a rhyme for orange? For adventureland?

(j) Extra credit: The word academic is considered to be a trivial rhyme for academic, nonacademic,
or pandemic because too much of the endings match: Most poets avoid such rhymes because they
sound too repetitive (whereas a non-trivial rhyme is just repetitive enough to be pleasing!).

Come up with a good rule for detecting trivial rhymes; describe and justify it in your README.,34

Can you give an FST that will transduce its input word to all nontrivial rhymes for that word?,35

This is harder than it might seem because the difference operator - is not defined on regular
relations. (The difference of two regular relations is not always regular.)

9. In OpenFST, you can define weighted FSMs. By default, OpenFST, NGram and Thrax all use the
tropical semiring, 〈W,⊕,⊗, 0 , 1 〉 = 〈R ∪ {±∞},min,+,∞, 0〉.21 Thus, weights can be interpreted
as costs (e.g., negated log-probabilities). Concatenating two paths or regexps will sum their costs,
whereas if a string is accepted along two parallel paths or by a union of regexps, then it gets the
minimum of their costs.

Augment an FSM’s definition by appending a weight w in angle brackets, < and >, and wrapping the
entire definition in parentheses.

(a) i. What is the minimum-weight string accepted by this FSA, and what is the weight of that�36

string? (Remember that parentheses in Thrax just represent grouping, not optionality.)

(Zero <1>) (Bit+ <0.2>) (One <0.5>)

ii. What is the minimum-weight pair of strings accepted by this FST, and what is the weight of�37

that pair?

(Zero : One <1>) (Bit+ <0.2>) (One : One One <0.75>)

(b) In your old binary.grm file, define a weighted transducer WFlip that accepts the language of the
above FSA and, reading left to right:

• Nondeterministically flips the leftmost bit. Flipping has weight 2, while not flipping has
weight 1.

• In the Bit+ portion, replaces every 0 with 01 (at cost 0.5), and replaces every 1 with 0 (at
cost 0.4).

• Accepts the final 1 bit with weight 0.5.

Don’t use CDRewrite here.

For example, WFlip should produce the following:

Input string: 0011

Output string: 00101 <cost=2.4>

Output string: 10101 <cost=3.4>

21And currently a portion of the Thrax we’re using supports only this semiring.

16

(c) Now let’s consider cases where we aggregate the weights of multiple paths using ⊕.

i. In your README, name any two binary strings x, y: for example, (x, y) = (00, 1). In binary.grm,�38

define WeightedMultipath to be a simple weighted FST of your choice, such that the partic-
ular pair (x, y) that you named will be accepted along at least two different paths, of different
weights.
To confirm that these two accepting paths exist, view a drawing of the machine, and use
grmtest to find out what x maps to. What are the weights of these paths?�39

ii. Now define WeightedMultipathOpt = Optimize[WeightedMultipath]. In this FST, how�40
many paths accept (x, y) and what are their weights? Why?

iii. Suppose T is an FST with weights in some semiring, and x and y are strings. So T accepts
the pair (x, y) along 0 or more weighted paths.
Describe, in English, what the following weighted languages or relations tell you about T:�41

T_out = Project[T, ’output’]; # erases input from T

xT_out = Project[x @ T, ’output’]; # erases input x from x @ T

Ty_in = Project[T @ y, ’input’]; # erases output y from T @ y

xTy = x @ T @ y;

exTye = ("":x) @ T @ (y:""); # erases input x & output y from x @ T @ y

xT_out_opt = Optimize[xT_out];

Ty_in_opt = Optimize[Ty_in];

exTye_opt = Optimize[exTye];

How big is the last FSM, in general? Why do the last three FSMs have practical importance?22�42

�43
You can try these all out for the case where T is WeightedMultipath and x and y denote the
strings (x, y) you named above.

(d) Extra credit: Define an FSM NoDet that has no deterministic equivalent. (Unweighted FSAs,44

can always be determinized, but it turns out that either outputs (FSTs) or weights can make
determinization impossible in some cases that have cycles.)

How will you know you’ve succeeded? Because the Thrax compiler will run forever on the line
Determinize[RmEpsilon[NoDet]]—the determinization step will be building up an infinitely
large machine. (RmEpsilon eliminates ε arcs from the FSM, which is the first step of determiniza-
tion. Then Determinize handles the rest of the construction.)

10. Throughout the remainder of this homework, we’ll be focused on building noisy-channel decoders,
where weighted FSTs really shine. Your observed data y is assumed to be a distorted version of the
“true” data x. We would like to “invert” the distortion as best we can, using Bayes’ Theorem. The
most likely value of x is

x∗
def
= argmax

x
Pr(x | y) = argmax

x
Pr(x,y) = argmax

x
Pr(x)︸ ︷︷ ︸

“language model”

Pr(y | x)︸ ︷︷ ︸
“channel model”

(1)

22In general, one might want to do one of these computations for many different x (or y) values. Rather
than compiling a new Thrax file for each x value, you could use other means to create x at runtime and
combine it with T. For example, to work with BracketTransform from question 6e, try typing this pipeline at
the command line: echo "ArtNounNounNoun" | fstcompilestring | fstcompose - BracketTransform.fst | fstproject

--project output | fstoptimize | fstview. (Other handy utilities discussed in this handout are fstrandgen for getting
random paths, fstshortestpath for getting the lowest-cost paths, farprintstrings for printing strings from these paths, our
fstprintstring script for printing the output of a single random path, and our grmfilter script for transducing a file.) Or
you could just use OpenFST’s C++ API.

17

In finite-state land, both language and channel models should be easy to represent. A channel is a
weighted FST that can be defined with Thrax, while a language model is a weighted FSA that can
be straightforwardly built with the NGram toolkit.23 To make even easier to build a language model,
we’ve given you a wrapper script, make-lm:

make-lm corpus.txt

By default, this will create a Kneser-Ney back-off trigram language model called corpus.fst. Every
sentence of corpus.txt should be on its own line.24

(a) Create the default language model for the provided file data/entrain.txt. Each line of this
file represents an observed sentence from the English training data from the HMM homework.25

Notice that the sentences have already been tokenized for you (this could be done by another
FST, of course).

You should now have a language model entrain.fst in your working directory, along with two
other files you’ll need later: entrain.alpha is the alphabet of word types and entrain.sym is a
symbol table that assigns internal numbers to them.

Look at the files, and try this:

wc -w entrain.txt # number of training tokens

wc -l entrain.alpha # number of training types

fstinfo entrain.fst # size of the FSA language model

(b) The NGram package contains a number of useful shell commands for using FST-based n-gram
models. Three that you may find particularly interesting are ngramprint, ngramrandgen, and
ngramperplexity. You can read up on all three if you like (use the --help flag).

Sampling several sentences from the language model is easy:

ngramrandgen --max_sents=5 entrain.fst | farprintstrings

Each <epsilon> represents a backoff decision in the FSM. You can see that there is a lot of backoff
from 2 to 1 to 0 words of context. That’s because this corpus is very small by NLP standards:
the smoothing method realizes that very few of the possible words in each context have been seen
yet.

To read the sentence more easily, use the flag --remove_epsilon to ngramrandgen (this prevents
<epsilon>s from being printed). Alternatively, just use our fstprintstring script to print a
random output from any FST:

fstprintstring entrain.fst

If you want to know the most probable path in the language model, you can use fstshortestpath,
which runs the Viterbi algorithm.26

fstshortestpath entrain.fst | fstprintstring

How long are the strings in both cases, and why? What do you notice about backoff?�45

23Language models can’t be concisely described with regular expressions: at least, not the standard ones.
24Otherwise you may get weird non-normalization errors for Kneser-Ney smoothing.
25Because the NGram toolkit assumes that sentence boundaries are marked by newlines, we’ve omitted ###.
26In general fstprintstring will print a randomly chosen string, but in the output of fstshortestpath, there is only one

string to choose from.

18

(c) Recommended: Although it’s a small language model, entrain.fst is far too large to view in its
entirety. To see what a language model FSA looks like, try making a tiny corpus, tiny-corpus.txt:
just 2–3 sentences of perhaps 5 words each. Try to reuse some words across sentences. Build a
language model tiny-corpus.fst and then look at it with fstview. There is nothing to hand
in for this question.

(d) Now, let’s actually use the entrain.fst language model. Copy noisy.grm from the grammars/

directory:

import ’byte.grm’ as bytelib; # load a simple grammar (.grm)

export LM = LoadFst[’entrain.fst’]; # load trigram language model (.fst)

vocab = SymbolTable[’entrain.sym’]; # load model’s symbol table (.sym)

Each line loads a different kind of external resource. In particular, the second line loads the
trigram language model FSA, and the third line loads the symbol table used by that FSA. The
symbol table consists of the vocabulary of the language model, as well as the OOV symbol <unk>
(“unknown”).27

You can therefore use LM to transduce some strings:

grmtest-with-symbols noisy.grm LM entrain.sym entrain.sym

What is the result of transducing the following? Explain your answers. What are the domain�46

and range of the relation LM?

• Andy cherished the barrels each house made .

• If only the reporters had been nice .

• Thank you

We now want to compose LM with a noisy channel FST. Because the language model is nothing more
than an FSA, we can use it in Thrax. Of course, we’re going to have to be careful about symbol tables:
the noisy channel’s input alphabet must be the same as LM’s output alphabet.

Remember to be careful when creating FSTs over a nonstandard alphabet. If you write

("barrels barrels" : ("" | "ship"))*;

then the input to this FST must be a multiple of 15 symbols in the default byte alphabet. But if you
write

("barrels barrels".vocab : ("".vocab | "ship".vocab))*;

then Thrax will parse the quoted strings using the vocab symbol table. So here, the input must be
an even number of symbols in the vocab alphabet. Writing "Thank".vocab will give an error because
that word is not in the symbol table (it’s not in the file entrain.sym from which vocab was loaded).

A noisy channel that “noises up” some text might modify the sequence of words (over the vocab

alphabet) or the sequence of letters (over the byte alphabet). If you want to do the latter, you’ll need

27The make-lm script takes the vocabulary to be all the words that appear in training data, except for a random subset of
the singletons. These singletons are removed from the vocabulary to ensure that some training words will be OOV, allowing
the smoother to estimate the probability of OOV in different contexts. Ideally the smoothing method would figure this out on
its own.

19

to convert words to letters. Recall from question 8a that the StringFile function interprets its given
tab-separated text file as an FST, with the domain and range as the second and third parameters,
respectively. So we’ll add the following line to noisy.grm:

Spell = Optimize[StringFile[’entrain.alpha’, vocab, byte]];

This maps a word to its spelling, just as Pronounce in 8a mapped a word to its pronunciation.

(e) In noisy.grm, define a transducer called CompleteWord that could be used to help people enter
text more quickly. The input should be the first few characters in a word, such as barr. Each
output should be a word that starts with those characters, such as barrel or barrage.

Use LM to assign a cost to each word, so that each completed word is printed together with its
cost. Is a word’s cost equal to the unigram probability of the word, or something else?�47

Hint: Be careful to think about the input and output alphabets, and to pass them as arguments
to grmtest-with-symbols. The input alphabet should be byte (not byte.sym), as explained in
question 8f.

(f) Extra credit: Now define CompleteWordInContext similarly. Here the input is a sequence—,48

separated by spaces—of 0 or more complete words followed by a partial word. Each output is a
single word that completes the partial word, as before. But this time the cost depends on the
context: that’s what language models are for.

Try it out and give a few example inputs that illustrate how the context can affect the ranking,49

of the different completions.

Hint: You might not able to get away with exporting CompleteWordInContext as a single
transducer—it’s rather big because it spells out the words in the language model. It will be
more efficient to use the pipelining trick from question 8i. In your README, tell the graders what
command to enter in order to try out your pipeline, and give the original CompleteWordInContext
definition that your pipeline was derived from.

11. Question 10 defined our language model, Pr(x). Now let’s compose it with some channel models
Pr(y | x) that we’ll define. In this question, we’ll practice by working through a simple deterministic
noisy channel.

(a) Still working in noisy.grm, define a deterministic transducer DelSpaces that deletes all spaces.
Define this using CDRewrite, and use the alphabet bytelib.kGraph | bytelib.kSpace. Using
grmtest you should be able to replicate the following:

Input string: If only the reporter had been nice .

Output string: Ifonlythereporterhadbeennice.

Input string: Thank you .

Output string: Thankyou.

Input string: The reporter said to the city that everyone is killed .

Output string: Thereportersaidtothecitythateveryoneiskilled.

(b) grmtest will transduce each string that you type in, providing multiple outputs when they exist.
To transduce a whole file to a single output, once you’ve tested your transducer, we’ve provided
another wrapper script grmfilter:

20

$ grmfilter

Usage:

cat input.txt | grmfilter [-opts] <grammar file> <name1>,<name2>,...

-r: select a random path

-s: find shortest path (default)

-h: print this help message (and exit)

Just like grmtest, it takes two required arguments, a .grm file and a comma-separated list of FST
names defined in that file. It reads strings from the standard input, one per line, and writes their
transductions to the standard output. The output string comes from one of the paths that accept
the input. The default (which can be signaled explicitly with the -s flag) is to choose a maximum-
probability path. The alternative (the -r flag) is to select a path randomly in proportion to its
probability. We know each path’s probability because its total cost gives the negative log of its
probability.

Try running DelSpaces on the text file data/entest.txt, which contains the first 50 sentences of
the English test data entest from the HMM homework. Save the result as entest-noisy.txt.
In general, you should use the -r flag to pass text through a noisy channel, so that it will randomly
noise up the output (although in this introductory case the channel happens to be deterministic):

grmfilter -r noisy.grm DelSpaces <entest.txt >entest-noisy.txt

Uh-oh! Someone got into your files and used your own DelSpaces against you! Now how will you ever
read any of your files?

After despairing for a while, you realize that you can just reverse DelSpaces’s actions. So you try
Invert[DelSpaces], but unfortunately that turns Ifonlythereporterhadbeennice. back into all
kinds of things like

I fon lyt he reporterh adbeenni ce.

The correct solution is somewhere in that list of outputs, but you need to find it. What a perfect
opportunity to use your language model LM and the Viterbi algorithm for finding the most probable
path!

The idea is that the text actually came from the generative process (1), which can be represented as
the composition

Generate = LM @ DelSpaces; # almost right!

Unfortunately the output of LM is words, but the input to DelSpaces is characters. So they won’t
compose. You will need to stick a transducer SpellText in between. This transducer represents
another deterministic step in the generative process that resulted in the noisy sequence of characters.

(c) Define SpellText in noisy.grm. It should spell the first input word, output a space, spell the
second input word, output another space, and so on. This yields the kind of text that actually
appeared in entrain.txt (there is a space after each word in a sentence, including the last).

Now revise your definition of Generate to use SpellText.

(d) Now you should be able to decode noisy text via

21

Decode = Invert[Generate];

Unfortunately, this machine will be too large (and slow to compile). So you should use the same
approach as in question 8i, and ask grmtest to pass the noisy text through a sequence of inverted
machines.

Important: At the end of your sequence of machines, you should add PrintText, which you can
define for now to be equal to SpellText. This has the effect of pretty-printing the decoded result.
It will turn the recovered sequence of words back into characters, and put spaces between the
words.

Using grmtest in this way, try decoding each of the following. Note that the lowest-cost results
are shown first. Discuss the pattern of results, and their costs, in your README:�50

• Ifonlythereporterhadbeennice.

• If only.

• ThereportersaidtothecitythatEveryoneIskilled.

• Thankyou.

(e) The reason Thankyou failed is because we didn’t account for OOVs. The vocabulary has an OOV
symbol <unk>, but it is treated like any other word in the vocabulary.28 So LM will accept phrases
like <unk> you, but not Thank you.

So just as we described how to spell in the above questions, we’ll now describe how to spell
OOV words. We’ll say that <unk> can rewrite as an arbitrarily long sequence of non-space text
characters (bytelib.kGraph):

RandomChar = bytelib.kGraph <4.54>;

RandomWord = Optimize[(RandomChar (RandomChar <w1>)*) <w2>];

SpellOOV = "<unk>".vocab : RandomWord;

The weight in RandomChar is saying that each of the 94 characters in bytelib.kGraph has the
same probability, namely 1

94 , since − log 1
94 ≈ 4.54.

How about RandomWord? When you define it in noisy.grm, you’ll have to give actual numbers
for the numeric weights w1 and w2. Try setting w1 = 0.1 and w2 = 2.3. To check out the results,
try these commands:

grmtest noisy.grm RandomWord # evaluate cost of some strings

far2fst noisy.far RandomWord # (get the FSA for commands below)

fstprintstring RandomWord.fst # generate a random string

fstview RandomWord.fst # look at the FSA

i. What do w1 and w2 represent? Hint: the costs 0.1 and 2.3 are the negative logs of 0.9 and�51

0.1.

ii. For each n ≥ 0, what is the probability pn that the string generated by RandomWord will have�52

length n?

iii. What is the sum of those probabilities,
∑∞

n=0 pn?�53

iv. How would you change w1 and w2 to get longer random words on average?�54

v. If you decreased both w1 and w2, then what would happen to the probabilities of the random�55
words? How would this affect the behavior of your decoder? Why?

22

vi. How could you improve the probability models RandomChar and RandomWord?�56

Once you’ve answered those questions, reset w1 = 0.1 and w2 = 2.3 and proceed.

(f) Now, revise Spell so that it is not limited to spelling words in the dictionary, but can also
randomly spell <unk>. (Hint: Use SpellOOV.)

Also revise PrintText so that if your decoder finds an unknown word <unk>, you will be able to
print that as the 5-character string “<unk>.”

To check your updated decoder, try running the sentences from question 11d through it. Again
discuss the pattern of results. Remember that if you want, you can add an extra argument to
grmtest to limit the number of outputs printed per input.

(g) Remember that your goal was to de-noise your corrupted files, whose spaces were removed by
DelSpaces. Just run grmfilter again, but with three differences:

• Before, you were converting entest.txt to entest-noisy.txt. Now you should convert
entest-noisy.txt to entest-recovered.txt.

• Instead of running the noisy channel forward, run it backward, using your pipeline from 11d.
You can leave out the PrintText step of the pipeline since grmfilter is a bit smarter than
grmtest about how it prints outputs.

• Since you want the most likely decoding and not a random decoding, don’t use the -r flag
this time.

Look at the results in entest-recovered.txt. What kinds of errors can you spot? Does this�57

qualitative error analysis give you any ideas how to improve your decoder?

(h) Suppose you’d like to quantify your performance. The metric we’ll consider is the edit distance
between entest.txt and entest-recovered.txt.

Edit distance counts the minimum number of edits needed to transduce one string (x) into another
(y). The possible edits are

• substitute one letter for another;

• insert a letter;

• delete a letter;

• copy a letter unchanged.

Each of these operations has a cost associated with it. We’ll stick with the standard unweighted
edit distance metric in which substitions, insertions and deletions all have cost 1; copying a
character unchanged has cost 0. For simplicity we will treat the unknown word symbol as if
really were the 5-character word <unk>, which must be edited into the true word.

As you know, edit distance can easily be calculated using weighted finite-state machines:

Sigma = bytelib.kBytes;

export Edit = (Sigma | ((""|Sigma) : (""|Sigma) <1>))*;

The Edit machine transduces an input string x one byte at a time: at each step, it either passes an
input character through with cost 0, or does an insert, delete or substitute with cost 1. That gives
an edited version y. The cheapest way to get from x to a given y corresponds to the shortest path
through x @ Edit @ y. As we saw in class, that machine has the form of an |x+ 1| × |y+ 1| grid

28Except by some of the ngram utilities that we’re not using.

23

with horizontal, vertical, and diagonal transitions. It has exponentially many paths, of various
total cost, that represent different sequences of edit operations for turning x into y.

We’ve given you an edit distance script to calculate the edit distances between the corre-
sponding lines of two files:

editdist entest.txt entest-recovered.txt

This will compare each recovered sentence to the original. Do the scores match your intuitive,
qualitative results from 11g?

Please look at grammars/editdist.grm, the Thrax grammar used by the editdist script. You’ll
see that it’s more complicated than Edit, but this construction reduces the size of the overall
machine by a couple of orders of magnitude. While it still computes x Edit y, it splits Edit up
into two separate machines, Edit1 and Edit2. We still find the shortest path, but now through

(x @ Edit1) @ (Edit2 @ y);

By doing the composition this way, both x and y are able to impose their own constraints
(what letters actually appear) on Edit1 and Edit2, thus reducing the size of the intermediate
machines. The resulting FST can be built quite quickly, though as mentioned before, it does have
|x+ 1| × |y + 1| states and a similar number of arcs.

(i) Extra credit: How can you modify your pipeline so that it recovers an appropriate spelling of,58

each unknown word, rather than <unk>? For example, decoding Thankyou should give Thank you

rather than <unk> you.29

12. Extra credit (but maybe the real point of this homework, so read the question even if,59

you don’t do it): Finally, it’s time to have some fun. We just set up a noisy-channel decoder to
handle a simple deterministic noisy channel. Now try it for some other noisy channels! The framework
is nearly identical—just replace DelSpaces with some other FST. For each type of noisy channel,

i. Define your channel in noisy.grm as a weighted FST.

ii. Explain in README what you implemented and why, and how you chose the weights.

iii. Use your channel to corrupt entest.txt into entest-noisy.txt.

iv. Use your inverted channel, the language model, and SpellText to decode entest-noisy.text

back into entest-recovered.txt.

v. Look at the files and describe in your README what happened, with some examples.

vi. Report the edit distance between entest.txt and entest-recovered.txt.

Have fun designing some of the channels below. Each converts a string of bytes into a string of bytes.
In general make them non-deterministic (in contrast to DelSpaces), and play with the weights.

(a) DelSomeSpaces: Nondeterministically delete none, some, or all spaces from an input string.

(b) DelSuffixes: Delete various word endings. You may find

http://grammar.about.com/od/words/a/comsuffixes.htm helpful.

29The recovered spelling is determined by the language model and the channel model. It won’t always match the noisy
spelling. E.g., if the noisy channel tends to change letters into lowercase, then decoding Thank you might yield THANK you.

24

http://grammar.about.com/od/words/a/comsuffixes.htm

(c) Typos: Introduce common typos or misspellings. You may get some inspiration from
http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings

or
http://en.wikipedia.org/wiki/File:Qwerty.svg

Some real-world typos are due to the fact that some words sound similar, so if you’re ambitious,
you might be able to make some use of data/cmudict.txt or the Pronounce transducer.

(d) Telephone: Deterministically convert (lower-case) letters to digits from the phone keypad. For
example, a rewrites as 2.

(e) Tinyphone: Compose your Telephone FST with another FST that allows common cellphone
keypad typos. For example, there should be a small chance of deleting a digit, doubling a digit,
or substituting one of the adjacent digits for it.

(f) Try composing some of these machines in various orders. As usual, give examples of what happens,
and discuss the interactions.

Feel free to try additional noisy channels for more extra credit. You could consider capitalization,
punctuation, or something crazy out of your imagination.30

30It might be fun to replace each word deterministically with its rhyming ending, using your WordEnding FST from question 8f
(composed with something that transduces ARPAbet characters to the byte alphabet). Then your noisy channel decoder will
find the highest-probability string that rhymes word-by-word with your original input text. Should be amusing.

25

http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
http://en.wikipedia.org/wiki/File:Qwerty.svg

