
Notes on the Inside-Outside AlgorithmTo make a grammar probabilistic, we need to assign a probability to each context-free rewriterule. But how should these probabilities be chosen? It is natural to expect that these probabilitiesshould depend in some way on the domain that is being parsed. Just as a simple approach such as thetrigram model used in speech recognition is \tuned" to a training corpus, we would like to \tune" ourrule probabilities to our data. The statistical principle of maximum likelihood guides us in decidinghow to proceed. According to this principle, we should choose our rule probabilities so as to maximizethe likelihood of our data, whenever this is possible. In these notes we describe how this principle isrealized in the Inside-Outside algorithm for parameter estimation of context-free grammars.Let's begin by being concrete, and considering an example of a simple sentence and syntactic parse.
anchovieswithoutpizzaeatsShe Figure 6.1Implicit in this parse are four context-free rules of the form A! B C. These are the rulesS! N VV! V NN! N PP! PP N :In addition, there are �ve \lexical productions" of the form A! w:N! SheV! eatsN! pizzaPP! withoutN! anchovies:1

F]�.SLR�0E½IVX]



Of course, from a purely syntactic point-of-view, this sentence should also have a very di�erent parse.To see this, just change the word \anchovies" to \hesitation":
hesitationwithoutpizzaeatsShe Figure 6.2Here two new context-free rules have been used:V! V N PN! hesitation :In the absence of other constraints, both parses are valid for each sentence. That is, one could, at leastsyntactically, speak of a type of \pizza without hesitation," though this would certainly be semanticgibberish, if not completely without taste. One of the goals of probabilistic training and parsing is toenable the statistics to correctly distinguish between such structures for a given sentence. This is indeeda formidable problem. Throughout this chapter we will refer to the above sentences and grammar todemonstrate how the training algorithm is actually carried out. While certainly a \toy" example, itwill serve to illustrate the general algorithm, as well as to demonstrate the strengths and weaknesses ofthe approach.Let's now assume that we have probabilities assigned to each of the above context-free rewrite rules.These probabilities will be written as, for example,�(S! N V)or as �(N! pizza)and we call these numbers the parameters of our probabilistic model. The only requirements of thesenumbers are that they be non-negative, and that for each nonterminal A they sum to one; that is,X� �(A! �) = 1for each A, where the sum is over all strings of words and nonterminals that the grammar allows thesymbol A to rewrite as. For our example grammar, this requirement is spelled out as follows:�(N! N P) + �(N! pizza) + �(N! anchovies) ++ �(N! hesitation) + �(N! She) = 1�(V! V N) + �(V! V N P) + �(V! eats) = 12



�(S! N V) = 1�(P! PP N) = 1�(PP! without) = 1So, the only parameters that are going to be trained, are those associated with rewriting a noun N or averb V; all others are constrained to be equal to one.The Inside-Outside algorithm starts from some initial setting of the parameters, and iterativelyadjusts them so that the likelihood of the training corpus (in this case the two sentences \She eats pizzawithout anchovies" and \She eats pizza without hesitation") increases. To write down the computationof this likelihood for our example, we'll have to introduce a bit of notation. First, we'll writeW1 = \She eats pizza without anchovies"and W2 = \She eats pizza without hesitation":Also, T1 will refer to the parse in Figure 6.1, and T2 will refer to the parse in Figure 6.2. Then thestatistical model assigns probabilities to these parses asP�(W1; T1) = �(S! N V)�(V! V N)�(N! N P) �� �(P! PP N)�(N! She)�(V! eats) �� �(N! pizza)�(PP! without)�(N! anchovies)and P�(W2; T1) = �(S! N V)�(V! V N P)�(P! P PP) �� �(N! She)�(V! eats)�(N! pizza) �� �(PP! without)�(N! hesitation)In the absence of other restrictions, each sentence can have both parses. Thus we also haveP�(W1; T2) = �(S! N V)�(V! V N P)�(P! P PP) �� �(N! She)�(V! eats)�(N! pizza) �� �(PP! without)�(N! anchovies)and P�(W2; T1) = �(S! N V)�(V! V N)�(N! N P) �� �(P! PP N)�(N! She)�(V! eats) �� �(N! pizza)�(PP! without)�(N! hesitation)The likelihood of our corpus with respect to the parameters � is thusL(�) = (P�(W1; T1) + P�(W1; T2))(P�(W2; T1) + P�(W2; T2):In general, the probability of a sentence W isP�(W ) =XT P�(W;T )3



where the sum is over all valid parse trees that the grammar assigns to W , and if our training corpuscomprises sentences W1;W2; : : : ;WN , then the likelihood L(�) of the corpus is given byL(�) = P�(W1)P�(W2) � � �P�(WN ):Starting at some initial parameters �, the inside-algorithm reestimates the parameters to obtain newparameters �0 for which L(�0) � L(�). This process is repeated until the likelihood has converged.Since it is quite possible that starting with a di�erent initialization of the parameters could lead to asigni�cantly larger or smaller likelihood in the limit, we say that the Inside-Outside algorithm \locallymaximizes" the likelihood of the training data.The Inside-Outside algorithm is a special case of the EM algorithm [1] for maximum likelihoodestimation of \hidden" models. However, it is beyond the scope of these notes to describe in detail howthe Inside-Outside algorithm derives from the EM algorithm. Instead, we will simply provide formulasfor updating the parameters, as well as describe how the CYK algorithm is used to actually computethose updates. This is all that is needed to implement the training algorithm for your favorite grammar.Those readers who are interested in the actual mathematics of the Inside-Outside algorithm are referredto [3].0.1 The Parameter UpdatesIn this section we'll de�ne some more notation, and then write down the updates for the parameters.This will be rather general, and the formulas may seem complex, but in the next section we will give adetailed description of how these updates are actually computed using our sample grammar.To write down how the Inside-Outside algorithm updates the parameters, it is most convenient toassume that the grammar is in Chomsky normal form. It should be emphasized, however, that thisis only a convenience. In the following section we will work through the Inside-Outside algorithm forour toy grammar, which is not, in fact, in Chomsky normal form. But we'll assume here that we havea general context-free grammar G all of whose rules are either of the form A ! B C for nonterminalsA; B; C, or of the form �(A! w) for some word w.Suppose that we have chosen values � for our rule probabilities. Given these probabilities and atraining corpus of sentences W1;W2; : : : ;WN , the parameters are reestimated to obtain new parameters�0 as follows: �0(A! B C) = count(A! B C)P� count(A! �)and �0(A! w) = count(A! w)P� count(A! �)where count(A! B C) = NXi=1 c�(A! B C;Wi)and count(A! w) = NXi=1 c�(A! w;Wi)The number c�(A ! �;Wi) is the expected number of times that the rewrite rule A ! � is usedin generating the sentence Wi when the rule probabilities are given by �. To give a formula for theseexpected counts, we need two more pieces of notation. The �rst piece of notation is standard in the4



automata literature (see, for example, [2]). If beginning with a nonterminal A we can derive a string 
of words and nonterminals by applying a sequence of rewrite rules from our grammar, then we writeA �) 
 ;and say that A derives 
. So, if a sentence W = w1w2 � � � wn can be parsed by the grammar we canwrite S �) w1 w2 � � � wn:In the notation used above, the probability of the sentence given our probabilistic grammar is thenP�(W ) =XT P�(W;T ) = P�(S �) w1w2 � � � wn) :The other piece of notation is just a shorthand for certain probabilities. The probability that thenonterminal A derives the string of words wi � � � wj in the sentence W = w1 � � �wn is denoted by �ij(A).That is, �ij(A) = P�(A �) wi � � � wj) :Also, we set the probability that beginning with the start symbol S we can derive the stringw1 � � � wi�1 Awj+1 � � � wnequal to �ij(A). That is, �ij(A) = P�(S �) w1 � � � wi�1 Awj+1 � � � wn) :The alphas and betas are referred to, respectively, as inside and outside probabilities.We are �nally ready to give the formula for computing the expected counts. For a rule A! B C, theexpected number of times that the rule is used in deriving the sentence W isc�(A! B C; W ) = �(A! B C)P�(W ) X1�i�j�k�n�ik(A) �ij(B) �j+1;k(C) :Similarly, the expected number of times that a lexical rule A! w is used in deriving W is given byc�(A! w; W ) = �(A! w)P�(W ) X1�n�ii(A) :To actually carry out the computation, we need an e�cient method for computing the �'s and �'s.Fortunately, there is an e�cient way of computing these, based upon the following recurence relations.If we still assume that our grammar is in Chomsky normal form, then it is easy to see that the �'s mustsatisfy �ij(A) =XB;C Xi�k�j�(A! B C) �ik(B) �k+1;j(C)for i < j if we take �ii(A) = �(A! wi) :Intuitively, this formula says that the inside probability �ij(A) is computed as a sum over all possibleways of drawing the following picture: 5



i k k+1 jFigure 6.3In the same way, if the outside probabilities are initialized as �1n(S) = 1 and �1n(A) = 0 for A 6= S,then the �'s are given by the following recursive expression:�ij(A) = XB;C X1�k<i�(B! C A) �k;i�1(C) �kj(B) ++ XB;C Xn�k>j�(B! A C) �j+1;k(C) �ik(B):Again, the �rst pair of sums can be viewed as considering all ways of drawing the following picture:
k i-1 i jFigure 6.4Together with the update formulas, the above recurence formulas form the core of the Inside-Outsidealgorithm. 6



To summarize, the Inside-Outside algorithm consists of the following steps. First, chose some initialparameters � and set all of the counts count(A! �) to zero. Then, for each sentence Wi in the trainingcorpus, compute the inside probabilities � and the outside probabilities �. Then compute the expectednumber of times that each rule A ! � is used in generating the sentence Wi. These are the numbersc�(A ! �;Wi). For each rule A ! � add the number c�(A ! �;Wi) to the total count count(A ! �)and proceed to the next sentence. After processing each sentence in this way, reestimate the parametersto obtain �0(A! �) = count(A! �)P
 count(A! 
) :Then, repeat the process all over again, setting � = �0, and computing the expected counts with respectto the new parameters.How do we know when to stop? During each iteration, we compute the probabilityP�(W ) = P�(S �) w1 � � � wn) = �1n(S)of each sentence. This enables us to compute the likelihood,L(�) = P�(W1)P�(W2) � � �P�(WN );or, better yet, the log likelihood LL(�) = NXi=1 log P�(Wi) :The Inside-Outside algorithm is guaranteed not to decrease the log likelihood; that is, LL(�0)�LL(�) �0. One may decide to stop whenever the change in log likelihood is su�ciently small. In our experience,this is typically after only a few iterations for a large natural language grammar.In the next section, we will return to our toy example, and detail how these calculations are actuallycarried out. Whether the grammar is small or large, feature-based or in standard context-free form,the basic calculations are the same, and an understanding of them for the following example will enableyou to implement the algorithm for your own grammar.0.2 Calculation of the inside and outside probabilitiesThe actual implementation of these computations is usually carried out with the help of the CYKalgorithm [2]. This is a cubic recognition algorithm, and it proceeds as follows for our example proba-bilistic grammar. First, we need to put the grammar into Chomsky normal form. In fact, there is onlyone 
agrant rule, V! V N P, which we break up into two rules N-P! N P and V! V N-P, introducing anew nonterminal N-P. Notice that since there is only one N-P rule, the parameter �(N-P ! N P) will beconstrained to be one, so that�(V! V N-P) �(N-P! N P) = �(V! V N-P)is our estimate for �(V! V N P). We now want to �ll up the CYK chart for our �rst sentence, which isshown below. 7



She

eats

pizza

without

anchoviesFigure 6.5The algorithm proceeds by �lling up the boxes in the order shown in the following picture.
1 2 3 4 5

Figure 6.6The �rst step is to �ll the outermost diagonal. Into each box is entered the nonterminals which cangenerate the word associated with that box. Then the �'s for the nonterminals which were entered areinitialized. Thus, we obtain the chart
8



She

eats

pizza

without

anchoviesFigure 6.7and we will have computed the inside probabilities�11(N) = �(N! She) �22(V) = �(V! eats)�33(N) = �(N! pizza) �44(PP) = �(PP! without)�55(N) = �(N! anchovies)All other �'s are zero.Now it happened in this case that each box contains only one nonterminal. If, however, a boxcontained two or more nonterminals, then the � for each nonterminal would be updated. Suppose, forexample, that the word \anchovies" were replaced by \mushrooms." Then since \mushrooms" can beeither a noun or a verb, the bottom part of the chart would appear as
without

mushroomsFigure 6.8and we would have computed the inside probabilities�55(N) = �(N! mushrooms)and �55(V) = �(V! mushrooms):In general, the rule for �lling the boxes is that each nonterminal in box (i; j) must generate wordswi � � �wj, where the boxes are indexed as shown in the following picture.9



1 2 3 4 5

1

2

3

4

5 Figure 6.9In this �gure, the shaded box, which is box (2; 4), spans words w2w3w4.To return now to our example, we proceed by �lling the next diagonal and updating the �'s, to get:
She

eats

pizza

without

anchoviesFigure 6.10with �12(S) = �(S! N V) �11(N) �22(V)�23(V) = �(V! V N) �22(V) �33(N)�45(P) = �(P! PP N) �44(PP) �55(N) :When we �nish �lling the chart, we will have 10



She

eats

pizza

without

anchoviesFigure 6.11with, for example, inside probabilities�25(V) = �(V! V N) �22(V) �35(N) ++ �(V! V N-P) �22(V) �35(N-P)and �15(S) = �(S! N V) �11(N) �25(V) :This last alpha is the total probability of the sentence:�15(S) = P�(S �) She eats � � �anchovies)= XT P�(She eats � � �anchovies; T ):This completes the inside pass of the Inside-Outside algorithm. Now for the outside pass. Theoutside pass proceeds in the reverse order of Figure 6.6.We initialize the �'s by setting �15(S) = 1 and all other �'s equal to zero. Then�25(V) = �(S! N V) �11(N) �15(S)�35(N) = �(V! V N) �22(V) �25(V)...�55(N) = �(P! PP N) �44(PP) �45(P) :The �'s are computed in a top-down manner, retracing the steps that the inside pass took. For agiven rule used in building the table, the outside probability for each child is updated using the outsideprobability of its parent, together with the inside probability of its sibling nonterminal.Now we have all the necessary ingredients necessary to compute the counts. As an example of howthese are computed, we havec�(V! V N;W1) = �(V! V N)�15(S) (�22(V) �33(N) �23(V)++ �22(V) �35(N) �25(V))= �(V! V N)�15(S) (�22(V) �33(N) �23(V))11



since �23(V) = 0. Also,c�(V! V N-P;W1) = �(V! V N-P)�15(S) (�22(V) �35(N-P) �25(V)) :We now proceed to the next sentence, \She eats pizza without hesitation." In this case, the compu-tation proceeds exactly as before, except, of course, that all inside probabilities involving the probability�(N ! anchovies) are replaced by the probability �(N ! hesitation). When we are �nished updatingthe counts for this sentence, the probabilities are recomputed as, for example,�0(V! V N) = c�(V! V N;W1) + c�(V! V N;W2)Pi=1;2 c�(V! V N P;Wi) + c�(V! eats;Wi) + c�(V! V N;Wi)�0(V! eats) = c�(V! eats;W1) + c�(V! eats;W2)Pi=1;2 c�(V! V N P;Wi) + c�(V! eats;Wi) + c�(V! V N;Wi)Though we have described an algorithm for training the grammar probabilities, it is a simple matterto modify the algorithm to extract the most probable parse for a given sentence. For historical reasons,this is called the Viterbi algorithm, and the most probable parse is called the Viterbi parse. Brie
y, thealgorithm proceeds as follows. For each nonterminal A added to a box (i; j), in the chart, we keep arecord of which is the most probable way of rewriting A. That is, we determine which nonterminals B; Cand index k maximize the probability�(A! B C) �ik(B) �k+1;j(C) :When we reach the topmost nonterminal S, we can then \traceback" to construct the Viterbi parse.We shall leave the details of this algorithm as an exercise for the reader.The computation outlined here has most of the essential features of the Inside-Outside algorithmapplied to a \serious" natural language grammar.References[1] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via theEM algorithm. Journal of the Royal Statistical Society, 39(B):1{38, 1977.[2] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.Addison-Wesley, Reading, Massachusetts, 1979.[3] J. D. La�erty. A derivation of the inside-outside algorithm from the EM algorithm. Technical report,IBM Research, 1992. 12


