
Natural Language Processing (JHU 601.465/665)
Answers to "NLP Applications" practice problems

1. (a)      B     O  O    O    O   B    I     I    I       O
         Yoyodyne is a company in San Narciso , California .

   (b) The illegal bigrams are O I and <s> I, since the first word
       of a chunk is supposed to be tagged as B rather than I.
       These can be ruled out by setting the transition probabilities
       p(I | O) = p(I | <s>) = 0.

2. (a) ROOT -> S ROOT
       ROOT -> S

       where the first rule has some probability p and the second
       rule has probability (1-p).  If p > 0, then this allows ROOT
       to rewrite as any sequence of 1 or more sentences.  Of course,
       you’d better have p < 1 to avoid infinite recursion!

   (b) Increase p.

   (c) Instead use the rule ROOT -> S S S S S S (with probability 1).

   (d) You could classify every period -- or every character -- as to
       whether it ends a sentence or not.  This is a binary
       classification problem.  Features might include whether the
       next word is capitalized, whether the period follows a word
       that is known to be an abbreviation, whether the period appears
       to be an initial in the middle of a name, whether the period is
       only a few words away from another period (so that treating
       them both as sentence boundaries would give a very short
       sentence), etc.

3. (a) 90% precision means being nice to readers.

       (To be nice to writers, we’d want 90% recall, i.e., the system
       finds 90% of the good comments and displays them to users,
       perhaps with a lot of bad comments as well.  It is possible to
       have high recall but very low precision, or vice versa.)

       (Meanwhile, choice iii. would be called 90% accuracy.)

   (b) It also needs high recall.  It is very easy to get high
       precision by deleting almost everything and keeping only
       a few comments that are sure to be good.

   (c) 1. Download a selection of comments from the website.

       2. Get the publisher or some readers to annotate the comments
          as to whether they should be considered good or bad.

          One of you suggested a way around this: collect comments
          from a SIMILAR website where comments have already been
          publicly rated by the users.

       3. Divide this corpus into a large training set and a smaller
          test set.

          It is possible to also set aside some of the training set as a
          development set, but this isn’t necessary if you are going to
          do jackknifing on the training data.

   (d) Some examples:
       - decision list  (benefit: easy to train;
                         problem: allows one feature to force the decision



                         against the objections of others)
       - decision tree  (problem: features are only considered in conjunction;
                         the tree can only grow to a few levels deep because
                         it quickly fragments the data)
       - naive bayes    (problem: assumes conditional independence of
                         features.  Notice that for this unigram
                         feature set, it’s equivalent to measuring the
                         probability of the document against UNIGRAM
                         language models of good and bad comments.)
       - nearest neighbor (similarity in vector space to a training
                           document or a cluster of training documents)
                        (problem: curse of dimensionality -- in
                         a high-dimensional space, everything looks similar;
                         may need PCA to reduce dimensionality; also,
                         similarity measure is sensitive to scaling of
                         dimensions, and may not work well when the
                         features are raw counts, as they are here)
       - log-linear, also known in this case as logistic regression
                     (allows features to interact without making assumptions;
                     but does not consider interactions among features
                     unless specifically added)
       - perceptron or SVM
                     (similar to log-linear, but trained differently)

       In all of these cases, you could choose to transform the
       collection of x vectors by PCA before you start, in order to
       reduce the number of features and smooth them.  (You could
       alternatively use feature hashing to reduce the number
       of features.)

       Some of you suggested PCA all by itself.  But PCA doesn’t
       classify anything; it is a technique for reducing the
       dimensionality of the feature vectors.

       Some of you also suggested EM.  But EM doesn’t classify
       anything; it is a technique for coping with missing data (for
       unsupervised or semi-supervised training).  In fact, here we’re
       still discussing a fully supervised problem.

   (e) - Decision list: would usually be set up to pick the majority
         class ("good comment" or "bad comment")

       - Decision tree: would be classified by some leaf that handles
         such examples

       - Naive Bayes: would pick the majority class

       - nearest neighbor: would agree with the document whose feature
         vector is close to 0  (this will lead to a tie if the "cosine
         distance" is used; it will look for short documents if Euclidean
         distance is used)

       - log-linear: would give 1/2 probability to each class, if
         there are no features other than the unigram features (but
         probably there will be a "bias" feature that favors one
         class, which then gets higher probability)

       - perceptron or SVM: similar to log-linear

   (f) i. Is it grammatical?  Log-probability PER WORD under a PCFG.
             Note that looking at TOTAL log-probability of a comment
             or sentence is not a good idea, because long comments
             will score poorly on this!  Also, it may be a good idea
             to divide the PCFG probability by the unigram probability,
             to correct for rare words.



             (Must make sure that the PCFG is robust, i.e., will
             not assign low probability to comments just because
             they’re comments rather than Wall Street Journal articles.)

          Does it look like well-written text?  Log-probability
             per word under an n-gram language model trained on
             large amounts of such text.  Similar to previous,
             but no PCFG.

          Does it look more like good comments than like bad comments?
            That is, what is its log-probability per word under a smoothed
            trigram language model trained on good comments, minus
            its log-probability per word under a similar model trained on
            bad comments?  (Note that in part (c), we were only using
            unigrams.)

          Does it have a high reading level?  Average number of syllables
             per word.

          Is it substantive?  Length of the comment in characters or words.

          Is it correctly spelled?  Fraction of words that are corrected by
             a context-sensitive spelling correction system.

          Does it use too much capitalization?  If a high percentage
             of characters are capitalized, the commenter is SHOUTING.

          Does it use proper capitalization?  For example, look at the
             fraction of letters following periods that are
             capitalized.  This won’t be 100% even in well-written
             text, because periods are sometimes abbreviations, but
             if it is very low, that suggests a careless writer.

          Does it use proper punctuation?  This is a bit hard to
             detect; you might be able to use a parser.  But simply
             the presence of commas, semicolons, etc. might be helpful.

          Does it curse?  Number of words appearing on a list of rude words.

          Apply any of the above measures to the individual sentences
             of the comment, and return the worst score of any sentence,
             on the theory that if any sentence is poorly written then
             the whole comment is bad.

       ii. Train a language model on the news article (backing
             off to a general language model).  Does the
             comment score more highly under this language model
             than under the general language model?  (Or instead of
             comparing to the general language model, how good is
             the comment’s score if we compare it to the scores of
             other comments or a held-out portion of the original
             article?)

           Alternatively, how many n-grams in the comment
             also appeared in the article?  Gives a different
             feature for each value of n.
           Does the comment quote material from another relevant
             comment?
           Is the comment close to the document in LSA space?
           Use a topic classifier to identify topics for both the
             doc and the comment; make sure the topics match.

          Could apply any of the above measures to the individual sentences
             of the comment, and return the best score of any sentence,



             on the theory that if any sentence is relevant then the
             comment is worth keeping.

          Some of you talked about using a threshold here to decide
          whether the comment was relevant.  But you are not trying
          to make a final decision based on relevance!  You are
          just computing some practical measures of relevance that
          you can use as SOME of the features of a classifier.  The
          classifier gets to consider the actual relevance scores
          together with other features before making a final
          classification decision.

   (g) Viterbi EM: Use the current imperfect classifier to
       automatically annotate all comments that were not manually
       annotated.  Add these to the training set as if they had been
       manually annotated.  Iterate.

       Bootstrapping (self-training): Usually like Viterbi EM, except
       only add comments to the training set if the current classifier
       is quite sure of their class.

       EM: Like Viterbi EM, but count the automatic classifications
       fractionally.  If the current classifier is only 70% sure that
       the document is good, then add it to the training sets as 0.7
       of a good comment and 0.3 of a bad comment.

4. (a) p(Author=Palin | Text=B)

         p(Text=B | Author=Palin) * p(Author=Palin)
       = ------------------------------------------
         p(Text=B)

        p(Text=B | Auth=P)*p(Auth=P)
      = ---------------------------------------------------------------
        p(Text=B | Auth=P)*p(Auth=P) + p(Text=B | Auth=V)*p(Auth=V)

      Note how p(Text=B) is expanded in the denominator.
      Some people incorrectly expanded it as just
        p(Text=B | Auth=P) + p(Text=B | Auth=V)
      or equivalently as
        p_P(B) + p_V(B)
      But that sum could be greater than 1, in principle, if both
      the Palin language model and the Vincent language model tended
      to generate exactly the book B.  The probability of generating
      B is not a sum of what the two models would do, but a weighted
      average of what they would do, where the relative weights 0.1
      and 0.9 are given by the prior probability of which model it is.
      That is what is shown above.

   (b) The above posterior probability rewrites as

        p_P(B) * 0.1
       -----------------------------
        p_P(B) * 0.1 + p_V(B) * 0.9

      Requiring it to be > 0.9, we simplify to

        p_P(B) * 0.1 > p_P(B) * 0.09 + p_V(B) * 0.81
        p_P(B) * 0.01 > p_V(B) * 0.81
        p_P(B)/p_V(B) > 81

      So we will call the press if the Palin model was 81 times
      as likely to generate the text as the Vincent model was.

      But there is a quicker and more direct way to see this, in terms



      of "odds ratios."  Our plan was to call the press if the
      posterior odds are at least 9 to 1 in favor of Palin:

         p(Author=Palin | Text=B)
         --------------------------   >  9
         p(Author=Vincent | Text=B)

      Bayes Theorem implies that these posterior odds are given by the
      likelihood ratio times the prior odds.  So we can rewrite the
      condition as

         p(Text=B | Author=Palin)       p(Author=Palin)
         ------------------------    *  ---------------     >  9
         p(Text=B | Author=Vincent)     p(Author=Vincent)

      Since the second factor is 1/9, we need the first factor to
      be > 81.

      In short, the odds started out (a priori) at 9 to 1 in favor of
      Vincent.  To cancel this out and swing the odds to 9 to 1 in
      favor of Palin instead, we need Palin to have a likelihood ratio
      of 81.

  (c) Z = (exp sum_i f_i(Palin,T)*theta_i) + (exp sum_i f_i(Vincent,T)*theta_i)

  (d) i. Discriminative training.  Then some other process is assumed
         to have generated the sentence, and the only job of the
         discriminative model is to slap a label on it.

         What’s wrong with generative training here?  Suppose that Palin’s
         training corpus contains
             ... in Washington DC they ...
             ... in Washington DC they ...
             ... in Washington DC they ...
             ... in Washington they ...
         whereas an equivalent amount of Vincent’s training corpus contains
             ... in Washington DC they ...
             ... in Washington they ...
             ... in Washington they ...
             ... some other words ...

         For simplicity, let’s use only UNIGRAM models throughout this
         example, for both generative and discriminative training.

         A generative unigram approach (without smoothing) observes
         that Palin is 4/3 times as likely to generate "Washington,"
         and 3 times as likely to generate "DC."  So it thinks she is
         (4/3)*3 = 4 times as likely to generate "Washington DC."  In
         other words, adding "Washington DC" to a sentence will raise
         the generative system’s odds in favor of Palin by a factor of
         4 altogether.

         This behavior is overconfident, just as we saw in class for
         Naive Bayes.  (In fact, our UNIGRAM generative model is a
         special case of Naive Bayes!)  It treats the appearance of
         "Washington" and "DC" in the same sentence as two independent
         pieces of evidence for Palin.  But in fact they are hardly
         independent, since "DC" never occurs without "Washington."
         The unigram model is simply not a true model of the data.

         A discriminative approach instead trains the weights of the
         unigram features to work together to predict the output.  In
         this case, other things equal, it turns out that a
         discriminative log-linear model (without smoothing) would
         learn that "DC" multiplies the odds in favor of Palin by a



         factor of 6, and "Washington" multiplies those odds by a
         factor of 1/2.

         As a result, seeing "Washington DC" will multiply the odds in
         favor of Palin by a factor of (1/2)*6 = 3, which makes sense
         because she does say Washington DC three times as often.
         But seeing "Washington" without DC will actually halve
         Palin’s odds, which also makes sense because it is Vincent
         who says "Washington" without DC twice as often.

         Notice that these patterns arise simply by learning the
         interaction among unigram features.  We are not able to learn any
         bigram features, like "Washington DC" to indicate Palin, or
         "Washington they" to indicate Vincent.  In fact, we would
         take "Washington they in DC" to indicate Palin, not Vincent,
         since it contains both "Washington" and "DC" -- it has
         exactly the same unigram features as "in Washington DC they."

      ii. This favors generative training.

          The discriminative approach, as given, will incorrectly
          learn to predict Vincent with very high probability.  Most
          of the training sentences are in fact from Vincent and it is
          rewarded for getting them right.  It is simply respecting
          what it sees in training data.

          The generative models do not have any opinion about whether
          Vincent or Palin is more probable.  They only generate text
          GIVEN the author.  They are to be combined with a separate
          prior over authorship, which we can specify freely,
          independent of the corpus size.  Earlier in the problem, in
          fact, we decided to specify p(Palin)=0.1, p(Vincent)=0.9.

          (In practice, one could fix the discriminative method, for
          example, by concatenating together many copies of the Palin
          corpus until it was exactly 1/9 as big as the Vincent
          corpus.)

      iii. EM works with a generative model only.  Its goal is to
           raise the probability (reduce the perplexity) of the
           observed data.  Thus we need a generative model to
           assign some probability to the observed data.
           (The discriminative model only assigns some probability
           to the category, GIVEN the observed data.)

           EM would use its current generative models to compute the
           posterior probability that each raw sentence was written by
           Palin.  It would augment the Palin training corpus with
           these raw sentences, counting them fractionally in
           proportion to their probability of being written by Palin.
           Then it would retrain the Palin generative model on this
           augmented corpus.  It would retrain the Vincent model
           similarly.  Repeat until convergence.

      iv. Decision list: discriminative.

          Decision tree: discriminative.

          Clustering: generative.  For example, Gaussian mixture model
             clustering is an example of EM, so it only works with
             generative models (see above).  More generally,
             clustering methods are unsupervised, so they cannot be
             looking to discriminatively predict the labels in
             training data: we didn’t see the labels!  Rather, they
             are looking for parameters that would predict (explain,



             generate) the pattern that we actually saw.

   (e) A mixture model: Flip a (weighted) coin to decide which author
       would write the next sentence.  Then generate the sentence from
       that author’s n-gram model.  Notice that each sentence is
       generated independently of the others.

       A PCFG with author attributes: Instead of S -> NP VP, you’ll
       have
          S[Author=Palin]   -> NP[Author=Palin]   VP[Author=Palin]
          S[Author=Palin]   -> NP[Author=Palin]   VP[Author=Vincent]
          S[Author=Palin]   -> NP[Author=Vincent] VP[Author=Palin]
          S[Author=Palin]   -> NP[Author=Vincent] VP[Author=Vincent]
          S[Author=Vincent] -> NP[Author=Palin]   VP[Author=Palin]
          S[Author=Vincent] -> NP[Author=Palin]   VP[Author=Vincent]
          S[Author=Vincent] -> NP[Author=Vincent] VP[Author=Palin]
          S[Author=Vincent] -> NP[Author=Vincent] VP[Author=Vincent]

       These rules allow different authors for different phrases even
       within the same sentence.  However, the first and last rules
       are much more probable than the others, because most sentences
       are written by a single person.  Also, the first rule might be
       more probable than the last rule, because Palin’s writing style
       might expand S into NP VP more often than Vincent’s.

       A noisy channel model: Let’s say that Palin writes and Vincent
       edits.  So the model has the form
          p(Draft=A) * p(Text=B | Draft=A)

       i. To compute the probability of generating the text, you
          would probably take a product over all sentences in the
          text, assuming they’re independent:
                p(Text=B) = p(Text_1=B_1) * p(Text_2=B_2) * ...

          The probability of each sentence depends on the model you
          chose.

          Under the mixture model, it’s the sum of the 2 ways to
          generate the sentence:

            p(Text_i=B_i)
                =   p(Author_i=Palin)   * p(Text_i=B_i | Author_i=Palin)
                  + p(Author_i=Vincent) * p(Text_i=B_i | Author_i=Vincent)

          Under the PCFG, you’d use the inside algorithm to sum
          up all of the parses of the sentence.

          Under the noisy channel model, let’s suppose that the source
          model p(Draft_i=A_i) is given by a probabilistic FSA called
          Source, and the channel model p(Text_i=B_i | Draft_i=A_i) is given
          by a probabilistic PFST called Channel.  Then the composition
               Source .o. Channel
          is a probabilistic FST that accepts a string pair (A,B)
          with probability
              p(Draft_i=A_i) * p(Text_i=B_i | Draft=A_i)
              = p(Draft_i=A_i, Text_i=B_i)

          To get p(Text_i=B_i), you need to find all of the paths that
          produced B_i as the lower string.  Those are exactly the
          accepting paths in the FST
              Source .o. Channel .o. B_i
          and to get their total probability, you’d run the forward
          or backward algorithm over that FST.

      ii. Under the mixture model:



          The probability that Palin wrote sentence B_i is

             p(Author_i=Palin | Text_i=B_i)
                 p(Author_i=Palin)   * p(Text_i=B_i | Author_i=Palin)
               = ----------------------------------------------------
                                       p(Text_i=B_i)

          Thus, a good estimate of the fraction of words of book B
          written by Palin is

               sum_i length(B_i) * p(Author_i=Palin | Text_i=B_i)
               --------------------------------------------------
               sum_i length(B_i)

          Under the PCFG model:

          This is a similar idea.  Instead of asking which sentences
          were probably written by Palin, we want to ask which
          constituents were probably written by Palin.  Of course,
          some of the possible constituents were written by no one!

          The estimate in this case is

               sum_i sum_c length(c) * p(c | B_i)
               --------------------------------------------------
               sum_i length(B_i)

          where c ranges over possible Palin-written constituents of
          sentence B_i.  Each c is a triple such as (NP[Author=Palin],
          5, 12), where 5 and 12 are the start and end positions, and
          NP[Author=Palin] is the nonterminal.  Note that we sum over
          only nonterminals with the attribute Author=Palin.

          The probability p(c | B_i) is obtained by the inside-outside
          algorithm.

          Under the noisy channel model:

          Again, let’s assume that Palin wrote the draft and Vincent
          edited it.  In this case it’s not clear what it means
          to say that Palin wrote half of the book, but a reasonable
          idea is to say that half of the words in the final book
          were just copied from words written by Palin.

          An "easy" approach is that for each sentence B_i, you
          find
              Source .o. Channel .o. B_i
          as before.  Then you take the most probable path
          (Viterbi path) as your best guess about the draft A_i and
          its alignment to B_i.  If B_i has 20 words and this path
          says that 10 of them were emitted by arcs such as
          Alaska:Alaska that just copied one of Palin’s word,
          then we can say that Palin wrote half of this sentence.

          A slightly better approach is to use all paths instead of
          just the Viterbi path.  You can use the forward-backward
          algorithm to compute the posterior probability of each arc.
          Then by adding up the posterior probabilities of the "copy"
          arcs, we can say that an expected 10.2 words (of 20 total)
          were copies of Palin’s words.


