
Natural Language Processing (JHU 601.465/665)
Answers to "NLP Applications" practice problems

1. (a) B O O O O B I I I O
 Yoyodyne is a company in San Narciso , California .

 (b) The illegal bigrams are O I and <s> I, since the first word
 of a chunk is supposed to be tagged as B rather than I.
 These can be ruled out by setting the transition probabilities
 p(I | O) = p(I | <s>) = 0.

2. (a) ROOT -> S ROOT
 ROOT -> S

 where the first rule has some probability p and the second
 rule has probability (1-p). If p > 0, then this allows ROOT
 to rewrite as any sequence of 1 or more sentences. Of course,
 you’d better have p < 1 to avoid infinite recursion!

 (b) Increase p.

 (c) Instead use the rule ROOT -> S S S S S S (with probability 1).

 (d) You could classify every period -- or every character -- as to
 whether it ends a sentence or not. This is a binary
 classification problem. Features might include whether the
 next word is capitalized, whether the period follows a word
 that is known to be an abbreviation, whether the period appears
 to be an initial in the middle of a name, whether the period is
 only a few words away from another period (so that treating
 them both as sentence boundaries would give a very short
 sentence), etc.

3. (a) 90% precision means being nice to readers.

 (To be nice to writers, we’d want 90% recall, i.e., the system
 finds 90% of the good comments and displays them to users,
 perhaps with a lot of bad comments as well. It is possible to
 have high recall but very low precision, or vice versa.)

 (Meanwhile, choice iii. would be called 90% accuracy.)

 (b) It also needs high recall. It is very easy to get high
 precision by deleting almost everything and keeping only
 a few comments that are sure to be good.

 (c) 1. Download a selection of comments from the website.

 2. Get the publisher or some readers to annotate the comments
 as to whether they should be considered good or bad.

 One of you suggested a way around this: collect comments
 from a SIMILAR website where comments have already been
 publicly rated by the users.

 3. Divide this corpus into a large training set and a smaller
 test set.

 It is possible to also set aside some of the training set as a
 development set, but this isn’t necessary if you are going to
 do jackknifing on the training data.

 (d) Some examples:
 - decision list (benefit: easy to train;
 problem: allows one feature to force the decision

 against the objections of others)
 - decision tree (problem: features are only considered in conjunction;
 the tree can only grow to a few levels deep because
 it quickly fragments the data)
 - naive bayes (problem: assumes conditional independence of
 features. Notice that for this unigram
 feature set, it’s equivalent to measuring the
 probability of the document against UNIGRAM
 language models of good and bad comments.)
 - nearest neighbor (similarity in vector space to a training
 document or a cluster of training documents)
 (problem: curse of dimensionality -- in
 a high-dimensional space, everything looks similar;
 may need PCA to reduce dimensionality; also,
 similarity measure is sensitive to scaling of
 dimensions, and may not work well when the
 features are raw counts, as they are here)
 - log-linear, also known in this case as logistic regression
 (allows features to interact without making assumptions;
 but does not consider interactions among features
 unless specifically added)
 - perceptron or SVM
 (similar to log-linear, but trained differently)

 In all of these cases, you could choose to transform the
 collection of x vectors by PCA before you start, in order to
 reduce the number of features and smooth them. (You could
 alternatively use feature hashing to reduce the number
 of features.)

 Some of you suggested PCA all by itself. But PCA doesn’t
 classify anything; it is a technique for reducing the
 dimensionality of the feature vectors.

 Some of you also suggested EM. But EM doesn’t classify
 anything; it is a technique for coping with missing data (for
 unsupervised or semi-supervised training). In fact, here we’re
 still discussing a fully supervised problem.

 (e) - Decision list: would usually be set up to pick the majority
 class ("good comment" or "bad comment")

 - Decision tree: would be classified by some leaf that handles
 such examples

 - Naive Bayes: would pick the majority class

 - nearest neighbor: would agree with the document whose feature
 vector is close to 0 (this will lead to a tie if the "cosine
 distance" is used; it will look for short documents if Euclidean
 distance is used)

 - log-linear: would give 1/2 probability to each class, if
 there are no features other than the unigram features (but
 probably there will be a "bias" feature that favors one
 class, which then gets higher probability)

 - perceptron or SVM: similar to log-linear

 (f) i. Is it grammatical? Log-probability PER WORD under a PCFG.
 Note that looking at TOTAL log-probability of a comment
 or sentence is not a good idea, because long comments
 will score poorly on this! Also, it may be a good idea
 to divide the PCFG probability by the unigram probability,
 to correct for rare words.

 (Must make sure that the PCFG is robust, i.e., will
 not assign low probability to comments just because
 they’re comments rather than Wall Street Journal articles.)

 Does it look like well-written text? Log-probability
 per word under an n-gram language model trained on
 large amounts of such text. Similar to previous,
 but no PCFG.

 Does it look more like good comments than like bad comments?
 That is, what is its log-probability per word under a smoothed
 trigram language model trained on good comments, minus
 its log-probability per word under a similar model trained on
 bad comments? (Note that in part (c), we were only using
 unigrams.)

 Does it have a high reading level? Average number of syllables
 per word.

 Is it substantive? Length of the comment in characters or words.

 Is it correctly spelled? Fraction of words that are corrected by
 a context-sensitive spelling correction system.

 Does it use too much capitalization? If a high percentage
 of characters are capitalized, the commenter is SHOUTING.

 Does it use proper capitalization? For example, look at the
 fraction of letters following periods that are
 capitalized. This won’t be 100% even in well-written
 text, because periods are sometimes abbreviations, but
 if it is very low, that suggests a careless writer.

 Does it use proper punctuation? This is a bit hard to
 detect; you might be able to use a parser. But simply
 the presence of commas, semicolons, etc. might be helpful.

 Does it curse? Number of words appearing on a list of rude words.

 Apply any of the above measures to the individual sentences
 of the comment, and return the worst score of any sentence,
 on the theory that if any sentence is poorly written then
 the whole comment is bad.

 ii. Train a language model on the news article (backing
 off to a general language model). Does the
 comment score more highly under this language model
 than under the general language model? (Or instead of
 comparing to the general language model, how good is
 the comment’s score if we compare it to the scores of
 other comments or a held-out portion of the original
 article?)

 Alternatively, how many n-grams in the comment
 also appeared in the article? Gives a different
 feature for each value of n.
 Does the comment quote material from another relevant
 comment?
 Is the comment close to the document in LSA space?
 Use a topic classifier to identify topics for both the
 doc and the comment; make sure the topics match.

 Could apply any of the above measures to the individual sentences
 of the comment, and return the best score of any sentence,

 on the theory that if any sentence is relevant then the
 comment is worth keeping.

 Some of you talked about using a threshold here to decide
 whether the comment was relevant. But you are not trying
 to make a final decision based on relevance! You are
 just computing some practical measures of relevance that
 you can use as SOME of the features of a classifier. The
 classifier gets to consider the actual relevance scores
 together with other features before making a final
 classification decision.

 (g) Viterbi EM: Use the current imperfect classifier to
 automatically annotate all comments that were not manually
 annotated. Add these to the training set as if they had been
 manually annotated. Iterate.

 Bootstrapping (self-training): Usually like Viterbi EM, except
 only add comments to the training set if the current classifier
 is quite sure of their class.

 EM: Like Viterbi EM, but count the automatic classifications
 fractionally. If the current classifier is only 70% sure that
 the document is good, then add it to the training sets as 0.7
 of a good comment and 0.3 of a bad comment.

4. (a) p(Author=Palin | Text=B)

 p(Text=B | Author=Palin) * p(Author=Palin)
 = --
 p(Text=B)

 p(Text=B | Auth=P)*p(Auth=P)
 = ---
 p(Text=B | Auth=P)*p(Auth=P) + p(Text=B | Auth=V)*p(Auth=V)

 Note how p(Text=B) is expanded in the denominator.
 Some people incorrectly expanded it as just
 p(Text=B | Auth=P) + p(Text=B | Auth=V)
 or equivalently as
 p_P(B) + p_V(B)
 But that sum could be greater than 1, in principle, if both
 the Palin language model and the Vincent language model tended
 to generate exactly the book B. The probability of generating
 B is not a sum of what the two models would do, but a weighted
 average of what they would do, where the relative weights 0.1
 and 0.9 are given by the prior probability of which model it is.
 That is what is shown above.

 (b) The above posterior probability rewrites as

 p_P(B) * 0.1

 p_P(B) * 0.1 + p_V(B) * 0.9

 Requiring it to be > 0.9, we simplify to

 p_P(B) * 0.1 > p_P(B) * 0.09 + p_V(B) * 0.81
 p_P(B) * 0.01 > p_V(B) * 0.81
 p_P(B)/p_V(B) > 81

 So we will call the press if the Palin model was 81 times
 as likely to generate the text as the Vincent model was.

 But there is a quicker and more direct way to see this, in terms

 of "odds ratios." Our plan was to call the press if the
 posterior odds are at least 9 to 1 in favor of Palin:

 p(Author=Palin | Text=B)
 -------------------------- > 9
 p(Author=Vincent | Text=B)

 Bayes Theorem implies that these posterior odds are given by the
 likelihood ratio times the prior odds. So we can rewrite the
 condition as

 p(Text=B | Author=Palin) p(Author=Palin)
 ------------------------ * --------------- > 9
 p(Text=B | Author=Vincent) p(Author=Vincent)

 Since the second factor is 1/9, we need the first factor to
 be > 81.

 In short, the odds started out (a priori) at 9 to 1 in favor of
 Vincent. To cancel this out and swing the odds to 9 to 1 in
 favor of Palin instead, we need Palin to have a likelihood ratio
 of 81.

 (c) Z = (exp sum_i f_i(Palin,T)*theta_i) + (exp sum_i f_i(Vincent,T)*theta_i)

 (d) i. Discriminative training. Then some other process is assumed
 to have generated the sentence, and the only job of the
 discriminative model is to slap a label on it.

 What’s wrong with generative training here? Suppose that Palin’s
 training corpus contains
 ... in Washington DC they ...
 ... in Washington DC they ...
 ... in Washington DC they ...
 ... in Washington they ...
 whereas an equivalent amount of Vincent’s training corpus contains
 ... in Washington DC they ...
 ... in Washington they ...
 ... in Washington they ...
 ... some other words ...

 For simplicity, let’s use only UNIGRAM models throughout this
 example, for both generative and discriminative training.

 A generative unigram approach (without smoothing) observes
 that Palin is 4/3 times as likely to generate "Washington,"
 and 3 times as likely to generate "DC." So it thinks she is
 (4/3)*3 = 4 times as likely to generate "Washington DC." In
 other words, adding "Washington DC" to a sentence will raise
 the generative system’s odds in favor of Palin by a factor of
 4 altogether.

 This behavior is overconfident, just as we saw in class for
 Naive Bayes. (In fact, our UNIGRAM generative model is a
 special case of Naive Bayes!) It treats the appearance of
 "Washington" and "DC" in the same sentence as two independent
 pieces of evidence for Palin. But in fact they are hardly
 independent, since "DC" never occurs without "Washington."
 The unigram model is simply not a true model of the data.

 A discriminative approach instead trains the weights of the
 unigram features to work together to predict the output. In
 this case, other things equal, it turns out that a
 discriminative log-linear model (without smoothing) would
 learn that "DC" multiplies the odds in favor of Palin by a

 factor of 6, and "Washington" multiplies those odds by a
 factor of 1/2.

 As a result, seeing "Washington DC" will multiply the odds in
 favor of Palin by a factor of (1/2)*6 = 3, which makes sense
 because she does say Washington DC three times as often.
 But seeing "Washington" without DC will actually halve
 Palin’s odds, which also makes sense because it is Vincent
 who says "Washington" without DC twice as often.

 Notice that these patterns arise simply by learning the
 interaction among unigram features. We are not able to learn any
 bigram features, like "Washington DC" to indicate Palin, or
 "Washington they" to indicate Vincent. In fact, we would
 take "Washington they in DC" to indicate Palin, not Vincent,
 since it contains both "Washington" and "DC" -- it has
 exactly the same unigram features as "in Washington DC they."

 ii. This favors generative training.

 The discriminative approach, as given, will incorrectly
 learn to predict Vincent with very high probability. Most
 of the training sentences are in fact from Vincent and it is
 rewarded for getting them right. It is simply respecting
 what it sees in training data.

 The generative models do not have any opinion about whether
 Vincent or Palin is more probable. They only generate text
 GIVEN the author. They are to be combined with a separate
 prior over authorship, which we can specify freely,
 independent of the corpus size. Earlier in the problem, in
 fact, we decided to specify p(Palin)=0.1, p(Vincent)=0.9.

 (In practice, one could fix the discriminative method, for
 example, by concatenating together many copies of the Palin
 corpus until it was exactly 1/9 as big as the Vincent
 corpus.)

 iii. EM works with a generative model only. Its goal is to
 raise the probability (reduce the perplexity) of the
 observed data. Thus we need a generative model to
 assign some probability to the observed data.
 (The discriminative model only assigns some probability
 to the category, GIVEN the observed data.)

 EM would use its current generative models to compute the
 posterior probability that each raw sentence was written by
 Palin. It would augment the Palin training corpus with
 these raw sentences, counting them fractionally in
 proportion to their probability of being written by Palin.
 Then it would retrain the Palin generative model on this
 augmented corpus. It would retrain the Vincent model
 similarly. Repeat until convergence.

 iv. Decision list: discriminative.

 Decision tree: discriminative.

 Clustering: generative. For example, Gaussian mixture model
 clustering is an example of EM, so it only works with
 generative models (see above). More generally,
 clustering methods are unsupervised, so they cannot be
 looking to discriminatively predict the labels in
 training data: we didn’t see the labels! Rather, they
 are looking for parameters that would predict (explain,

 generate) the pattern that we actually saw.

 (e) A mixture model: Flip a (weighted) coin to decide which author
 would write the next sentence. Then generate the sentence from
 that author’s n-gram model. Notice that each sentence is
 generated independently of the others.

 A PCFG with author attributes: Instead of S -> NP VP, you’ll
 have
 S[Author=Palin] -> NP[Author=Palin] VP[Author=Palin]
 S[Author=Palin] -> NP[Author=Palin] VP[Author=Vincent]
 S[Author=Palin] -> NP[Author=Vincent] VP[Author=Palin]
 S[Author=Palin] -> NP[Author=Vincent] VP[Author=Vincent]
 S[Author=Vincent] -> NP[Author=Palin] VP[Author=Palin]
 S[Author=Vincent] -> NP[Author=Palin] VP[Author=Vincent]
 S[Author=Vincent] -> NP[Author=Vincent] VP[Author=Palin]
 S[Author=Vincent] -> NP[Author=Vincent] VP[Author=Vincent]

 These rules allow different authors for different phrases even
 within the same sentence. However, the first and last rules
 are much more probable than the others, because most sentences
 are written by a single person. Also, the first rule might be
 more probable than the last rule, because Palin’s writing style
 might expand S into NP VP more often than Vincent’s.

 A noisy channel model: Let’s say that Palin writes and Vincent
 edits. So the model has the form
 p(Draft=A) * p(Text=B | Draft=A)

 i. To compute the probability of generating the text, you
 would probably take a product over all sentences in the
 text, assuming they’re independent:
 p(Text=B) = p(Text_1=B_1) * p(Text_2=B_2) * ...

 The probability of each sentence depends on the model you
 chose.

 Under the mixture model, it’s the sum of the 2 ways to
 generate the sentence:

 p(Text_i=B_i)
 = p(Author_i=Palin) * p(Text_i=B_i | Author_i=Palin)
 + p(Author_i=Vincent) * p(Text_i=B_i | Author_i=Vincent)

 Under the PCFG, you’d use the inside algorithm to sum
 up all of the parses of the sentence.

 Under the noisy channel model, let’s suppose that the source
 model p(Draft_i=A_i) is given by a probabilistic FSA called
 Source, and the channel model p(Text_i=B_i | Draft_i=A_i) is given
 by a probabilistic PFST called Channel. Then the composition
 Source .o. Channel
 is a probabilistic FST that accepts a string pair (A,B)
 with probability
 p(Draft_i=A_i) * p(Text_i=B_i | Draft=A_i)
 = p(Draft_i=A_i, Text_i=B_i)

 To get p(Text_i=B_i), you need to find all of the paths that
 produced B_i as the lower string. Those are exactly the
 accepting paths in the FST
 Source .o. Channel .o. B_i
 and to get their total probability, you’d run the forward
 or backward algorithm over that FST.

 ii. Under the mixture model:

 The probability that Palin wrote sentence B_i is

 p(Author_i=Palin | Text_i=B_i)
 p(Author_i=Palin) * p(Text_i=B_i | Author_i=Palin)
 = --
 p(Text_i=B_i)

 Thus, a good estimate of the fraction of words of book B
 written by Palin is

 sum_i length(B_i) * p(Author_i=Palin | Text_i=B_i)
 --
 sum_i length(B_i)

 Under the PCFG model:

 This is a similar idea. Instead of asking which sentences
 were probably written by Palin, we want to ask which
 constituents were probably written by Palin. Of course,
 some of the possible constituents were written by no one!

 The estimate in this case is

 sum_i sum_c length(c) * p(c | B_i)
 --
 sum_i length(B_i)

 where c ranges over possible Palin-written constituents of
 sentence B_i. Each c is a triple such as (NP[Author=Palin],
 5, 12), where 5 and 12 are the start and end positions, and
 NP[Author=Palin] is the nonterminal. Note that we sum over
 only nonterminals with the attribute Author=Palin.

 The probability p(c | B_i) is obtained by the inside-outside
 algorithm.

 Under the noisy channel model:

 Again, let’s assume that Palin wrote the draft and Vincent
 edited it. In this case it’s not clear what it means
 to say that Palin wrote half of the book, but a reasonable
 idea is to say that half of the words in the final book
 were just copied from words written by Palin.

 An "easy" approach is that for each sentence B_i, you
 find
 Source .o. Channel .o. B_i
 as before. Then you take the most probable path
 (Viterbi path) as your best guess about the draft A_i and
 its alignment to B_i. If B_i has 20 words and this path
 says that 10 of them were emitted by arcs such as
 Alaska:Alaska that just copied one of Palin’s word,
 then we can say that Palin wrote half of this sentence.

 A slightly better approach is to use all paths instead of
 just the Viterbi path. You can use the forward-backward
 algorithm to compute the posterior probability of each arc.
 Then by adding up the posterior probabilities of the "copy"
 arcs, we can say that an expected 10.2 words (of 20 total)
 were copies of Palin’s words.

