
Natural Language Processing (JHU 601.465/665)

Answers to "Semantics" practice problems

1. (a) %g %x big(x), g(x)

 where % = lambda

 A "smartass answer" is %g %x big(x), hat(x),

 which ignores g.

 (b) first blank: E%x 2(x) (where E%="there exists")

 second blank: %x 1(x), 2(x)

 (c) first blank: %g %x big(x),g(x)

 second blank: %g %x red(x),g(x)

 third blank: %g E%x g(x)

2. (a) S: =>

 NP: =>

 VP: =>

 (b) every politician: lambda f . forall p . politician(p) => f(p)

 every: lambda g . lambda f . forall p . g(p) => f(p)

 (c) i. True. There is a forall or "generic" quantifier over

 "babies." See part iii. below.

 ii. False. Wouldn’t make sense. The quantifier

 is in the right place where it is.

 iii. True. The second argument of kisses should

 not be a predicate, like "babies". It should be

 a particular entity who is actually being kissed, like

 "Stewie."

 When we say "Barack kisses babies," it should mean

 something like

 most(lambda b . baby(b), lambda b . kisses(Barack,b))

 so that b refers to each individual baby in turn.

 (The actual quantifier isn’t "most" but something

 more like "typically," known as a "generic quantifier.")

 iv. False. There is nothing WRONG with

 writing kisses(x,y) in the semantics, on the

 assumption that kisses is DEFINED to be a

 function something like

 lambda x. lambda y.

 exists e . act(e,kissing), time(e,present),

 kisser(e,x), kissee(e,y)

 so that kisses(x,y) MEANS

 exists e . act(e,kissing), time(e,present),

 kisser(e,x), kissee(e,y)

 You are free to replace kisses(x,y) with its definition

 (this is like inlining a function call), but there is

 nothing WRONG with writing kisses(x,y).

 In fact, writing just kisser(x), kissee(y) would make

 things worse. That leaves out the event variable e, which

 is the only thing ensuring that the kisser and the kissee

 are involved in the same kiss.

 v. False. We can of course decide whether the first

 argument of kisses is the kisser or the kissee,

 but the tree as shown is completely consistent in

 assuming that the first argument is the kisser.

 vi. True. This is related to i. and iii. When there

 are multiple quantifiers, often there are multiple

 semantic interpretations, having to do with the

 relative order of those quantifiers. (Remember:

 "A woman has a baby every 15 minutes.")

 In this case, there is an "obvious" meaning: for every

 politician, he/she will kiss each typical baby in his

 context. Here, "forall" scopes over "generic."

 But there is another meaning where "generic" scopes

 over "forall", meaning that each typical baby is kissed

 by every politician:

 Babies are kept safe by society. Mothers feed babies.

 Schools educate babies. And every politician kisses

 babies, for a baby who is not kissed by every politician

 won’t grow up.

 Notice that this meaning goes with a slightly different

 intonation when you read the sentence.

 (d) forall p. (politician(p), met(we,p)) => kisses(p,babies))

 (e) S

 / \

 / \

 NP VP

 / \ / \

 Det N V NP

 every / \ kisses babies

 N CP/NP

 politician / \

 C S/NP

 that / \

 NP VP/NP

 we / \

 V NP/NP

 met e

 (f) (N politician that we met): lambda p. politician(p), met(we,p)

 (N politician): lambda p. politician(p)

 (CP/NP that we met): lambda g. lambda p. g(p), met(we,p)

 (S/NP we met): lambda r. met(we,r)

 (C that): lambda h. lambda g. lambda p. g(p), h(p)

