
Natural Language Processing (JHU 601.465/665)
Answers to "Deep Learning" practice problems

1. a. -\sum_{m=1}^30 log p(x_m)

      This is known as the log-loss of the model on training data.
      Note the negative sign.  Minimizing log-loss is the same as
      maximizing log-likelihood.

      You could also add a regularization term.

      Remember that for an autoregressive language model,
      p(x) is defined as a product of conditional probabilities,
      so log p(x) = log p(x1) + log p(x2|x1) + log p(x3|x1,x2) + ...
      where x1, x2, ... here represent the tokens of sentence x.

   b. reduces BIAS, but at the cost of greater VARIANCE

   c. Option 1: Use a regularization term that penalizes the
      difference between the new parameters and the old ones.
      Thus, training will be reluctant to change parameters 
      and will only do this if it substantially helps to
      predict the training examples of Trumpy English.

      Option 2: Early stopping before the parameters have
      converged.

      Either way: you have a hyperparameter to tune.  In option 1, it
      is the regularization constant.  In option 2, it is the number
      of epochs.  Either way, you can select this hyperparameter using
      a dev corpus of Trumpy English.

      Notice that choosing the hyperparameter for option 2 is very
      efficient -- you just keep training until the cross-entropy on
      the dev corpus starts getting worse.  For example, you evaluate
      on the dev course after 15 epochs of training, 16 epochs of
      training, etc.  It’s cheap to find out whether 16 epochs gives a
      good model because you don’t have to train a new model from
      scratch: just start at the 15-epoch model and train for one more
      epoch.

2. a. The matrix V, the vector theta, the word embeddings, and the
      initial hidden state vector h_0.

   b. The number of rows is d.  The number of columns is (1 + d +
   dimensionality of the word embeddings).

   c. We’ll say that the hidden vectors h_j represent the upper layer,
   so (1) can be unchanged.  Change equation (2) to replace w_j
   with g_j, where g_j is a hidden vector at the lower layer.
   Add equation (3):
        g_j = sigma(U [1; g_{j-1}; w_j])

   d. This is a tricky question!  The goal is to see how an RNN
   can track properties of the input over time, just like the FSA
   in the previous question.  We saw in class how nodes in neural 
   nets can implement AND/OR operations, and we’ll do that here.

   Note that the typesetting of this answer omits the vector arrow, 
   so it does not distinguish properly between the word w_j and
   its embedding w_j (which should have a vector arrow).

   In this answer, we will assume that a d-dimensional vector
   has indices 1...d, as indicated in the last line of the question.
   This is common in mathematical notation, in contrast to Python’s



   indices 0...(d-1).  (We accepted either style in your answer, though.)

   We can see that
       h_j[3] = sigma( v . [1; h_{j-1}; w_j] )
   if v denotes row 3 of matrix V.  

   Therefore, we need
       v . [1; h_{j-1}; w_j]
   to be strongly negative if w_j == Trump
   or if h_{j-1}[3] is close to 0 (meaning that w_i == Trump 
   for some i < j),
   but it should be strongly positive otherwise.

   We shouldn’t pay attention to the other elements of h_{j-1},
   so we can set v[2,3,5,6,...,d+1] to 0.      
   Then we have
       v . [1; h_{j-1}; w_j] = v[1]  
                               + v[4] * h_{j-1}[3]
                               + v[d+2,...] . w_j

   We want v[4] to be strongly positive so that if h_{j-1}[3]
   is close to 1 (meaning that we haven’t seen Trump yet),
   then the dot product will be strongly positive and thus
   h_j[3] will also be close to 1.

   However, this should be overridden if w_j == t, in
   which case we want v[d+2,...] . w_j to be negative enough
   to drive the dot product negative.  We can do this by
   setting v[d+2,...] = -c t for some large positive c.
   That ensures that v[d+2,...] . w_j is much more negative
   when w_j = Trump than for any other w_j (because
   when w_j = Trump, t . w_j is positive and larger than
   for any other w_j, according to the problem).

   So, choose a large c, and then solve for v[1] and v[4]
   to ensure that the dot product is (for example)
   < -5 when it is supposed to be strongly negative and
   also > 5 when it is supposed to be strongly positive.
   (This ensures that h_j[3] will be < 0.01 and > 0.99,
   respectively.)  This is a system of inequalities
   in two variables.  If there is no solution, then make
   c larger so that there is a solution.

   (Also, the initial hidden state vector h_0 should have h_0[3] = 1,
   to make the setup work.)
   
   e. To ensure that almost every sentence contains Trump, we need to
   ensure that w_{j+1} == EOS is improbable if h_0[3] = 1.  We can do
   this by setting e_{j+1}[4] to be very negative.

   Note that this is just a demonstration that the architecture has 
   the ability to achieve the desired behavior, with appropriate parameters.  
   In practice, we will rely on training to find good parameters.


