
Practice Exam Problems: Finite-State Machines
Natural Language Processing (JHU 601.465/665)

Prof. Jason Eisner

1. (a) Using xfst notation, write a regular expression for a transducer that will insert commas
into an integer for readability, breaking the digits into groups of three in the standard
way. For example, it should map the small integer 103 to 103 but map the large negative
integer-14321060 to -14,321,060.

You may assume that Digit is a predefined regular expression that matches the class
of digits (0 through 9).

(b) Let InsCommas denote a regular expression that solves question (a). You wish to build a
transducer that reads an arbitrary piece of text and inserts commas into all the integers
that appear in that text. Write a regular expression for such a transducer in terms of
InsCommas. (Hint: Directed replacement may or may not be the right approach.)

1



2. [6 points] Draw the composition of these two finite-state transducers. (The output of the left
FST serves as input to the right FST.)

0

1
a:b

2
b:c

a:b

b:c

3

4b:x

6

c:z

5
b:y

b:z

3. You have two large finite-state acceptors (FSAs). One has n states; the other has m states.
You intersect the two FSAs, hoping that this will not take too long or consume too much
memory.

(a) [3 points] What is the maximum number of states that the result could have? Why?

(b) [3 points] What is the minimum number of states that the result could have? When
would you be so lucky as to achieve this minimum?

2



4. In this question, you will use an FST to detect rhyming.

(a) [3 points] As warmup, write an XFST-style regular expression for an regular relation
that matches a pair of strings if and only if they end in the same three letters.

(Thus, your regexp would compile into an FST that will accept the pair (moon, moon)
or (moon, balloon) but reject the pair (moon, pylon). I don’t really care whether it
matches (on, on)—don’t worry about strings shorter than 3.)

(b) [4 points] Now, suppose someone gives you an FST called Ending that transduces a word
or phrase to its “rhyming ending.” Two words rhyme if they have the same rhyming
ending.

The Ending FST is not trivial. Here are some pairs that it accepts:1

(money, unny)
(funny, unny)
(sunny, unny)

(moon, oon)
(spoon, oon)
(balloon, oon)

(tablespoon, ablespoon)

(boomerang, oomerang)
(kangaroo meringue, oomerang)

(moony, oony)
(loony, oony)
(Rooney, oony)
(Sunni, oony)

(scooter, ooder)
(commuter, ooder)
(computer, ooder)
(microcomputer, ooder)

Write a regular expression Rhyme that matches a pair of words if they have the same
rhyming ending. This shouldn’t be too hard because your regexp can make use of Ending
(think of it as a “subroutine”).

(Hint: The words and their rhyming endings are quite different kinds of strings

(spelling and pronunciation). Your solution should not act as if they used the same

alphabet. It should work even with a better version of Ending that transduced from

the Roman alphabet to the International Phonetic Alphabet, i.e., (microcomputer,

uRÄ) rather than (microcomputer, ooder).)

1One of the rhymes shown appears in a poem by Ogden Nash (1902–1971):

O kangaroo, O kangaroo,
Be grateful that you’re in the zoo
And not transmuted by a boomerang
To zestful, tasty kangaroo meringue.

3



(c) [8 points] Suppose that instead of Ending, someone only gave you Pronounce, an FST
that transduces a word (or phrase) to its pronunciation. The pronunciations is written
in a style that is common in dictionaries. The syllables are conveniently separated by
-, and each stressed syllable is immediately preceded by ’.

For example, Pronounce accepts the pair (microcomputer, ’mai-kro-kum-’pyoo-der).

You are also given a simple FSA, Consonant, which accepts a string just if it is a single
consonant.

Write a regexp for Ending in terms of Pronounce and Consonant. You should be able
to figure out from the examples in part 4b what Ending ought to do, but I’ll tell you
specifically:

• use Pronounce to look up the pronunciation

• delete everything before the rightmost stressed syllable

• also delete the group of 0 or more Consonants at the start of the rightmost stressed
syllable (this group is called the onset of the syllable)

• delete all remaining ’ and - symbols, just to clean up the result so that it matches
the behavior of the previous question

For example, your Ending regexp should accept the pair (microcomputer, ooder) as
before. The pronunciation was ’mai-kro-kum-’pyoo-der, whose rightmost stressed
syllable pyoo has onset py. The transducer therefore deletes ’mai-kro-kum-’py from
the pronunciation, leaving oo-der, which it cleans up by deleting the -.

(d) [2 points] There exist words of English, such as the and of, whose pronunciations have
no stressed syllables. Question 4c didn’t specify how you should handle such words—it
was up to you.

So how did you handle them? Specifically, according to your definition of Ending (in
your answer to question 4c above), what will the Ending of such a word be? As a result,
what words will Rhyme with it?

4



(e) Suppose you are trying to (approximately) express some specific ideas in a poem, under
the constraint that the poem must rhyme. Suppose scorei(wi) evaluates how happy you
would be to end line i with word wi.

You would therefore like to find a pair of rhyming words or phrases (w1, w2) such that
score1(w1) + score2(w2) is as high as possible.

Suppose score1 has been specified by a weighted FSA, Score1. That is, score1(w1) is
defined as the total weight of the maximum-weight path in Score1 that accepts w1.

2

Similarly, score2 has been specified by Score2.

i. [4 points] How would you actually use Score1 to compute score1(kangaroo meringue)?
That is, what FSA algorithm or algorithms would you have to run?

ii. [4 points] How would you use Score1, Score2, and Rhyme to find the single best pair
(w1, w2) of rhyming words or phrases, as defined above?

Note: Your solution should work even if Score1 or Score2 can accept infinitely many
different strings (e.g., they might allow made-up words, or long phrases). In other
words, you can’t just iterate over the set of possible pairs, because that set might
be infinite. You have to use actual efficient finite-state methods that you learned in
class. ,

2Or as −∞ if there is no such path.

5



(f) [5 extra credit points] There is something a bit funny about our solution so far, because
Rhyme will match (money, money) or (computer, microcomputer). These would be
considered suitable rhymes in French poetry—but in English poetry, they are usually
considered “identities” rather than rhymes, because the final stressed syllable has the
same onset in both words.

So you would like to write a regexp StrictRhyme that accepts only rhyming pairs that
are not identities.

It is tempting to define StrictRhyme as something like Rhyme - Identity. Unfortunately,
XFST does not allow you to take the difference (or the intersection) of two regular
relations. Why not? Because as it turns out, there are “bad” cases where the result
would not be a regular relation.

However, this is not one of those “bad” cases: StrictRhyme really is a regular relation.
Thus, write a regexp for StrictRhyme. You can write it directly in terms of Pronounce,
without Rhyme.

Hint: First define an FST Change that will transduce any string to any other string.
In other words, it has the meaning [?* .x. ?*] - ?*, even though XFST doesn’t let
you write that.

6


