Abstract

Languages with rich inflectional morphology exhibit lexical data sparsity, since the word used to express a given concept will vary with the syntactic context. For instance, each count noun in Czech has 12 forms (where English uses only singular and plural). Even in large corpora, we are unlikely to observe all inflections of a given lemma. This reduces the vocabulary coverage of methods that induce continuous representations for words from distributional corpus information. We solve this problem by exploiting existing morphological resources that can enumerate a word’s component morphemes. We present a latent-variable Gaussian graphical model that allows us to extrapolate continuous representations for words from distributional corpus information. We solve this problem by exploiting existing morphological resources that can enumerate a word’s component morphemes. We present a latent-variable Gaussian graphical model that allows us to extrapolate continuous representations for words not observed in the training corpus, as well as smoothing the representations provided for the observed words. The latent variables represent embeddings of morphemes, which combine to create embeddings of words. Over several languages and training sizes, our model improves the embeddings for words, when evaluated on an analogy task, skip-gram predictive accuracy, and word similarity.

1 Introduction

Representations of words as high-dimensional real vectors have been shown to benefit a wide variety of NLP tasks. Because of this demonstrated utility, many aspects of vector representations have been explored recently in the literature. One of the most interesting discoveries is that these representations capture meaningful morpho-syntactic and semantic properties through very simple linear relations: in a semantic vector space, we observe that

\[v_{talked} - v_{talk} \approx v_{drank} - v_{drink}. \] (1)

That this equation approximately holds across many morphologically related 4-tuples indicates that the learned embeddings capture a feature of English morphology—adding the past tense feature roughly corresponds to adding a certain vector. Moreover, manipulating this equation yields what we will call the vector offset method (Mikolov et al., 2013c) for approximating other vectors. For instance, if we only know the vectors for the Spanish words \(\text{comieron} \) (ate), \(\text{comemos} \) (eat) and \(\text{bebieron} \) (drank), we can produce an approximation of the vector for \(\text{bebemos} \) (drink), as shown in Figure 1.

Many languages exhibit much richer morphology than English. While English nouns commonly take two forms – singular and plural—Czech nouns take 12 and Turkish nouns take over 30. This increase in word forms per lemma creates considerable data sparsity. Fortunately, for many languages there exist large morphological lexicons, or better yet, morphological tools that can analyze any word form—meaning that we have analyses (usually accurate) for forms that were unobserved or rare in our training corpus.

Our proposed method runs as a fast post-processor (taking under a minute to process 100-dimensional embeddings of a million observed word types) on the output of any existing tool that constructs word embeddings, such as \textsc{word2vec}.
particular slot within that paradigm). For example, with some inflectional attributes (which select a particular paradigm) together for properties such as case, gender, and number.

Many languages require every verb token to be inflected for certain properties, such as person, number, tense, and mood. A verbal paradigm such as Table 1 lists all the inflected forms of a given verb. We may refer to this verb in the abstract by its lemma, BEBER—but when using it in a sentence, we must instead select from its paradigm the word type, such as bebéis, that expresses the contextually appropriate properties. Noun tokens in a language may similarly be required to be inflected for properties such as case, gender, and number.

A content word is chosen by specifying a lemma (which selects a particular paradigm) together with some inflectional attributes (which select a particular slot within that paradigm). For example, [Lemma=EAT, Person=3, Number=SINGULAR, Tense=PRESENT] is a bundle of attribute-value pairs that would be jointly expressed in English by the word form *eats* (Sylak-Glassman et al., 2015).

The regularities observed by Mikolov et al. (2013c) hold between words with similar attribute-value pairs. In Spanish, the word *beben* “they drink” (Table 1) can be analyzed as expressing the bundle [Lemma=BEBER, Person=3, Number=PLURAL, Tense=PRESENT]. Its vector similarity to *bebemos* “we drink” is due to the fact that both word forms have the same lemma BEBER. Likewise, the vector similarity of *beben* to *comieron* “they ate” is due to the conceptual similarity of their lemmas, BEBER “drink” and COMER “eat”. Conversely, that *beben* is similar to *preguntan* “they ask” is caused by shared inflectional attributes [Person=3, Number=PLURAL, Tense=PRESENT]. Under cosine similarity, the most similar words are often related on both axes at once: e.g., one of the word forms closest to *beben* typically is *comen* “they eat”.

3 Approach

Following this intuition, we fit a directed Gaussian graphical model (GGM) that simultaneously considers (i) each word’s embedding (obtained from an embedding model like WORD2VEC) and (ii) its morphological analysis (obtained from a lexical resource). We then use this model to smooth the provided embeddings, and to generate embeddings for unseen inflections. For a lemma covered by the resource, the GGM can produce embeddings for all its forms (if at least one of these forms has a known embedding); this can be extended to words not covered using a guesser like MORFESSOR (Creutz and Lagus, 2007) or CHIP-MUNK (Cotterell et al., 2015a).

A major difference of our approach from related techniques is that our model uses existing morphological resources (e.g., morphological lexicons or finite-state analyzers) rather than semantic resources (e.g., WordNet (Miller et al., 1990) and PPDB (Ganitkevitch et al., 2013)). The former tend to be larger: we often can analyze more words than we have semantic representations for.

It would be possible to integrate our GGM into the training procedure for a word embedding system, making that system sensitive to morphological attributes. However, the postprocessing approach in our present paper lets us use any existing word embedding system as a black box. It is simple to implement, and turns out to get excellent results, which will presumably improve further as
better black boxes become available.

4 A Generative Model

Figure 2 draws our GGM’s structure as a Bayes net. In this paper, we loosely use the term “morpheme” to refer to an attribute-value pair (possibly of the form Lemma=...). Let \mathcal{M} be the set of all morphemes. In our model, each morpheme $k \in \mathcal{M}$ has its own latent embedding $m_k \in \mathbb{R}^n$. These random variables are shown as the top layer of Figure 2. We impose a IID spherical Gaussian prior on them (similar to L_2 regularization with strength $\lambda > 0$):

$$m_k \sim \mathcal{N}(0, \lambda^{-1} I), \forall k$$

Let \mathcal{L} be the lexicon of all word types that appear in our lexical resource. (The noun and verb senses of bat are separate entries in \mathcal{L}.) In our model, each word $i \in \mathcal{L}$ has a latent embedding $w_i \in \mathbb{R}^n$. These random variables are shown as the middle layer of Figure 2. We assume that each w_i is simply a sum of the m_k for its component morphemes $M_i \subseteq \mathcal{M}$ (shown in Figure 2 as w_i’s parents), plus a Gaussian perturbation:

$$w_i \sim \mathcal{N}(\sum_{k \in M_i} m_k, \Sigma_i), \forall i$$

This perturbation models idiosyncratic usage of word i that is not predictable from its morphemes. The covariance matrix Σ_i is shared for all words i with the same coarse POS (e.g., VERB).

Our system’s output will be a guess of all of the w_i. Our system’s input consists of noisy estimates v_i for some of the w_i, as provided by a black-box word embedding system run on some large corpus \mathcal{C}. (Current systems estimate the same vector for both senses of bat.) These observed random variables are shown as the bottom layer of Figure 2. We assume that the black-box system would have recovered the “true” v_i if given enough data, but instead it gives a noisy small-sample estimate

$$v_i \sim \mathcal{N}(w_i, \frac{1}{n_i} \Sigma_i'), \forall i$$

where n_i is the count of word i in training corpus \mathcal{C}.

This formula is inspired by the central limit theorem, which guarantees that v_i’s distribution would approach (4) (as $n_i \to \infty$) if it were estimated by averaging a set of n_i noisy vectors drawn IID from any distribution with mean w_i (the truth) and covariance matrix Σ_i'. A system like WORD2VEC does not precisely do that, but it does choose v_i by aggregating (if not averaging) the influences from the contexts of the n_i tokens.

The parameters $\lambda, \Sigma_i, \Sigma_i'$ now have likelihood

$$p(v) = \int p(v, w, m) \, dw \, dm,$$

where

$$p(v, w, m) = \prod_{k \in \mathcal{M}} p(m_k) \cdot \prod_{i \in \mathcal{L}} p(w_i | m_k : k \in M_i) \cdot p(v_i | w_i)$$

Here $m = \{m_k : k \in \mathcal{M}\}$ represents the collection of all latent morpheme embeddings, and similarly $w = \{w_i : i \in \mathcal{L}\}$ and $v = \{v_i : i \in \mathcal{L}\}$. We take $p(v_i | w_i) = 1$ if no observation v_i exists.

How does the model behave qualitatively? If \hat{w}_i is the MAP estimate of w_i, then $\hat{w}_i \to v_i$ as $n_i \to \infty$, but $\hat{w}_i \to \sum_{k \in M_i} m_k$ as $n_i \to 0$. This
is because (3) and (4) are in tension; when \(n_i \) is small, (4) is weaker and we get more smoothing. The morpheme embeddings \(m_k \) are largely determined from the observed embeddings \(v_i \) of the frequent words (since \(m_k \) aims via (2)–(3) to explain \(w_i \), which \(\approx v_i \) when \(i \) is frequent). That determines the compositional embedding \(\sum_{k \in M_i} m_k \) toward which the \(w_i \) of a rarer word is smoothed (away from \(v_i \)). If \(w_i \) is not observed or if \(n_i = 0 \), then \(\hat{w}_i = \sum_{k \in M_i} m_k \) exactly.

5 Inference

Suppose first that the model parameters are known, and we want to reconstruct the latent vectors \(w_i \). Because the joint density \(p(v, w, m) \) in (6) is a product of (sometimes degenerate) Gaussian densities, it is itself a highly multivariate Gaussian density over all elements of all vectors.\(^1\)

Thus, the posterior marginal distribution of each \(w_i \) is Gaussian as well. A good deal is known about how to exactly compute these marginal distributions of a Gaussian graphical model (e.g., by matrix inversion) or at least their means (e.g., by belief propagation) (Koller and Friedman, 2009).

For this paper, we adopt a simpler method—MAP estimation of all latent vectors. That is, we seek the \(w, m \) that jointly maximize (6). This is equivalent to minimizing

\[
\sum_k \lambda \| m_k \|_2^2 + \sum_i \left(\| w_i - \sum_{k \in M_i} m_k \|_{\Sigma_i}^2 + \sum \| v_i - w_i \|_{\Sigma_i}^2 \right) / n_i, \tag{7}
\]

which is a simple convex optimization problem.\(^2\)

We apply block coordinate descent until numerical convergence, in turn optimizing each vector \(m_k \) or \(w_i \) with all other vectors held fixed. This finds the global minimum (convex objective) and is extremely fast even when we have over a hundred million real variables. Specifically, we update

\[
m_k \leftarrow (\lambda I + \sum_{i \in W_k} \Sigma_i)^{-1} \sum_{i \in W_k} \Sigma_i (w_i - \sum_{j \in M_i, j \neq k} m_j),
\]

where \(\Sigma_i^{-1} \) is the inverse covariance matrix and \(W_k \equiv \{ i : k \in M_i \} \). This updates \(m_k \) so the partial derivatives of (7) with respect to the components of \(m_k \) are 0. In effect, this updates \(m_k \) to a weighted average of several vectors. Morpheme \(k \) participates in words \(i \in W_k \), so its vector \(m_k \) is updated to the average of the contributions \((w_i - \sum_{j \in M_i, j \neq k} m_j) \) that \(m_k \) would ideally make to the embeddings \(w_i \) of those words. The contribution of \(w_i \) is “weighted” by the inverse covariance matrix \(\Sigma_i \). Because of prior (2), 0 is also included in the average, “weighted” by \(\lambda I \).

Similarly, the update rule for \(w_i \) is

\[
w_i \leftarrow (n_i \Sigma_i + \Sigma_k)^{-1} (n_i \Sigma_i w_i + \Sigma_k \sum_{k \in M_i} m_k),
\]

which can similarly be regarded as a weighted average of the observed and compositional representations.\(^3\) See Appendix C for the derivations.

6 Parameter Learning

We wish to optimize the model parameters \(\lambda, \Sigma_i, \Sigma_i' \) by empirical Bayes. That is, we do not have a prior on these parameters, but simply do maximum likelihood estimation. A standard approach is the Expectation-Maximization or EM algorithm (Dempster et al., 1977) to locally maximize the likelihood. This alternates between reconstructing the latent vectors given the parameters (E step) and optimizing the parameters given the latent vectors (M step). In this paper, we use the Viterbi approximation to the E step, that is, MAP inference as described in section 5. Thus, our overall method is Viterbi EM.

As all conditional probabilities in the model are Gaussian, the M step has closed form. MLE estimation of a covariance matrix is a standard result—in our setting the update to \(\Sigma_i \) takes the form:

\[
\Sigma_i \leftarrow \frac{1}{N_c} \sum_{i \in C(i)} (w_i - \sum_{k \in M_i} m_k)(w_i - \sum_{k \in M_i} m_k)^T,
\]

where \(C(i) \) are \(i \)'s POS tags, \(N_c = | \{ i | c \in C(i) \} | \) and \(\Sigma_i \) is the matrix for the \(c \)th POS tag (the matrices are tied by POS). In this paper we simply fix \(\Sigma_i' = I \) rather than fitting it.\(^4\) Also, we tune the hyperparameter \(\lambda \) on a development set, using grid search over the values \(\{0.1, 0.5, 1.0\} \).

\(^1\)Its inverse covariance matrix is highly sparse: its pattern of non-zeros is related to the graph structure of Figure 2. (Since the graphical model in Figure 2 is directed, the inverse covariance matrix has a sparse Cholesky decomposition that is even more directly related to the graph structure.)

\(^2\)By definition, \(\| x \|_A^2 = x^T A x \).

\(^3\)If \(w_i \) is not observed, take \(n_i = 0 \). In fact it is not necessary to represent this \(w_i \) during optimization. Simply omit \(i \) from all \(W_k \). After convergence, set \(w_i \leftarrow \sum_{k \in M_i} m_k \).

\(^4\)Note that it is not necessary to define it as \(\lambda I \), introducing a new scale parameter \(\lambda' \), since doubling \(\lambda' \) would have the same effect on the MAP update rules as halving \(\lambda \) and \(\Sigma_i \).
Viterbi EM can be regarded as block coordinate descent on the negative log-likelihood function, with E and M steps both improving this common objective along different variables. We update the parameters (M step above) after each 10 passes of updating the latent vectors (section 5’s E step).

7 Related Work

Our postprocessing strategy is inspired by Faruqui et al. (2015), who designed a retrofitting procedure to modify pre-trained vectors such that their relations match those found in semantic lexicons. We focus on morphological resources, rather than semantic lexicons, and employ a generative model. More importantly, in addition to modifying vectors of observed words, our model can generate vectors for forms not observed in the training data.

Wieting et al. (2015) compute compositional embeddings of phrases, with their simplest method being additive (like ours) over the phrase’s words. Their embeddings are tuned to fit observed phrase similarity scores from PPDB (Ganitkevitch et al., 2013), which allows them to smooth and extend PPDB just as we do to \textsc{word2vec} output.

Using morphological resources to enhance embeddings at training time has been examined by numerous authors. Luong et al. (2013) used \textsc{Morfessor} (Creutz and Lagus, 2007), an unsupervised morphological induction algorithm, to segment the training corpus. They then trained a recursive neural network (Goller and Kuchler, 1996; Socher, 2014) to generate compositional word embeddings. Our model is much simpler and faster to train. Their evaluation was limited to English and focused on rare English words. dos Santos and Zadrozny (2014) introduced a neural tagging architecture (Collobert et al., 2011) with a character-level convolutional network. Qi et al. (2014) and Botha and Blunsom (2014) both use \textsc{Morfessor} to augment \textsc{word2vec} and a log-bilinear (LBL) language model (Mnih and Hinton, 2007), respectively. Similar to us, they have an additive model of the semantics of morphemes, i.e., the embedding of the word form is the sum of the embeddings of its constituents. In contrast to us, however, both include the word form itself in the sum. Finally, Cotterell and Schütze (2015) jointly trained an LBL language model and a morphological tagger (Hajič, 2000) to encourage the embeddings to encode rich morphology. With the exception of (Cotterell and Schütze, 2015), all of the above methods use \emph{unsupervised} methods to infuse word embeddings with morphology. Our approach is supervised in that we use a morphological lexicon, i.e., a manually built resource.

Our model is also related to other generative models of real vectors common in machine learning. The simplest of them is probabilistic principal component analysis (Roweis, 1998; Tipping and Bishop, 1999), a generative model of matrix factorization that explains a set of vectors via latent low-dimensional vectors. Probabilistic canonical correlation analysis similarly explains a set of pairs of vectors (Bach and Jordan, 2005).

Figure 2 has the same topology as our graphical model in (Cotterell et al., 2015b). In that work, the random variables were \texttt{strings} rather than vectors. Morphemes were combined into words by concatenating strings rather than adding vectors, and then applying a stochastic edit process (modeling phonology) rather than adding Gaussian noise.

8 Experiments

We perform three experiments to test the ability of our model to improve on \textsc{word2vec}. To re-iterate, our approach does not generate or analyze a word’s spelling. Rather, it uses an \emph{existing} morphological analysis of a word’s spelling (constructed manually or by a rule-based or statistical system) as a resource to improve its embedding.

In our first experiment, we attempt to identify a corpus word that expresses a given set of morphological attributes. In our second experiment, we attempt to use a word’s embedding to predict the words that appear in its context, i.e., the skip-gram objective of Mikolov et al. (2013a). Our third example attempts to use word embeddings to predict human similarity judgments.

We experiment on 5 languages: Czech, English, German, Spanish and Turkish. For each language, our corpus data consists of the full Wikipedia text. Table 5 in Appendix A reports the number of types and tokens and their ratio. The lexicons we use are characterized in Table 6: MorfFlex CZ for Czech (Hajič and Hlaváčová, 2013), CELEX for English and German (Baayen et al., 1993) and lexicons for Spanish and Turkish that were scraped from Wiktionary by Sylak-Glassman et al. (2015).

Given a finite training corpus C and a lexicon L, we generate embeddings v_i for all word
Table 2: The two tables show how the Gaussian graphical model (GGM) compares to various analogies on Czech nouns (left) and Spanish verbs (right). The numbers in each cell represent the accuracy (larger is better). The columns represent the inflection of the word i to be predicted. Our GGM model is the top row. The other rows subdivide the baseline analogy results according to the inflection of source word a. Abbreviations: in the Czech noun table (left), the first word indicates the case and the second the number, e.g., Dat Sg = Dative Singular. In the Spanish verb table (right), the first word is the person and number and the second the tense, e.g., 3pp Pt = 3rd-person plural past.

<table>
<thead>
<tr>
<th>GGM</th>
<th>8</th>
<th>8.8</th>
<th>4.5</th>
<th>39</th>
<th>10</th>
<th>49</th>
<th>9.4</th>
<th>8.1</th>
<th>41</th>
<th>9.5</th>
<th>0</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom Sg</td>
<td>0.2</td>
<td>0.75</td>
<td>2.1</td>
<td>0.33</td>
<td>0.83</td>
<td>0.34</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom Pl</td>
<td>0</td>
<td>0.75</td>
<td>2.1</td>
<td>0.33</td>
<td>0.83</td>
<td>0</td>
<td>0.17</td>
<td>0</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen Sg</td>
<td>0.2</td>
<td>0.75</td>
<td>2.1</td>
<td>0.33</td>
<td>0.83</td>
<td>0</td>
<td>1.2</td>
<td>1.2</td>
<td>2.3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gen Pl</td>
<td>0</td>
</tr>
<tr>
<td>Dat Sg</td>
<td>0</td>
</tr>
<tr>
<td>Dat Pl</td>
<td>0</td>
</tr>
<tr>
<td>Voc Sg</td>
<td>0</td>
</tr>
<tr>
<td>Voc Pl</td>
<td>0</td>
</tr>
<tr>
<td>Voc Pl</td>
<td>0</td>
</tr>
</tbody>
</table>

8.1 Experiment 1: Extrapolation vs. Analogy

Our first set of experiments uses embeddings for word selection. Our prediction task is to identify the unique word i ∈ C that expresses the morphological attributes M_i. To do this, we predict a target embedding x, and choose the most similar unsmoothed word by cosine distance, \(i = \text{argmax}_{j \in C} v_j \cdot x \). We are scored correct if \(i = i \).

Our experimental design ensures that \(i \not\in L \), since if it were, we could trivially find \(i \) simply by consulting \(L \). The task is to identify missing lexical entries, by exploiting the distributional properties in \(C \).

Given the input bundle \(M_i \), our method predicts the embedding \(x = \sum_{k \in M_i} m_k \), and so looks for a word \(j \in C \) whose unsmoothed embedding \(v_j \approx x \). The GGM’s role here is to predict that the bundle \(M_i \) will be realized by something like \(x \).

The baseline method is the analogy method of equation (1). This predicts the embedding \(x \) via the vector-offset formula \(v_a + (v_b - v_c) \), where \(a, b, c \in C \cap L \) are three other words sharing i’s coarse part of speech such that \(M_i \) can be expressed as \(M_a + (M_b - M_c) \).

Specifically, the baseline chooses \(a, b, c \) uniformly at random from all possibilities. (This is not too inefficient: given \(a \), at most one choice of \((b, c) \) is possible.) Note that the baseline extrapolates from the unsmoothed embeddings of 3 other words, whereas the GGM considers all words in \(C \cap L \) that share i’s morphemes.

6 An additional important hyperparameter is the number of epochs. The default value in the GENSIM implementation is 5, which is suitable for larger corpora. We use this value for Experiments 1 and 3. Experiment 2 involves training on smaller corpora and we found it necessary to set the number of epochs to 10.

7 One could in principle learn “backoff morphemes.” For instance, if borogoves is analyzed as \(\text{Lemma} = \text{OOV}_\text{NOUN}, \text{Num} = \text{Pl} \), we might want \(m_{\text{Lemma} = \text{OOV}_\text{NOUN}} \neq 0 \) to represent novel nouns.

8 The argmax selection rule does not exploit the fact that the entry is missing: it is free to incorrectly return some \(i \not\in L \).

9 More formally, \(\overline{M}_k = \sum_{\text{other morphemes}} m_k \), if we define \(\overline{M} \) by \((\overline{M})_k = 1(k \in M) \) for all morphemes \(k \in M \). This converts morpheme bundle \(M \) to a \((0, 1) \) indicator vector \(\overline{M} \) over \(M \).
<table>
<thead>
<tr>
<th>analogy</th>
<th>GGM</th>
<th>analogy</th>
<th>GGM</th>
<th>analogy</th>
<th>GGM</th>
<th>analogy</th>
<th>GGM</th>
<th>analogy</th>
<th>GGM</th>
<th>analogy</th>
<th>GGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ins<sup>P</sup></td>
<td>.067</td>
<td>.343<sup>*</sup></td>
<td>Acc<sup>0</sup></td>
<td>.131</td>
<td>.582</td>
<td>VBD</td>
<td>.052</td>
<td>.202<sup>*</sup></td>
<td>Masc<sup>5</sup></td>
<td>Part</td>
<td>.178</td>
</tr>
<tr>
<td>Gen<sup>S</sup></td>
<td>.059</td>
<td>.632<sup>*</sup></td>
<td>Nom<sup>5</sup></td>
<td>.136</td>
<td>.757<sup>*</sup></td>
<td>VBG</td>
<td>.06</td>
<td>.102<sup>*</sup></td>
<td>Fem<sup>S</sup></td>
<td>Part</td>
<td>.230</td>
</tr>
<tr>
<td>Gen<sup>P</sup></td>
<td>.078</td>
<td>.242<sup>*</sup></td>
<td>Dat<sup>P</sup></td>
<td>.074</td>
<td>.474<sup>*</sup></td>
<td>NN</td>
<td>.051</td>
<td>.080<sup>*</sup></td>
<td>Fem<sup>S</sup></td>
<td>Part</td>
<td>.242</td>
</tr>
<tr>
<td>Nom<sup>P</sup></td>
<td>.076</td>
<td>.764<sup>*</sup></td>
<td>Acc<sup>P</sup></td>
<td>.075</td>
<td>.682<sup>*</sup></td>
<td>VBN</td>
<td>.052</td>
<td>.218<sup>*</sup></td>
<td>Adj<sup>S</sup></td>
<td></td>
<td>.201</td>
</tr>
<tr>
<td>Nom<sup>S</sup></td>
<td>.066</td>
<td>.290<sup>*</sup></td>
<td>Gen<sup>P</sup></td>
<td>.075</td>
<td>.666<sup>*</sup></td>
<td>NNS</td>
<td>.052</td>
<td>.114<sup>*</sup></td>
<td>Gerund<sup>S</sup></td>
<td></td>
<td>.186</td>
</tr>
<tr>
<td>Voc<sup>P</sup></td>
<td>.063</td>
<td>.789<sup>*</sup></td>
<td>Nom<sup>P</sup></td>
<td>.064</td>
<td>.665<sup>*</sup></td>
<td>VB</td>
<td>.056</td>
<td>.275<sup>*</sup></td>
<td>Gerund<sup>P</sup></td>
<td></td>
<td>.172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Czech</th>
<th>German</th>
<th>English</th>
<th>Spanish</th>
<th>Turkish</th>
</tr>
</thead>
<tbody>
<tr>
<td>nouns</td>
<td>nouns</td>
<td>nouns & verbs</td>
<td>nouns, verbs & adj’s</td>
<td>nouns</td>
</tr>
</tbody>
</table>

Table 3: Test results for Experiment 1. The rows indicate the inflection of the test word \(i \) to be predicted (superscript \(P \) indicates plural, superscript \(S \) singular). The columns indicate the prediction method. Each number is an average over 10 training-test splits. Improvements marked with an \(* \) are statistically significant \((p < 0.05)\) under a paired permutation test over these 10 runs.

Experimental Setup: A lexical resource consists of pairs (word form \(i \), analysis \(M_i \)). For each language, we take a random 80% of these pairs to serve as the training lexicon \(\mathcal{L} \) that is seen by the GGM. The remaining pairs are used to construct our prediction problems (given \(M_i \), predict \(i \)), with a random 10% each as dev and test examples. We compare our method against the baseline method on ten such random training-test splits. We are releasing all splits for future research.

For some dev and test examples, the baseline method has no choice of the triplet \(a, b, c \). Rather than score these examples as incorrect, our baseline results do not consider them at all (which inflates performance). For each remaining example, to reduce variance, the baseline method reports the average performance on up to 100 \(a, b, c \) triples sampled uniformly without replacement.

The automatically created analogy problems \((a, b, c \rightarrow i)\) solved by the baseline are similar to those of Mikolov et al. (2013c). However, most previous analogy evaluation sets evaluate only on 4-tuples of frequent words (Nicolai et al., 2015), to escape the need for smoothing, while ours also include infrequent words. Previous evaluation sets also tend to be translations of the original English datasets—leaving them impoverished as they therefore only test morpho-syntactic properties found in English. E.g., the German analogy problems of Köper et al. (2015) do not explore the four cases and two numbers in the German adjectival system. Thus our baseline analogy results are useful as a more comprehensive study of the vector offset method for randomly sampled words.

Results: Overall results for 5 languages are shown in Table 3. Additional rows break down performance by the inflection of the target word \(i \). (The inflections shown are the ones for which the baseline method is most accurate.)

For almost all target inflections, GGM is significantly better than the analogy baseline. An extreme case is the vocative plural in Czech, for which GGM predicts vectors better by more than 70%. In other cases, the margin is slimmer; but GGM loses only on predicting the Spanish feminine singular participle. For Czech, German, English and Spanish the results are clear—GGM yields better predictions. This is not surprising as our method incorporates information from multiple morphologically related forms.

More detailed results for two languages are given in Table 2. Here, each row constrains the source word \(a \) to have a certain inflectional tag; again we average over up to 100 analogies, now chosen under this constraint, and again we discard a test example \(i \) from the test set if no such analogy exists. The GGM row considers all test examples.

Past work on morphosyntactic analogies has generally constrained \(a \) to be the unmarked (lemma) form (Nicolai et al., 2015). However, we observe that it is easier to predict one word form from another starting from a form that is “closer” in morphological space. For instance, it is easier to predict Czech forms inflected in the genitive plural from forms in nominative plural, rather than the nominative singular. Likewise, it is easier to predict a singular form from another singular form rather than from a plural form. It also is easier to predict partially syncretic forms, i.e., two inflected forms that share the same orthographic string; e.g., in Czech the nominative plural and the accusative plural are identical for inanimate nouns.
8.2 Experiment 2: Held-Out Evaluation

We now evaluate the smoothed and extrapolated representations w_i. Fundamentally, we want to know if our approach improves the embeddings of the entire vocabulary, as if we had seen more evidence. But we cannot simply compare our smoothed vectors to “gold” vectors trained on much more data, since two different runs of \textsc{word2vec} will produce incomparable embedding schemes. We must ask whether our embeddings improve results on a downstream task.

To avoid choosing a downstream task with a narrow application, we evaluate our embedding using the \textsc{word2vec} skip-gram objective on held-out data—as one would evaluate a language model. If we believe that a better score on the \textsc{word2vec} objective indicates generally more useful embeddings—which indeed we do as we optimize for it—then improving this score indicates that our smoothed vectors are superior. Concretely, the objective is

$$
\sum_s \sum_t \sum_{j \in [t-5,t+5], j \neq t} \log_2 p_{\text{word2vec}}(T_{sj} | T_{st}), \tag{8}
$$

where T_s is the sth sentence in the test corpus, t indexes its tokens, and j indexes tokens near t. The probability model p_{word2vec} is defined in Eq. (3) of (Mikolov et al., 2013b). It relies on an embedding of the word form T_{st}.\footnote{In the hierarchical softmax version, it also relies on a separate embedding for a variable-length bit-string encoding of the context word T_{sj}. Unfortunately, we do not currently know of a way to smooth these bit-string encodings (also found by \textsc{word2vec}). However, it might be possible to directly incorporate morphology into the construction of the vocabulary tree that defines the bit-strings.}

Our baseline approach simply uses \textsc{word2vec}’s embeddings (or 0 for OOV words $T_{st} \notin \mathcal{C}$). Our GGM approach substitutes “better” embeddings when T_{st} appears in the lexicon \mathcal{L} (if T_{st} is ambiguous, we use the mean w_i from all $i \in \mathcal{L}$ with spelling T_{st}).

Note that (8) is itself a kind of task of predicting words in context, resembling language modeling or a “cloze” task. Also, Taddy (2015) showed how to use this objective for document classification.

Experimental Setup: We evaluate GGM on the same 5 languages, but now hold out part of the corpus instead of part of the lexicon. We take the training corpus \mathcal{C} to be the initial portion of Wikipedia of size 10^5, 10^6, 10^7, or 10^8. (We skip the 10^8 case for the smaller datasets: Czech and Turkish). The 10^7 tokens after that are the dev corpus; the next 10^7 tokens are the test corpus.

Results: We report results on three languages in Figure 3 and all languages in Appendix B. Smoothing from v_i to w_i helps a lot, reducing perplexity by up to 48% (Czech) with 10^5 training tokens and up to 10% (Spanish) even with 10^8 training tokens. This roughly halves the perplexity, which in the case of 10^8 training tokens, is equivalent to $8 \times$ more training data. This is a clear win for lower-resource languages. We get larger gains from smoothing the rarer predicting words, but even words with frequency $\geq 10^{-4}$ benefit. (The exception is Turkish, where the large gains are confined to rare predicting words.) See Appendix B for more analysis.
<table>
<thead>
<tr>
<th></th>
<th>English</th>
<th>German</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forms / Lemma</td>
<td>1.8</td>
<td>6.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Skip-Gram</td>
<td>58.9</td>
<td>36.2</td>
<td>37.8</td>
</tr>
<tr>
<td>GGM</td>
<td>58.9</td>
<td>37.6</td>
<td>40.3</td>
</tr>
</tbody>
</table>

Table 4: Word similarity results (correlations) using the WS-353 dataset in the three languages, in which it is available. Since all the words in WS-353 are lemmata, we report the average inflected form to lemma ratio for forms appearing in the datasets.

8.3 Experiment 3: Word Similarity

As a third and final experiment, we consider word similarity using the WS-353 data set (Finkelstein et al., 2001), translated into Spanish (Hassan and Mihalcea, 2009) and German (Leviant and Reichart, 2016). The datasets are composed of 353 pairs of words. Multiple native speakers were then asked to give an integral value between 1 and 10 indicating the similarity of that pair, and those values were then averaged. In each case, we train the GGM on the whole Wikipedia corpus for the language. Since in each language every word in the WS-353 set is in fact a lemma, we use the latent embedding our GGM learns in the experiment. In Spanish, for example, we use the learned latent morpheme embedding for the lemma `BEBER` (recall this takes information from every element in the paradigm, e.g., `bebemos` and `beben`), rather than the embedding for the infinitival form `beber`. In highly inflected languages we expect this to improve performance, because to get the embedding of a lemma, it leverages the distributional signal from all inflected forms of that lemma, not just a single one. Note that unlike previous retrofitting approaches, we do not introduce new semantic information into the model, but rather simply allow the model to better exploit the distributional properties already in the text, by considering words with related lemmata together. In essence, our approach embeds a lemma as the average of all words containing that lemma, after “correcting” those forms by subtracting off their other morphemes (e.g., inflectional affixes).

Results:

As is standard in the literature, we report Spearman’s correlation coefficient ρ between the averaged human scores and the cosine distance between the embeddings. We report results in Table 4. We additionally report the average number of forms per lemma. We find that we improve performance on the Spanish and German datasets over the original skip-gram vectors, but only equal the performance on English. This is not surprising as German and Spanish have roughly 3 and 4 times more forms per lemma than English. We speculate that cross-linguistically the GGM will improve word similarity scores more for languages with richer morphology.

9 Conclusion and Future Work

For morphologically rich languages, we generally will not observe, even in a large corpus, a high proportion of the word forms that exist in lexical resources. We have presented a Gaussian graphical model that exploits lexical relations documented in existing morphological resources to smooth vectors for observed words and extrapolate vectors for new words. We show that our method achieves large improvements over strong baselines for the tasks of morpho-syntactic analogies and predicting words in context. Future work will consider the role of derivational morphology in embeddings as well as noncompositional cases of inflectional morphology.

Acknowledgments

The first author was funded by a DAAD Long-Term Research Grant. This work was also partially supported by Deutsche Forschungsgemeinschaft (grant SCHU-2246/2-2 WordGraph) and by the U.S. National Science Foundation under Grant No. 1423276.

References

Jan A. Botha and Phil Blunsom. 2014. Compositional Morphology for Word Representations and Language Modelling. In ICML.

Ryan Cotterell and Hinrich Schütze. 2015. Morphological word embeddings. In NAACL.
Ryan Cotterell, Thomas Müller, Alexander Fraser, and Hinrich Schütze. 2015a. Labeled morphological segmentation with semi-Markov models. In CoNLL.

Cícero Nogueira dos Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-speech tagging. In ICML.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and Noah A Smith. 2015. Retrofitting word vectors to semantic lexicons. In NAACL.

Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent distributed representations by backpropagation through structure. Neural Networks.

Samer Hassan and Rada Mihalcea. 2009. Cross-lingual semantic relatedness using encyclopedic knowledge. In EMNLP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b. Distributed representations of words and phrases and their compositionality. In NIPS.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013c. Linguistic regularities in continuous space word representations. In NAACL.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Liu Tie-Yan. 2014. Co-learning of word representations and morpheme representations. In COLING.

Sam Roweis. 1998. EM algorithms for PCA and SPCA. In NIPS.

John Sylak-Glassman, Christo Kirov, David Yarowsky, and Roger Que. 2015. A language-independent feature schema for inflectional morphology. In ACL.

John Wieging, Mohit Bansal, Kevin Gimpel, Karen Livescu, and Dan Roth. 2015. From paraphrase database to compositional paraphrase model and back. TACL.
Appendices

A Morphological Lexicons and Training Corpora

Here we provide additional information about the training corpora for the skip-gram model and the morphological lexicons used by our Gaussian graphical model.

<table>
<thead>
<tr>
<th></th>
<th>Tokens</th>
<th>Types</th>
<th>TTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech</td>
<td>83,048,682</td>
<td>1,663,361</td>
<td>0.02</td>
</tr>
<tr>
<td>English</td>
<td>1,778,938,441</td>
<td>7,403,109</td>
<td>0.004</td>
</tr>
<tr>
<td>German</td>
<td>609,406,708</td>
<td>8,582,032</td>
<td>0.0141</td>
</tr>
<tr>
<td>Spanish</td>
<td>396,443,513</td>
<td>6,719,014</td>
<td>0.0169</td>
</tr>
<tr>
<td>Turkish</td>
<td>58,746,962</td>
<td>2,272,946</td>
<td>0.0387</td>
</tr>
</tbody>
</table>

Table 5: The number of types and tokens and their ratio (TTR) in each Wikipedia corpus.

<table>
<thead>
<tr>
<th></th>
<th>Lexicon</th>
<th>Types</th>
<th>OOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech</td>
<td>MorfFlex</td>
<td>25,226,946</td>
<td>97.9</td>
</tr>
<tr>
<td>English</td>
<td>CELEX</td>
<td>79,208</td>
<td>2.3</td>
</tr>
<tr>
<td>German</td>
<td>CELEX</td>
<td>365,530</td>
<td>43.9</td>
</tr>
<tr>
<td>Spanish</td>
<td>Wiktionary</td>
<td>668,681</td>
<td>66.1</td>
</tr>
<tr>
<td>Turkish</td>
<td>Wiktionary</td>
<td>118,786</td>
<td>32.2</td>
</tr>
</tbody>
</table>

Table 6: Sizes of the various morphological lexicons and their origin. We note that our method is compatible with any morphologically annotated lexicon as well as finite-state analyzers that have the capacity to analyze an unbounded number of words. We also report OOV, the percentage of the types in the morphological lexicon that are not attested in the Wikipedia corpus.

B Additional Results

We include additional results for the experiment in section 8.2. In addition to showing results for all our test languages in Figure 4, we also show a different breakdown of the results in Figure 5.
Figure 4: A full version of Figure 3, with all 5 languages.

Figure 5: An alternate version of Figure 4. The aggregate curves are the same as before, but the frequency breakdown into word categories is now performed separately at each training size. These points are useful to look up or compare the performance of different word categories (novel, rare, frequent) at a given training size. However, the points along a given curve are incomparable: the \([0, 1)\) curve aggregates over many fewer types at the right than at the left. Sometimes all breakdown curves get worse at once even while their aggregate gets better, an example of Simpson’s paradox.
C Coordinate Descent Algorithm for MAP Inference

We now derive the algorithm for maximizing the posterior probability \(p(w, m | v) \). This is equivalent to minimizing (7), which is the negative log of the posterior probability plus a constant, repeated here:

\[
\mathcal{L}(w, m) = \sum_k \lambda ||m_k||_2^2 + \sum_i ||w_i - \sum_{k \in M_i} m_k||_{\Sigma_i}^2 + \sum_i ||v_i - w_i||_{\Sigma_i'/n_i}^2
\]

(9)

Recall that \(||x||_{\Sigma}^2 = x^T \Sigma x \) where \(\Sigma \overset{\text{def}}{=} \Sigma^{-1} \), the inverse covariance matrix.

We take the partial gradient with respect to a particular vector \(m_k \) (renaming the dummy variable \(k \) to \(j \)):

\[
\frac{\partial \mathcal{L}}{\partial m_k} = \frac{\partial}{\partial m_k} \left[\sum_j \lambda ||m_j||_2^2 + \sum_i ||w_i - \sum_{j \in M_i} m_j||_{\Sigma_i}^2 + \sum_i ||v_i - w_i||_{\Sigma_i'/n_i}^2 \right]
\]

(10)

\[
= \frac{\partial}{\partial m_k} \left[\sum_j \lambda ||m_j||_2^2 + \sum_i ||w_i - \sum_{j \in M_i} m_j||_{\Sigma_i}^2 \right]
\]

(11)

\[
= 2\lambda m_k + \sum_{i \in W_k} -2\Xi_i (w_i - \sum_{j \in M_i} m_j)
\]

(12)

We now set this equal to 0:

\[
0 = \lambda m_k - \sum_{i \in W_k} \Xi_i (w_i - \sum_{j \in M_i} m_j)
\]

(13)

Rearranging terms,

\[
\lambda m_k = \sum_{i \in W_k} (\Xi_i w_i - \sum_{j \in M_i} \Xi_i m_j)
\]

(14)

\[
\lambda m_k + \sum_{i \in W_k} \Xi_i m_k = \sum_{i \in W_k} (\Xi_i w_i - \sum_{j \in M_i, j \neq k} \Xi_i m_j)
\]

(15)

\[
\left(\lambda I + \sum_{i \in W_k} \Xi_i \right) m_k = \sum_{i \in W_k} (\Xi_i w_i - \sum_{j \in M_i, j \neq k} \Xi_i m_j).
\]

(16)

Finally, we arrive at the update rule for \(m_k \):

\[
m_k \leftarrow \left(\lambda I + \sum_{i \in W_k} \Xi_i \right)^{-1} \sum_{i \in W_k} \Xi_i (w_i - \sum_{j \in M_i, j \neq k} m_j).
\]

(17)

Now take the partial gradient of \(\mathcal{L} \) with respect to a particular vector \(w_i \) (renaming dummy variable \(i \) to \(j \)):

\[
\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial}{\partial w_i} \left[\sum_k \lambda ||m_k||_2^2 + \sum_j ||w_j - \sum_{k \in M_j} m_k||_{\Sigma_j}^2 + \sum_j ||v_j - w_j||_{\Sigma_j'/n_i}^2 \right]
\]

(18)

\[
= \frac{\partial}{\partial w_i} \left[\sum_j ||w_j - \sum_{k \in M_j} m_k||_{\Sigma_j}^2 + \sum_j ||v_j - w_j||_{\Sigma_j'/n_i}^2 \right]
\]

(19)

\[
= 2\Xi_i (w_i - \sum_{k \in M_i} m_k) - 2n_i \Xi_i'(v_i - w_i)
\]

(20)
Setting this equal to 0, we get

\[\sum_i (w_i - \sum_{k \in M_i} m_k) = n_i \sum_i (v_i - w_i) \]

(21)

\[(n_i \sum_i' + \sum_i) w_i = n_i \sum_i' v_i + \sum_i m_k \]

(22)

This yields the update rule

\[w_i \leftarrow (n_i \sum_i' + \sum_i)^{-1} \left(n_i \sum_i' v_i + \sum_i \sum_{k \in M_i} m_k \right) \]

(23)