Easy and Hard Constraint Ranking in OT

Jason Eisner
U. of Rochester

August 6, 2000 – SIGPHON - Luxembourg

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

The Constraint Ranking Problem

finite positive data
m items

Constraint Ranker

\(<C_3, C_1, C_2, C_5, C_4>\)
or “fail”

- Find grammar consistent with data
 (or just determine whether one exists)
- How efficient can this be?
- Different from Gold learnability
- Proposed by Tesar & Smolensky

What Is Each Input Datum?

Possibilities from Tesar & Smolensky
- A pairwise ranking \(g > h \)
- An attested form \(g \)
- An attested set \(G \)
 - 1 grammatical element - learner doesn’t know which!
 - Captures uncertainty about the representation or underlying form of the speaker’s utterance
 - Today we’ll assume learner does know underlying

Key Results

- A pairwise ranking \(g > h \) linear time in \(n \)
- An attested form \(g \) coNP-hard even with \(m=1 \)
- An attested set \(G \) \(\Sigma_2 \)-complete
 - 1 grammatical element - learner doesn’t know which!
 - Captures uncertainty about the representation or underlying form of the speaker’s utterance
 - Today we’ll assume learner does know underlying

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower
Pairwise Rankings: $g > h$

<table>
<thead>
<tr>
<th>favor h</th>
<th>favor g</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>C_2</td>
</tr>
<tr>
<td>g</td>
<td>*</td>
</tr>
<tr>
<td>h</td>
<td>**</td>
</tr>
</tbody>
</table>

Must eliminate h before $C1$ or $C2$ makes it win
C_4 or $C_5 > C_1$
C_4 or $C_5 > C_2$
Satisfying these is necessary and sufficient

More Pairwise Rankings ...

evidence from more pairs

<table>
<thead>
<tr>
<th>$g > h$</th>
<th>$g' > h'$</th>
<th>$g'' > h''$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_4 or $C_5 > C_1$</td>
<td>$C_2 > C_1$</td>
<td></td>
</tr>
<tr>
<td>C_4 or $C_5 > C_2$</td>
<td></td>
<td>C_1 or C_3 or $C_5 > C_2$</td>
</tr>
<tr>
<td>$C_2 > C_3$</td>
<td></td>
<td>$C_2 > C_3$</td>
</tr>
<tr>
<td>$C_2 > C_4$</td>
<td></td>
<td>$C_2 > C_4$</td>
</tr>
</tbody>
</table>

We'll now use Recursive Constraint Demotion (RCD)
(Tesar & Smolensky - easy greedy algorithm)

Needn't be dominated by anyone
Recursive Constraint Demotion

<table>
<thead>
<tr>
<th>$g > h$</th>
<th>$g' > h'$</th>
<th>$g'' > h''$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 or C5 (\rightarrow) C1</td>
<td>C2 (\rightarrow) C1</td>
<td></td>
</tr>
<tr>
<td>C4 or C5 (\rightarrow) C2</td>
<td>C1 or C3 or C5 (\rightarrow) C2</td>
<td></td>
</tr>
<tr>
<td>C2 (\rightarrow) C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2 (\rightarrow) C4</td>
<td>C1 or C3 or C5 (\rightarrow) C4</td>
<td></td>
</tr>
</tbody>
</table>

- How to find undominated constraint at each step?
- T&S simply search: \(O(mn)\) per search \(\Rightarrow O(mn^2)\)
- But we can do better:
 - Abstraction: Topological sort of a hypergraph
 - Ordinary topological sort is linear-time; same here!

The Constraint Ranking problem

Comparison: Constraint Demotion

- Tesar & Smolensky 1996
- Formerly same speed, but now RCD is faster
- Advantage: CD maintains a full ranking at all times
 - Can be run online (memoryless)
 - This eventually converges, but not a conservative strategy
 - Current grammar is often inconsistent with past data
 - To make it conservative:
 - On each new datum, rerank from scratch using all data (memorized)
 - Might as well use faster RCD for this
 - Modifying the previous ranking is no faster, in worst case

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower
New Problem

- Observed data: g, g', \ldots
- Must beat or tie all competitors
 - (Not enough to ensure $g > h, g' > h' \ldots$)
- Just use RCD?
 - Try to divide g's competitors h into equiv. classes
 - But can get exponentially many classes
 - Hence exponentially many blue nodes ☹

But Greedy Algorithm Still Works

- Preserves spirit of RCD
- Greedily extend grammar 1 constraint at a time
- No compilation into hypergraph
- But must run OT generation mn^2 times
 - To pick each of n constraints, check m forms under n grammars
 - We'll see that this is hard ...
- T&S's solution also runs OT generation mn^2 times
 - Error-Driven Constraint Demotion
 - For n^2 CD passes, for m forms, find (profile of) optimal competitor
 - That requires more info from generation - we’ll return to this!

Continuous Algorithms

- Simulated annealing
 - Boersma 1997: Gradual Learning Algorithm
 - Constraint ranking is stochastic, with real-valued bias & variance
- Maximum likelihood
 - Johnson 2000: Generalized Iterative Scaling (maxent)
 - Constraint weights instead of strict ranking
 - Deal with noise and free variation!
- How many iterations to convergence?

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

Complexity Classes: Boolean

X-hard \geq X-complete = hardest in X
Complexity Classes: Integer

- Integer-valued functions have classes too
 - **FP** (like P) Turing-machine polytime
 - **OptP** (like **NP** \(\exists \Psi(x) \)) \(\min (f) \)
 - **FPNP** (like **P** = \(\Delta_2 \))
- Note: **OptP**-complete \(\Rightarrow **FPNP**\)-complete
- Can ask Boolean questions about output of an **OptP**-complete function; often yields complete decision problems

OptP-complete Functions

- Traveling Salesperson
 - Minimum cost for touring a graph?
- Minimum Satisfying Assignment
 - Minimum bitstring \(b_1 b_2 \ldots b_n \) satisfying \(\phi(b_1, b_2, \ldots, b_n) \), a Boolean formula?
- Optimal violation profile in OT!
 - Given underlying form
 - Given grammar of bounded finite-state constraints
 - Clearly in **OptP**; \(\min f(x) \) where \(f \) computes violation profile
 - As hard as Minimum Satisfying Assignment

Hardness Proof

- Given formula \(\phi(b_1, b_2, \ldots, b_n) \)
- Need minimum satisfier \(b_1 b_2 \ldots b_n \) (or 11..1 if unsat)
- Reduce to finding minimum violation profile
- Let OT candidates be bitstrings \(b_1 b_2 \ldots b_n \)
- Let constraint \(C(\phi) \) be satisfied if \(\phi(b_1, b_2, \ldots, b_n) \)

<table>
<thead>
<tr>
<th>(C(\phi))</th>
<th>(C(-b_1))</th>
<th>(C(-b_2))</th>
<th>(C(-b_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>only</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>satisfies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>survive</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>past here</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Subtlety in the Proof

- Turning \(\phi \) into a DFA for \(C(\phi) \) might blow it up exponentially - so not poly reduction!
- Luckily, we're allowed to assume \(\phi \) is in CNF:
 \[\phi = D_1 \land D_2 \land \ldots \land D_m \]
 \[C(D_1) \]
 \[C(D_2) \]
 \[C(D_3) \]
 \[\ldots \]
 \[C(D_m) \]
 \[\phi \]

<table>
<thead>
<tr>
<th>(C(D_1))</th>
<th>(C(D_2))</th>
<th>(C(D_3))</th>
<th>(C(D_m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>equivalent to (C(\phi)):</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>only satisfies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>survive past here</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Another Subtlety

- Must ensure that if there is no satisfying assignment, 11..1 wins
- Modify each \(C(D_i) \) so that 11..1 satisfies it
- At worst, this doubles the size of the DFA

<table>
<thead>
<tr>
<th>(C(D_i))</th>
<th>(C(-b_1))</th>
<th>(C(-b_2))</th>
<th>(C(-b_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>equivalent to (C(\phi)):</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>only satisfies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>survive past here</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Associated Decision Problems

- OptVal
 - **FPNP**-complete
- OptVal < \(k \)
 - **NP**-complete
- OptVal = \(k \)
 - \(\Delta_2 \)-complete
- Last bit of OptVal?
 - \(\Delta_2 \)-complete
- Is \(g \) optimal?
 - **coNP**-complete
- Is some \(g \in G \) optimal?
 - \(\Delta_2 \)-complete

EDCD

RCD (mult. competitors)
Is some \(g \in G \) optimal?

- Problem is in \(\Delta_2 = \text{P}^{\text{NP}} \).
- OptVal < \(k \) is in \(\text{NP} \).
- So binary search for OptVal via \(\text{NP} \) oracle.
- Then ask oracle: \(\exists g \in G \) with profile OptVal?

Completeness:
- Given \(\phi \), we built grammar making the MSA optimal.
- \(\Delta_2 \)-complete problem: Is final bit of MSA zero?
- Reduction: Is some \(g \) in \(\{0,1\}^{10} \) optimal?
- Notice that \(\{0,1\}^{10} \) is a natural attested set.

Outline

- The Constraint Ranking problem
- Making fast ranking faster
- Extension: Considering all competitors
- How hard is OT generation?
- Making slow ranking slower

Ranking With Attested Forms

- Complexity of ranking?
- If restricted to 1 form: \(\text{coNP} \)-complete
 - no worse than checking correctness of ranking!
- General lower bound: \(\text{coNP} \)-hard
- General upper bound: \(\Delta_2 = \text{P}^{\text{NP}} \)
 - because RCD solves with \(O(mn^2) \) many checks

Ranking With Attested Sets

- Problem is in \(\Sigma_2 \) \(\exists \forall \Psi(x,y) \)
 - \(\exists \) \((\text{ranking}, g \in G) \) \(\forall : g > h \)
 - In fact \(\Sigma_2 \)-complete!
 - Proof by reduction from QSAT \(\Sigma_2 \)
 - \(\exists b_1, \ldots, b_r \forall x_1, \ldots, x_s \phi(b_1, \ldots, b_r, c_1, \ldots, c_r) \)
 - Few natural problems in this category
 - Some learning problems that get positive and negative evidence
 - OT only has implicit negative evidence: no other form can do better than the attested form

Conclusions

- Easy ranking easier than known
- Hard ranking harder than known
- Adding bits of realism quickly drives complexity of ranking through the roof
- Optimization adds a quantifier:

<table>
<thead>
<tr>
<th>generation</th>
<th>ranking</th>
<th>w/ uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivational</td>
<td>FP</td>
<td>(\text{NP-complete})</td>
</tr>
<tr>
<td>OT</td>
<td>(\text{OptP-complete})</td>
<td>(\text{coNP-hard, in } \Delta_2)</td>
</tr>
<tr>
<td></td>
<td>(\Sigma_2)-complete</td>
<td>(\Sigma_2)-complete</td>
</tr>
</tbody>
</table>

Open Questions

- Rescue OT by restricting something?
- Effect of relaxing restrictions?
- Unbounded violations
- Non-finite-state constraints
- Non-poly-bounded candidates
- Uncertainty about underlying form
- Parameterized analysis (Wareham 1998)
- Should exploit structure of Con
 - huge (linear time is too long!) but universal