Neural Hawkes Particle Smoothing:

Imputing Missing Events in Continuous-Time Event Streams

Hongyuan Mei¹, Guanghui Qin², Jason Eisner¹
¹Center for Language and Speech Processing, Department of Computer Science, Johns Hopkins University, USA
²Department of Physics, Peking University, China

Overview

Neural Hawkes process (NHP: Mei & Eisner, NeurIPS 2017)

\[p_{\text{NHP}}(z|x) = p(z|x) \times p_{\text{miss}}(z) \]

- Missingness mechanism that determines missing events \(z \)
- \(p(z|x) \): What / When / How-Many missing events?

Why? Impute past to predict future; train with Monte Carlo EM

Sequential Monte Carlo

Draw \(z_1, \ldots, z_M \) from a proposal distribution \(q(z|x) \) and weight them \(w \propto p(z|x)/q(z|x) \)

Example: stochastically impute a taxi’s pick-up events \(\star \) given its observed drop-off events \(\clubsuit \).

Below shows one sequential step, which determines the next event after \(\square \) at time \(t_1 \) --- either an unobserved event at time \(t \in (t_1, t_2) \) or the next observed event at \(t_2 \).

- Particle filtering proposes next event \(\star \) conditioned only on history summarized as \(\square \) by LSTM

Minimum Bayes Risk Decoding

Define optimal transport distance \(L(z, z^*) \)

- Aligning two events in \(z \) and \(z^* \) has cost \(|t - t^*| \)
- An unaligned event in \(z \) or \(z^* \) has cost \(C \)
- Find optimal alignment \(a \) by dynamic programming

Seek \(z \) with small expected loss

\[\sum_{m=1}^{M} w_m L(z, z_m) \]

Seeking: for each \(C \), actual improvement \(\rightarrow \) is always in the positive direction of the steepest improvement \(\rightarrow \)

Training the Proposal Distribution (only for particle smoothing)

Minimize \(\beta \text{KL}(p||q) + (1 - \beta) \text{KL}(q||p) \) between \(q(z|x) \) and \(p(z|x) \)

- \(p \) includes missingness mechanism: don’t propose what you know won’t be missing!
- Inclusive KL: learn to propose every \(z \) that is probable under \(p(z|x) \)
- Exclusive KL: learn to avoid proposing any \(z \) that is not probable under \(p(z|x) \)

Does particle smoothing help (vs. filtering)?

Each point is a single gold seq, showing \(\log q \) of proposing it under the two methods

Datasets:
- 10 synthetic (left)
- Elevator (mid)
- NYC taxi (right)