Learning and Tuning Fuzzy Logic Controllers
Through Reinforcements

Hamid R. Berenji, Member, IEEE, and Pratap Khedkar

Abstract—This paper presents a new method for learning and
tuning a fuzzy logic controller based on reinforcements from
a dynamic system. In particular, our generalized approximate
reasoning-based intelligent control (GARIC) architecture (a)
learns and tunes a fuzzy logic controller even when only weak
reinforcement, such as a binary failure signal, is available;
(b) introduces a new conjunction operator in computing the
rule strengths of fuzzy control rules; (c) introduces a new
localized mean of maximum (LMOM) method in combining the
conclusions of several firing control rules; and (d) learns to
produce real-valued control actions. Learning is achieved by
integrating fuzzy inference into a feedforward neural network,
which can then adaptively improve performance by using
gradient descent methods. We extend the AHC algorithm of
Barto, Sutton, and Anderson to include the prior control
knowledge of human operators. The GARIC architecture is
applied to a cart–pole balancing system and demonstrates
significant improvements in terms of the speed of learning and
robustness to changes in the dynamic system’s parameters over
previous schemes for cart–pole balancing.

I. INTRODUCTION

The nonlinear behavior of many practical systems
and the unavailability of quantitative data regarding
the input–output relations make the analytical modeling
of these systems very difficult. On the other hand,
approximate-reasoning-based controllers which do not require
analytical models have demonstrated a number of successful
applications, for example in the subway system in the city of
Sendai [31], in nuclear reactor control [12], and in automobile
transmission control [14]. These applications have mainly
concentrated on emulating the performance of a skilled human
operator in the form of linguistic rules. However, the process
of learning and tuning the control rules to achieve the desired
performance remains a difficult task.

Starting with the self-organizing control (SOC) techniques
of Mamdani and his students (e.g., [23]), the need for research
in developing fuzzy logic controllers which can learn from
experience has been realized (e.g., [17]). The learning task
may include the identification of the main control parameters
(better known as system identification in control theory) or the
development and tuning of the fuzzy memberships used
in the control rules. In this paper, we concentrate on the latter
learning task and develop an architecture which can learn to
adjust the fuzzy membership functions of the linguistic labels
used in different control rules.

Connectionist learning approaches [5] can be used in learning
control. Here, we can distinguish three classes: supervised
learning, reinforcement learning, and unsupervised learning.
In supervised learning, a teacher provides the desired con-

reinforcement objective at each time step to the learning system.
In reinforcement learning, the teacher’s response is not as di-
rect, immediate, and informative as in supervised learning
and serves more to evaluate the state of the system. The
presence of a teacher or a supervisor to provide the cor-
correct control response is not assumed in unsupervised learn-
ing.

If supervised learning can be used in control (e.g., when the
input–output training data are available), it has been shown
that it is more efficient than reinforcement learning (e.g., [1]
and [6]). However, many control problems require selecting
control actions whose consequences emerge over uncertain
periods for which input–output training data are not readily
available. In such domains, reinforcement learning techniques
are more appropriate than supervised learning.

The organization of this paper is as follows. We first
review some fundamentals of fuzzy logic control, reinforce-
ment learning, and credit assignment. Next, we discuss the
general architecture for generalized approximate reasoning-
based intelligent control (GARIC). This architecture addresses
two related problems. First, we introduce techniques for the
design of rule-based controllers which use qualitative lin-
guistic rules obtained from human expert controllers. Also,
we describe a controller than learns directly from experience
and automatically develops and adjusts the definitions of its
linguistic labels. Finally, we describe the application of this
architecture to the real-world control problem of cart–pole
balancing.

II. FUZZY SETS AND FUZZY LOGIC CONTROL

A fuzzy set, defined originally by Zadeh [32], is an exten-
sion of a crisp set. Crisp sets allow only full membership
or no membership at all, whereas fuzzy sets allow partial
membership. In other words, an element may partially belong
to a set. In a crisp set, the membership or nonmembership
of an element \(x \) in set \(A \) is described by a characteristic function
\(\mu_A(x) \), where

\[
\mu_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A.
\end{cases}
\]
Fuzzy set theory extends this concept by defining partial memberships, which can take values ranging from 0 to 1:

$$\mu_A : X \rightarrow [0, 1],$$

where X refers to the universal set defined in a specific problem.

Assuming that A and B are two fuzzy sets with membership functions of μ_A and μ_B, then the following operations can be defined on these sets. The complement of a fuzzy set A is a fuzzy set \bar{A} with a membership function

$$\mu_{\bar{A}} = 1 - \mu_A(x).$$

The union of A and B is a fuzzy set with the following membership function:

$$\mu_{A \cup B} = \max\{\mu_A, \mu_B\}.$$

The intersection of A and B is a fuzzy set:

$$\mu_{A \cap B} = \min\{\mu_A, \mu_B\}.$$

Different methods for developing fuzzy logic controllers have been suggested in recent years and are reviewed in [8]. In the design of a fuzzy controller, one must identify the main control parameters and determine a term set which is at the right level of granularity for describing the values of each linguistic variable. For example, a term set including linguistic values such as {Small, Medium, Large} may not be satisfactory in certain domains, and may instead require the use of a five-term set such as {Very Small, Small, Medium, Large, and Very Large}.

Fig. 1 illustrates a simple architecture for a fuzzy logic controller. The system dynamics of the plant are measured by a set of sensors. This architecture consists of four elements whose functions are described next.

In coding the values from the sensors, one transforms the values of the sensor measurements by using the linguistic labels in the rule preconditions. This process is commonly called fuzzification or encoding. The fuzzification stage requires matching the sensor measurements against the membership functions of linguistic labels.

In modeling the human expert operator’s knowledge, fuzzy control rules of the form

- **IF** Error is small **AND** Change-in-error is small **THEN** Force is small

...can be used effectively when expert human operators can express the heuristics or the control knowledge that they use in controlling a process in terms of rules of the above form.

Conflict Resolution and Decision Making:

As mentioned earlier, because of the partial matching attribute of fuzzy control rules and the fact that the preconditions of rules do overlap, more than one fuzzy control rule can fire at a time. The methodology which is used in deciding which control action should be taken as the result of the firing of several rules can be referred to as conflict resolution. The following example, using two rules, illustrates this process.

Assume that we have the following rules:

Rule 1: IF X is A_1 and Y is B_1 THEN Z is C_1

Rule 2: IF X is A_2 and Y is B_2 THEN Z is C_2

Each rule has an antecedent, of if, part containing several preconditions, and a consequent, or then, part which prescribes the value of one or more output actions. Now, if we have x_0 and y_0 as the sensor readings for fuzzy variables X and Y, then their truth values are represented by $\mu_{A_1}(x_0)$ and $\mu_{B_1}(y_0)$ respectively for rule 1, where μ_{A_1} and μ_{B_1} represent the membership function for A_1 and B_1, respectively. Similarly for rule 2, we have $\mu_{A_2}(x_0)$ and $\mu_{B_2}(y_0)$ as the truth values of the preconditions:

$$w_1 = \mu_{A_1}(x_0), \mu_{B_1}(y_0))$$

Similarly for rule 2,

$$w_2 = \mu_{A_2}(x_0), \mu_{B_2}(y_0))$$

where \wedge denotes a conjunction or intersection operator. Traditionally, fuzzy logic controllers use a minimum operator for \wedge. However, here we use a softmax operator, which produces the same result in the limit but in general is not as specific as the minimum operator (see Fig. 2). The reason for this is differentiability, which we need for learning purposes. This will be dealt with in greater detail later.

Using the softmax, the strength of rule 1 can be calculated by

$$w_1 = \frac{\mu_{A_1}(x_0)e^{-k\mu_{A_1}(x_0)} + \mu_{B_1}(y_0)e^{-k\mu_{B_1}(y_0)}}{e^{-k\mu_{A_1}(x_0)} + e^{-k\mu_{B_1}(y_0)}}.$$

Similarly for rule 2,

$$w_2 = \frac{\mu_{A_2}(x_0)e^{-k\mu_{A_2}(x_0)} + \mu_{B_2}(y_0)e^{-k\mu_{B_2}(y_0)}}{e^{-k\mu_{A_2}(x_0)} + e^{-k\mu_{B_2}(y_0)}}.$$

The control output of rule 1 is calculated by applying the matching strength of its preconditions on its conclusion. We assume that

$$z_1 = \mu_{z_1}^{-1}(w_1)$$

and, for rule 2, that

$$z_2 = \mu_{z_2}^{-1}(w_2).$$

In this paper, we introduce a new defuzzification procedure to
compute the expression $\mu^{-1}(w)$, which is explained later. The above equations show that, as a result of reading sensor values z_0 and y_0, rule 1 is recommending a control action z_2, and rule 2 is recommending a control action z_3. The combination of the above rules produces a nonfuzzy control action z^*, which is calculated using a weighted averaging approach:

$$z^* = \frac{\sum_{i=1}^{n} w_i z_i}{\sum_{i=1}^{n} w_i},$$

where n is the number of rules, and z_i is the amount of control action recommended by rule i. A similar procedure can be used for multiple output variables in the consequents.

III. REINFORCEMENT LEARNING

In reinforcement learning, one assumes that there is no supervisor to critically judge the chosen control action at each time step. The learning system is told indirectly about the effect of its chosen control action. The study of reinforcement learning relates to credit assignment, where, given the performance (results) of a process, one has to distribute reward or blame to the individual elements contributing to that performance. This may be further complicated if there is a sequence of actions, which is collectively awarded a delayed reinforcement. In rule-based systems, for example, this means assigning credit or blame to individual rules (or their parts) engaged in the problem solving process. Samuel’s checkers-playing program is probably the earliest AI program which used this idea [25]. Michie and Chambers [19] used a reward-punishment strategy in their BOXES system, which learned to do cart–pole balancing by discretizing the state space into nonoverlapping regions (boxes) and applying two opposite constant forces. Barto, Sutton, and Anderson [4] used two neuronlike elements to solve the learning problem in cart–pole balancing. In these approaches, the state space is partitioned into nonoverlapping smaller regions and then the credit assignment is performed on a local basis.

Reinforcement learning has its roots in studies of animal learning and research on human behavior (e.g., [3]). It directly relates to the theory of learning automata initiated by the work of Tsetlin [28] and further developed by Narendra and Thathachar [22], Narendra and Lakshminarayan [21], and Mendel and McLaren [18] in control engineering. Since reinforcement learning techniques do not use an explicit teacher or supervisor, they construct an internal evaluator, or critic, capable of evaluating the dynamic system’s performance. The construction of this critic so that it can properly evaluate the performance in a way which is useful to the control objective is itself a significant problem in reinforcement learning. Given the evaluation by the critic, the other problem in reinforcement learning is how to adjust the control signal. Barto [5] discusses several approaches to this problem based on the gradient of the critic’s evaluation as a function of control signals.

Temporal Difference Methods: Related to reinforcement learning are the temporal difference (TD) methods, a class of incremental learning procedures specialized for prediction problems which were introduced by Sutton [27]. The main characteristic of these methods is that they learn from successive predictions whereas in the case of supervised learning methods learning occurs when the difference between the predicted outcome and the actual outcome is revealed (i.e., the learning model in TD does not have to wait until the actual outcome is known and can update its parameters within a trial period). The difference between the temporal difference methods and the supervised learning methods becomes clear when these methods are distinguished as single-step versus multistep prediction problems. In the single-step prediction (e.g., Widrow–Hoff rule [29]), complete information regarding the correctness of a prediction is revealed at once. However, in multistep prediction, this information is not revealed until more than one step after the prediction is made, but partial information becomes available at each step. Barto et al. have recently shown a stronger relation between a specific class of these methods called TD algorithms and dynamic programming [7].

ARIC Architecture: The approximate-reasoning-based intelligent control (ARIC) architecture was proposed in [10]. This architecture extends Anderson’s method [1] by including the prior control knowledge of expert operators in terms of fuzzy control rules. In ARIC, a neural network is used to perform action and state evaluations. Also, two coupled neural networks are used to select a control action at each time step; the first network uses fuzzy inference to recommend an action and the second network calculates a degree to which the action recommended by the first network should be modified. The ARIC architecture tunes its fuzzy controller through updating the weights on the links in these networks. As this learning proceeds, the action recommended by the fuzzy controller is followed more often. Only monotonic membership functions are used in ARIC, and the fuzzy rules used in the control rules are adjusted locally within each rule. However, in the architecture presented next, we provide an algorithm to tune the fuzzy labels globally in all the rules and allow any type of differentiable membership function to be used in the construction of a fuzzy logic controller.
IV. THE GARIC ARCHITECTURE

Our system will determine a control action by using a neural network which implements fuzzy inference. In this way, prior expert knowledge can be easily incorporated. This knowledge is allowed to be faulty or damaged. Another neural net will learn to become a good evaulator of the current state and will serve as an internal critic. Both networks will adapt their weights concurrently so as to improve performance.

The architecture of GARIC is schematically shown in Fig. 3. It has three components:

- The action selection network (ASN) maps a state vector into a recommended action, \(F \), using fuzzy inference.
- The action evaluation network (AEN) maps a state vector and a failure signal into a scalar score which indicates state goodness. This is also used to produce internal reinforcement, \(\hat{r} \).
- The stochastic action modifier (SAM) using both \(F \) and \(\hat{r} \) to produce an action \(F' \), which is applied to the plant.

The ensuing state is fed back into the controller, along with a Boolean failure signal. Learning occurs by fine-tuning the free parameters in the two networks: in the AEN, the weights are adjusted; in the ASN, the parameters describing the fuzzy membership functions change.

A. The Action Evaluation Network

The AEN plays the role of an adaptive critic element (ACE) [4] and constantly predicts reinforcements associated with different input states. The only information received by the AEN is the state of the physical system in terms of its state variables and whether or not a failure has occurred.

The AEN is a standard two-layer feedforward net with sigmoids everywhere except in the output layer. The input is the state of the plant, and the output is an evaluation of the state (a score), denoted by \(v \). This value \(v \) is suitably discounted and combined with the external failure signal to produce internal reinforcement, \(\hat{r} \).

The structure of an evaluation network includes \(h \) hidden units and \(n \) input units from the environment, together with a bias unit (i.e., \(x_0, x_1, \ldots, x_n \)). In this network, each hidden unit receives \(n + 1 \) inputs and has \(n + 1 \) weights, while each output unit receives \(n + h + 1 \) inputs and has \(n + h + 1 \) weights.

This structure is shown in Fig. 4. The learning algorithm is composed of Sutton’s AHC algorithm [26] for the output unit and the error back-propagation algorithm [24] for the hidden units.

The AEN produces a prediction of future reinforcement for a given state, and the changes in this prediction are used to guide the SAM in selecting actions. For example, if we move from a state with prediction of low reinforcement to a state with prediction of higher reinforcement, this positive change, also called heuristic or internal reinforcement, is used to reinforce the selection of the action which caused this move.

The output of the units in the hidden layer is

\[
y_i[t+1] = g \left(\sum_{j=1}^{n} a_{ij}[t] x_j[t+1] \right),
\]

where

\[
g(s) = \frac{1}{1 + e^{-s}}
\]

and \(t \) and \(t + 1 \) are successive time steps. The output unit of the evaluation network receives inputs from both units in the hidden layer (i.e., \(y_i \)) and directly from the units in the input layer (i.e., \(x_i \)):

\[
v[t+1] = \sum_{i=1}^{n} b_i[t] x_i[t+1] + \sum_{i=1}^{n} c_i[t] y_i[t, t+1],
\]

where \(v \) is the prediction of reinforcement. In the above equations (and the equations which follow), double time dependencies are used to avoid instabilities in the updating of weights [2]. For example, in the above equation, the weights at time \(t \) are multiplied by the \(x_i \)’s at time \(t + 1 \). If the same time index is used, then we cannot detect whether the change in \(v \) was caused by the change in the weights (i.e., \(b_i \) and \(c_i \)) or by the change in the state of the system (i.e., \(x_i \)). Writing the equation as shown above with different time steps allows us to compare different \(v \)'s over times and notice whether the system has moved to a better state (i.e., higher reinforcement) or to a worse state (i.e., lower reinforcement).

This network evaluates the action recommended by the action network as a function of the failure signal and the change in state evaluation based on the state of the system.
at time $t+1$:

$$r[t+1] = \begin{cases} 0 & \text{start state} \\ r[t+1] - v[t,t] & \text{failure state} \\ r[t+1] + \gamma v[t,t+1] - v[t,t] & \text{otherwise}, \end{cases}$$

(4)

where $0 \leq \gamma \leq 1$ is the discount rate. In other words, the change in the value of v plus the value of the external reinforcement constitutes the heuristic or internal reinforcement, r, where the future values of v are discounted more the further they are from the current state of the system. For example, the value of v generated one time step later is given less weight than the current value of v. This method of estimating reinforcement gives an approximate exponential trace of v, where the series is truncated after two terms.

B. Action Selection Network

Given the current state of the plant, this network selects an action by implementing an inference scheme based on fuzzy control rules as explained in Section II. It can be represented as a network with five layers of nodes, each layer performing one stage of the fuzzy inference process (see Fig. 5). The connections are feedforward, with each node performing a local computation. However, this computation may be different from the conventional weighted sum of inputs.

Layer 1 is the input layer, consisting of the real-valued input variables. These can also be thought of as the linguistic variables of interest. No computation is done at these nodes.

Layer 2 node corresponds to one possible value of one of the linguistic variables in layer 1, e.g., if *large* is one of the values that x can take, a node computing $\mu_{\text{large}}(x)$ belongs to layer 2. It will have exactly one input, and will feed its output to all the rules using the clause if x is large in their if part.

The function is given by

$$\mu_{c,v,L,v,R}(x),$$

where V indicates a linguistic value (e.g., *large*), and c, s_L, and s_R correspond to the center, left spread, and right spread of the fuzzy membership function of label V. c serves as a reference point (the mode), and the spreads characterize length scales on either side of the center, thus permitting asymmetry. More parameters may be included if desired. An instance of a smooth membership function is

$$\mu(x) = 1 \left[1 + \frac{|x-c|}{b} \right],$$

where $s = s_L$ or s_R accordingly as $x < c$ or $x \geq c$ and b controls the curvature. For triangular shapes, this function is given by

$$\mu_{c,s_L,s_R}(x) = \begin{cases} 1 - |x-c|/s_L, & x \in [c, c+s_R] \\ 1 - |x-c|/s_R, & x \in [c-s_L, c] \\ 0 & \text{otherwise}. \end{cases}$$

(5)

Triangular shapes are to be preferred because they are simple and have been proved to be sufficient in scores of application domains. The center and spreads may be considered as weights on the input links, analogous to the approach taken with radial-basis-function units in neural networks [20].

Layer 3 implements the conjunction of all the antecedent conditions in a rule. A node in layer 3 corresponds to a rule in the rule base. Its inputs come from all nodes in layer 2 which participate in the if part of that rule. The node itself performs the min operation, which we have softened to the following continuous, differentiable softmin operation:

$$O_{R} = w_r = \sum_i \mu_i e^{-k_{\mu_i}} = \sum_i e^{-k_{\mu_i}}.$$

(6)

Here, μ_i is the degree of match between a fuzzy label occurring as one of the antecedents of rule r and the corresponding input variable. This softmin operation gives w_r, the degree of applicability of rule r. The parameter k controls the hardness of the softmin operation, and as $k \to \infty$ we recover the usual min operator. However, for k finite, we get a differentiable function of the inputs, which makes it convenient for calculating gradients during the learning process. The choice of k is not critical.

Layer 4 node corresponds to a consequent label. Its inputs come from all rules which use this particular consequent label. For each of the w_r supplied to it, this node computes the corresponding output action as suggested by rule r. This mapping may be written as

$$\mu_{c,v,L,v,R}^{-1}(w_r),$$

where V indicates a specific consequent label, c, s_L, and s_R parameterize the membership function as before, and the inverse is taken to mean a suitable defuzzification procedure applicable to an individual rule. In general, the mathematical inverse of μ may not exist if the function is not strictly monotonic. We propose a simple procedure to determine this inverse: if w_r is the degree to which rule r is satisfied, then $\mu^{-1}_{\nu}(w_r)$ is the X-coordinate of the centroid of the set $\{ x : \nu(x) \geq w_r \}$.

This is similar to the mean-of-maximum method of defuzzification [8], but the latter is applied after all rule consequents have been combined, whereas we apply it locally, to each rule, before the consequents are combined. We will refer to this
variation as the LMOM (local mean-of-maximum) method\(^2\) (see Fig. 6).

For triangular functions, LMOM gives

\[
\mu_{t, s_{VR}, s_{VL}}^{-1}(w_r) = \frac{1}{2} \left(s_{VR} - s_{VL} \right) (1 - w_r).
\]

For the case \(w_r = 0\), the limiting value of \(\mu^{-1}(w_r \to 0^+)\) is used (which is \(c_v + (s_{VL} - s_{VR})/2\)). It is easy to see that the set \(\mu^{-1}([0, 1])\) is the projection of the median of the triangular membership function on the \(X\) axis. If the membership function is monotonic, then \(\mu^{-1}(w_r)\) is just the standard mathematical inverse, with appropriate limiting values.

The unusual feature of a unit in layer 4 is that it may have multiple outputs carrying different values, since sharing of consequent labels is allowed. For each rule feeding it a degree, it should produce a corresponding output action which is fed to the next layer. However, this nonstandard feature can be eliminated for many classes of membership functions. For triangular functions, such a node needs to output only the value

\[
O_{V4} = \left(c_v + \frac{1}{2} (s_{VR} - s_{VL}) \right) \left(\sum_r w_r \right) - \frac{1}{2} (s_{VR} - s_{VL}) \left(\sum_r w^2_r \right).
\]

In general, whenever \(\mu^{-1}(x)\) is polynomial in \(x\), only one output is sufficient, regardless of the number of inputs. This transformation is possible because of the form of the computation done in the next layer.

Layer 5 will have as many nodes as there are output action variables. Each output node combines the recommendations from all the fuzzy control rules in the rule base, using the following weighted sum, the weights being the rule strengths:

\[
F = \frac{\sum_r w_r \mu^{-1}(w_r)}{\sum_r w_r}.
\]

By taking advantage of the transformation used in layer 4, this may be rewritten as

\[
F = \frac{\sum_{V} O_{V4}}{\sum_{R} O_{R3}},
\]

where the inputs come from layer 3 and layer 4. The node simply sums up each set of inputs and takes their quotient. This delivers a continuous output variable value which is the action selected by the ASN. \(F\) will always be defined if each dimension of the input space is completely covered by the antecedent label functions.

Modifiable weights are present on input links into layers 2 and 4 only. The other weights are fixed at unity. This means that the gradient descent procedure effectively works on only two layers of weights, rather than all five.

\(^2\)Although LMOM was independently derived in our work, we were referred to Yager's level set method [30] later on by a reviewer of this paper. The LMOM and level set methods are similar in nature although Yager [30] does not discuss the case for skewed and convex fuzzy sets in any detail.

C. Stochastic Action Modifier

This uses the values of \(\dot{r}\) from the previous time step and the action \(F\) recommended by the ASN to stochastically generate an action, \(F'\), which is a Gaussian random variable with mean \(F\) and standard deviation \(\sigma(\dot{r}(t - 1))\). This \(\sigma()\) is some nonnegative, monotonically decreasing function, e.g. \(\exp(-\dot{r})\). The action \(F'\) is what is actually applied to the plant. The stochastic perturbation in the suggested action leads to a better exploration of state space and better generalization ability. The magnitude of the deviation \(|F' - F|\) is large when \(\dot{r}\) is low, and small when the internal reinforcement is high. The result is that a large random step away from the recommendation results when the last action performed is bad, but the controller remains consistent with the fuzzy control rules when the previous action selected is a good one. The actual form of the function \(\sigma()\), especially its scale and rate of decrease, should take the units and range of variation of the output variable into account.

The perturbation at each time step is denoted

\[
s(t) = \frac{F'(t) - F(t)}{\sigma(\dot{r}(t - 1))}
\]

and is simply the normalized deviation from the ASN-recommended action. This will contribute as a learning factor in the ASN.

V. LEARNING MECHANISMS

A. Learning in AEN

Weight updating in this network is similar to a reward/punishment scheme for neural networks. If positive (negative) internal reinforcements are received, the values of the weights are rewarded (punished) by being changed in the direction which increases (decreases) its contribution to the total sum. The weights on the links connecting the units in the input layer directly to the units in the output layer are updated according to the following:

\[
b_{ij}[t + 1] = b_{ij}[t] + \beta \dot{r}[t + 1] x_i[t]
\]

where \(\beta > 0\) is a constant and \(\dot{r}[t + 1]\) is the internal reinforcement at time \(t + 1\).
Similarly, for the weights on the connections between the hidden layer and the output layer, we have
\[c_{i}[t + 1] = c_{i}[t] + \beta \hat{r}[t + 1]y_{i}[t, t]. \] (13)

The weight update function for the hidden layer is based on a modified version of the error back-propagation algorithm [24]. Since no direct error measurement is possible (i.e., knowledge of correct action is not available), as in Anderson [1], \(\hat{r} \) plays the role of an error measure in the update of the output unit's weights: if \(\hat{r} \) is positive, the weights are altered so as to increase the output \(v \) for positive input, and vice versa. Therefore, the equation for updating the weights is
\[a_{ij}[t + 1] = a_{ij}[t] + \beta \hat{r}[t + 1]y_{i}[t, t] \]
\[\cdot (1 - y_{i}[t, t]) \text{sgn}(c_{i}[t])x_{j}[t], \] (14)
where \(\beta > 0 \). Note that in the above equation, the sign of a hidden unit's output weight, rather than its value, is used. This variation is based on Anderson's empirical result that the algorithm is more robust if the sign of the weight is used rather than its value.

B. Learning in ASN

The ASN is a map from input to output space, denoted \(F_p(x) \). Here, \(p \) is the vector of all the weights in the network, which includes the centers and spreads of all antecedent and consequent labels used in the fuzzy rules. The intent of computing \(F \) is to maximize \(v \), so that the system ends up in a good state and avoids failure. Hence, \(v \) is the objective function which needs to be maximized as a function of \(p \), given the state. This can be done by gradient descent, which estimates the derivative \(\partial v / \partial p \), and uses the learning rule
\[\Delta p = \frac{\partial v}{\partial p} = \eta \frac{\partial v}{\partial F} \frac{\partial F}{\partial p} \] (15)
to adjust the parameter values. To do this, we need the two derivatives on the right-hand side, which, in general, will depend on the state.

Even though \(F \) is directly dependent on \(p \), the dependence of \(v \) on \(F \) is quite indirect. Each application of the force \(F \) is state specific, and the new state depends in a complicated way on the dynamics of the plant. In addition, the transfer function of the AEN has to be taken into account to see how the change in state affects \(v \). Since part of this is unknown, and part of it is computationally complex, we have made the approximation that \(\partial v / \partial F \) can be computed by the instantaneous difference ratio
\[\frac{\partial v}{\partial F} \approx \frac{dv}{dF} \approx \frac{v(t) - v(t - 1)}{F(t) - F(t - 1)}. \] (16)

Since this ignores the change in state between successive time steps, it is a very crude estimator of the derivative. We will therefore use only its sign, not its magnitude. Of course, the existence of the derivative is an implicit assumption as well.

The other term, \(\partial F / \partial p \), is much more tractable. Since \(F \) is known and differentiable, a few applications of the chain rule through the five layers of the ASN give the following set of learning rules. In what follows, Con(\(R_i \)) and Ant(\(R_i \)) are the consequent and antecedent labels used by rule \(i \). A label \(V \) is parameterized by \(p_v \), which may be one of center, left spread, or right spread.

For consequent labels \(V \) with parameters \(p_v \), with \(z \) standing for \(\mu^{-1} \), the action \(F \) is linear in \(p_v \), but nonlinear in \(w_i \). Substituting for \(z_i \) using (7), and differentiating,
\[F = \sum_{i} w_i z_i \]
\[z_i(\mu_i) = \mu_i + \frac{1}{2} (s_{VR} - s_{VL})(1 - \mu_i) \]
\[\frac{\partial F}{\partial p_v} = \sum_{i} w_i \frac{\partial z_i}{\partial p_v} \] (17)
\[\frac{\partial z_i}{\partial p_v} = \frac{1}{2} (1 - \mu_i) \] (18)
\[\frac{\partial F}{\partial \mu_i} = \frac{1}{2} (1 - \mu_i) \] (19)
\[\frac{\partial z_i}{\partial \mu_i} = -\frac{1}{2} (1 - \mu_i) \] (20)
\[\frac{\partial z_i}{\partial s_{VR}} = \frac{1}{2} (1 - \mu_i) \] (21)
\[\frac{\partial z_i}{\partial s_{VL}} = \frac{1}{2} (1 - \mu_i) \] (22)

These derivatives can be combined to compute \(\partial F / \partial p_v \). If only consequent labels are to be tuned, this is all that needs to be calculated. In many problems, this may be sufficient as well, since some error in the specification of antecedent labels can be compensated for by modifying the consequent labels.

For antecedent labels, the calculations proceed similarly. The action depends on the degrees \(w_i \), which in turn depend on the membership degrees \(\mu_i \) generated in layer 2:
\[\frac{\partial F}{\partial w_i} = \mu_i z_i(\mu_i) + z_i'(\mu_i) - F \]
\[\frac{\partial F}{\partial \mu_i} = \frac{1}{2} e^{-k \mu_i (1 + k(\mu_i - \mu_i))} \]
\[\frac{\partial F}{\partial \mu_i} = \sum_{i} e^{-k \mu_i} \]
\[\frac{\partial F}{\partial \mu_i} = \sum_{i} \frac{\partial F}{\partial w_i} \frac{\partial w_i}{\partial \mu_i} \]
(23)
(24)
(25)

Where \(z_i'(\mu_i) \) is the derivative with respect to \(w_i \).

These are the variables controlled by the parameters of the antecedent labels:
\[\frac{\partial F}{\partial p_v} = \frac{\partial F}{\partial \mu_i} \frac{\partial \mu_i}{\partial p_v} \]
\[\frac{\partial v}{\partial F} \approx \text{sgn}(v(t) - v(t - 1)) \]
(26)
(27)

The above derivatives can now be combined to obtain the gradient:
\[\frac{\partial v}{\partial p_v} = \frac{\partial v}{\partial F} \frac{\partial F}{\partial p_v}. \]
(28)

An appropriate multiplicative learning rate factor is used with this estimation of the gradient. This consists of the perturbation, \(s(t) \), computed by the stochastic action modifier, and the internal reinforcement, \(\hat{r} \), generated by the AEN, in
addition to a constant, η, which is set to a small positive value. The reason for using $s(t)\dot{r}(t)$ as a learning factor is that if a large perturbation results in a good action, then there should be an extra reward given to the weights, since probabilistic search has really helped the system in this case. Conversely, if the large random deviation is not beneficial, then it should have minimal effect on the weights.

Since we are interested in maximizing v,

$$\Delta p_V(t) = \eta s(t)\dot{r}(t) \frac{\partial v}{\partial p_V}$$

(29)

is the learning equation. The derivatives can be computed locally by each node after receiving relevant values back-propagated through the network. The only nodes whose weights will change are those in layers 2 and 4. All other edges have weights fixed at 1.

A word about the existence of these derivatives. If the $\mu_L(*)$ used in layer 2 are differentiable everywhere, then all the relevant derivatives will exist. However, for triangular membership functions, the derivative does not exist at three points, since the two limits are not equal at these points. The formally rigorous way to handle this is to consider the convex combination of all the gradients at the singular point, and to pick the one direction from this set that benefits the optimization algorithm most. A heuristic approximation to this scheme is to use an average of the two limits for the derivative at the singular points. We have chosen the simpler heuristic approach. Note that such a problem does not arise in layer 4 functions, since the L MOM method to compute $\mu_4(*)$ gives a differentiable function, even if the corresponding μ_4 is triangular in shape.

The other potential problem with derivatives in gradient descent methods is flat spots. When $\partial F/\partial p_V$ is 0 because the inputs lie outside the range of μ_V, no learning will occur for p_V. Strictly speaking, this is reasonable since V played no role in determining the action for this particular input. However, if the input data are confined to a portion of the input space such that V does not play any role at all, then the parameters controlling V will not be modified. In other words, the system will fail to generalize over parts of input space where there are little or no data available. This problem is partially avoided by using the stochastic action modifier, which randomly perturbs the action performed so that the state trajectory of the system will not remain confined to a region of small volume. In our experiments, we have also used random starting configurations after a failure occurs. This removes sensitive dependence of the learning system on initial conditions.

Slow learning may also occur because the process is caught in a narrow ravine with a gradually sloping bottom (as is known to happen with gradient descent methods in neural networks). This can be avoided by using a momentum term [24] or some sort of line-search technique to determine the optimal step size at each point [15]. We have not used any of these methods in our simulations because we did not encounter prohibitively slow learning. However, since a standard gradient descent is being used, any of these variations and additions to speed it up can always be used.

VI. THE CART–POLE BALANCING PROBLEM

We now apply the GARIC approach to an interesting control problem. In this problem a pole is hinged to a motor-driven cart which moves on rail tracks to its right or its left. The pole has only one degree of freedom (rotation about the hinge point). The primary control tasks are to keep the pole vertically balanced and to keep the cart within the rail track boundaries.

Four state variables are used to describe the system status, and one variable represents the force applied to the cart. These are:

- x: horizontal position of the cart;
- \dot{x}: velocity of the cart;
- θ: angle of the pole with respect to the vertical line;
- $\dot{\theta}$: angular velocity of pole θ;
- f: force applied to the cart.

The dynamics of the cart–pole system are modeled by the following nonlinear differential equations [4]:

$$\ddot{\theta} = \frac{g \sin \theta + \cos \theta \left(-f - mb \ddot{x} \sin \theta + p \sgn(\dot{x}) \right)}{m \left(l^2 + m \sin^2 \theta \right)} - \frac{\mu g l \dot{\theta}}{m}$$

$$\dot{x} = \frac{f + ml \left(\ddot{x} \sin \theta - \dot{\theta} \cos \theta \right) - \mu e \sgn(\dot{x})}{m_e + m}$$

where g is the acceleration due to gravity, m_e is the mass of the cart, m is the mass of the pole, l is the half-pole length, μ_e is the coefficient of friction of cart on track, and μ_p is the coefficient of friction of pole on cart. These equations were simulated by the Euler method, which uses an approximation to the above equations, and a time step of 20 ms.

We assume that a failure happens when $|\theta| > 12^\circ$ or $|x| > 2.4$ m. However, we later show that the system learns even when these two bounds are tightened. Also, we assume that the equations of motion of the cart–pole system are not known to the controller and that only a vector describing the cart–pole system’s state at each time step is known. In other words, the cart–pole arrangement is treated as a black box by the learning system.

Fig. 7 presents the GARIC architecture as it is applied to this problem. The AEN network has four input units, a bias input unit, five hidden units, and an output unit. The input state vector is normalized, so that the pole and cart positions lie in the range $[0, 1]$. The velocities are also normalized, but they are not constrained to lie in any range. The 35 weights of this net are initialized randomly to values in $[-0.1, 0.1]$. The learning rate for these weights is fixed at 0.3. The external reinforcement (i.e., the failure signal r) is received by the AEN and used to calculate the internal reinforcement, \tilde{r}. The discount factor, γ, used in this calculation is 0.9.

A. The Action Selection Network

The fuzzy control rules used to balance the pole successfully are shown in Table I and explained below. These completely determine the width of each layer in the ASN. There are four inputs, 14 units in layer 2 (the number of antecedent labels),
13 units in layer 3 (the number of rules), nine units in layer 4 (the number of consequent labels), and, finally, one output unit to compute the force. The initial definitions of all the labels are also shown in Table II. A spread of −1.0 corresponds to ∞. These directly translate into the initial weights of layers 2 and 4 in the action selection network.

The design of the rule base for this fuzzy controller follows the algorithm developed in [9] and [11], which is based on a hierarchical process which considers the interaction of multiple goals.

As mentioned earlier, the rule base of a fuzzy controller consists of rules which are described using linguistic variables. As shown in parts (a) and (b) of Fig. 8, four labels are used here to linguistically define the value of the state variables: Positive (PO), Very Small (VS), Zero (ZE), and Negative (NE). Nine labels are used to linguistically define the force value recommended by each control rule: Positive Large (PL), Positive Medium (PM), Positive Small (PS), Positive Very Small (PVS), Zero (ZE), Negative Very Small (NVS), Negative Small (NS), Negative Medium (NM), and Negative Large (NL). The forward calculations in this network are based on fuzzy logic control as described earlier. Nine fuzzy control rules were written for balancing the pole vertically and four control rules were used in positioning the cart at a specific location on the rail tracks [11]. These rules are shown in Table I. In Fig. 7, the presence of a link between an input unit j and a unit i in the hidden layer indicates that the linguistic value of the input corresponding to unit j is used as a precondition in rule i. The first nine rules, corresponding to the hidden layer units 1 to 9, are rules with two preconditions (i.e., θ, and ×). Rules 10 through 13 have four preconditions, representing the linguistic values of θ, ×, x, and ×.

| TABLE I |
| THE 13 RULES USED WITH NINE LABELS FOR FORCE |

Rule	PO1	PO2	PO3	PO4	NE1	NE2	NE3	NE4	ZE1	ZE2	ZE3	ZE4	PS1	PS2	PS3	PS4	VS1	VS2	VS3	VS4	NVS		
PO1	PO2	null	null	null	PL																		
PO1	ZE2	null	null	null	PM																		
PO1	NE2	null	null	null	ZE																		
ZE1	PO2	null	null	null	PS																		
ZE1	ZE2	null	null	null	ZE																		
ZE1	NE2	null	null	null	NS																		
NE1	PO2	null	null	null	ZE																		
NE1	ZE2	null	null	null	NM																		
NE1	NE2	null	null	null	NS																		
VS1	VS2	PO3	PO4	PS																			
VS1	VS2	PO3	PS4	PS																			
VS1	VS2	NE3	NE4	NS																			
VS1	VS2	NE3	NS4	NVS																			

For any particular control problem using the GARIC architecture, the fuzzy rules and their initial shapes and definitions need to be set up. We have used triangular membership functions for all antecedent and consequent labels. This choice is general enough to be applicable to many other problems besides cart–pole balancing. There are 13 rules for this four-input system, and they use 23 linguistic labels in all. The spreads of a fuzzy membership function lie in the range (0, ∞). If a spread is ∞, this parameter will not be changed during learning, and the defuzzification procedure (LMOM) will work by inverting the nonconstant portion. In addition, the softmax parameter, k, is set at a value of 10, and the learning rate, η, is 0.001.

Given the rule base, the parameters may be thought of as a means of controlling the meaning of the linguistic terms. When the parameters change, this meaning is being tuned to be consistent with the rules, such that good performance results. In fact, performance is the only objective criterion of "correctness" of the label definitions in the context of the fixed rule base.
TABLE II

<table>
<thead>
<tr>
<th>Label</th>
<th>Center</th>
<th>Left Spread</th>
<th>Right Spread</th>
<th>Label</th>
<th>Center</th>
<th>Left Spread</th>
<th>Right Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>0.3</td>
<td>0.3</td>
<td>-1</td>
<td>PL</td>
<td>20.0</td>
<td>5.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>ZE1</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>PM</td>
<td>10.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>NE1</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>PS</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>PS1</td>
<td>0.0</td>
<td>0.05</td>
<td>0.05</td>
<td>PVS</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>PO2</td>
<td>1.0</td>
<td>1.0</td>
<td>-1.0</td>
<td>NL</td>
<td>-20.0</td>
<td>-1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>ZE2</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>NM</td>
<td>-10.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>NE2</td>
<td>-1.0</td>
<td>-1.0</td>
<td>1.0</td>
<td>NS</td>
<td>-5.0</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>VS2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>NVS</td>
<td>-1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>PO3</td>
<td>0.5</td>
<td>0.5</td>
<td>-1.0</td>
<td>ZE</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>NE3</td>
<td>-0.5</td>
<td>-1.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>1.0</td>
<td>1.0</td>
<td>-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE4</td>
<td>-1.0</td>
<td>-1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS4</td>
<td>0.0</td>
<td>0.01</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS4</td>
<td>0.0</td>
<td>1.0</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8. (a) Four qualitative labels for θ, $\dot{\theta}$, x, and \dot{x}. (b) Nine qualitative labels for F.

B. Results

A trial in our experiments refers to starting with the cart–pole system set to an initial state and ending with the appearance of a failure signal or successful control of the system for an extended period.\(^3\) The default parameters for the simulations are: half-pole length 0.5 m; pole mass 0.1 kg; cart mass 1.0 kg; learning rate in the consequents 0.001. The starting configuration after each failure was varied in numerous ways including randomly. The rules and starting label descriptions were varied by large amounts. The damages to the labels which are the variations from the original definitions of the labels, as well as changes in the parameters, are described with each figure. A starting position of 0.1, for example, implies that all four state variables were set to 0.1 after each failure. A randomized start means that after each failure, the initial configuration (all four parameters) was independently and randomly chosen. In the graphs, each curve shows the value of a state variable and is in four pieces. The first and second pieces show this value for the first few time steps of the first and second trials respectively. If the trial lasted less than 300 time steps, then the entire trial is shown; if not, only the first 300 time steps are shown. The third and fourth pieces of the curve show the first 300 and last 300 (from 99 700 to 100 000) time steps of the last (successful)

\(^3\)We say that the system has learned to control the cart–pole if no failure is observed before 100 000 time steps. This time corresponds to about 33 minutes of real time.

Fig. 9. Learning to correct an inappropriate definition of a label’s membership function.

trial, when the experiment was terminated. Of course, failure occurs whenever θ or x exceeds its bounds.

Fig. 10 shows the performance of the controller during the learning process. This is to clearly demonstrate how the membership functions are shifted to the correct place by learning. In this experiment, we shifted the center of the membership function for ZE by $5N$ (this is shown in the figure’s caption by ZE +5). The system learned to shift it back to about 0 as shown in Fig. 9. This change is sufficient for success, given the robustness of the fuzzy inference process. Other labels were also shifted by about $1N$, which is minimal change. The start state was nonrandom. Modifications to all force labels are shown in Table II. Figs. 11–16 illustrate the performance of the learning system under different scenarios, which are described in figure captions.
Additional Experiments: Two additional sets of experiments were performed. In the first set, we varied the number of labels for force from nine to seven and redefined their membership functions as shown in Table IV. Figs. 17–23 show the results of further experiments using the new membership functions with the rules which are shown in Table V.

Further experiments were performed using nine modified labels for force as shown in Table VI. Table VII summarizes the results of these runs.

VII. DISCUSSION

GARIC’s architecture is similar to the structure proposed by Anderson [2], but the action selection network in our architecture is a synthesis of fuzzy logic control and neural networks. Using the structure of a fuzzy controller, Anderson’s approach is extended to provide for continuous representation of the output value and inclusion of the human expert operator’s control rules in the action selection network. It should be noted that Anderson’s goal in [1] was to discover interesting patterns and strategy-learning schemes. Not much effort was spent on making the process learn faster. In our work, although we allow some of the strategy learning to occur automatically, we start from a knowledge base of fuzzy control rules and tune them by learning in the neural networks.

Also, the stochastic action modifier unit in GARIC has similarities to Gullapalli’s method [13] although we use a completely different approach for defining the internal reinforcement. Lee and Berenji [17] and Lee [16] have used a single-layer neural network which requires the identification of the trace functions for keeping track of the visited states and their evaluations. The generation of these trace functions is a difficult task in larger control problems. However, the approach suggested in GARIC does not use trace functions. The neural network representation of the fuzzy control rules in GARIC allows faster development and faster learning. Also, in the single-layer model, only the generation of the output values was considered. The preconditions of the fuzzy control rules were left untouched. However, in GARIC, based on reinforcements received from the environment, both the preconditions and the conclusions of rules can be modified.

The ARIEC and GARIC architectures both use external reinforcements to form internal evaluations of states and control actions. Also, they both use internal reinforcements to guide the process of tuning the rules. However, GARIC extends the theory for using reinforcement learning in fuzzy control in many respects:

- Learning is achieved by full integration of fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods.
- The fuzzy memberships used in the definition of the labels are modified (tuned) globally in all the rules rather than being locally modified in each individual rule.
- GARIC can compensate for inappropriate definitions of fuzzy membership functions in the antecedent of control rules. We showed this attribute by damaging the labels
Fig. 11. Here the starts are randomized. Other parameters are the same as above. More trials are required to learn but not much more. Again, the system brings back the label from 5 to near 0. The system learned in 367 trials.

Fig. 12. Antecedents change ZE1 +0.2, ZE2 −0.4, PO3 −0.1, NS4 −0.1. Consequents changed: ZE+5, PL+3. Start: randomized. The consequents are all adjusted by small amounts. ZE is brought back again because it is the most critical label in some sense. If this label is not correct, balancing is impossible even if the system has started from a good state. Here, the system learned in 312 trials.

Fig. 13. More damage in addition to above. Antecedents changed: ZE1 −0.2, ZE2 −0.4, PO3 −0.1, NE5 −1.0, 0, +1 PO4 +0.3, −0.3. PL+0.3 NS4 −0.1. Consequents changed: PL +3, PM +3, PS +2, NM +1, ZE −2. Start: randomized. Again, ZE is corrected and the others are shifted by comparatively smaller amounts. PL is brought back near to its original value. In general, there is less pressure to correct the less frequently used labels (such as PL), since once the system is in a good area of state space, it can completely avoid using PL after it has made the important repairs. Learning took 550 trials.
Fig. 14. Parameter damage: maximum pole position = 0.1 rad and maximum cart position = 0.2 m, which have been reduced from 0.2 rad and 2.4 m, respectively. Start was randomized. Learning took 82 trials.

Fig. 15. Pole half-length was reduced to 0.2 m from 0.5 m, and the start was randomized. Only four trials required for learning.

Fig. 16. Cart mass was doubled to 2.0 kg. Random starting state. Two trials were enough for success. The PL and NL shift their centers away by small amounts to compensate for the heavier cart. Similar effects are observed in other labels. The shifts are all small, since the effect is distributed over a large number of parameters.
Fig. 17. Damages of: PO4 (+0.4, +0.4, 0), NE4 (+0.2, 0, -0.2), PS4 (+0.5, 0, 0), NS4 (-0.5, 0, 0), starting state = 0.1. Learned in two trials.

Fig. 18. Cart mass = 4.3 kg (increased from 1 kg), starting position = 0.1 learning occurred in three trials.

Fig. 19. Damages to all labels of θ: (+0.2, +0.2, 0), (+0.2, 0, 0), (-0.2, 0, +0.2), (-0.1, 0, 0) to PO1, ZE1, NE1, VS1 respectively. Starting position = 0.5. It took 29 trials to succeed.

used in the antecedents and observing how the system can learn a new control policy to succeed. To the best of our knowledge, GARIC is the first architecture to do this. • GARIC introduces a new conjunction operator in computing the rule strengths of fuzzy control rules.
• GARIC introduces a new localized mean of maximum
Fig. 20. Damages to all labels of θ: (+0.4, +0.6, 0), (+0.1, 0, 0), (-0.2, 0, +0.4), (-0.1, +0.3, 0), to PO2, ZE2, NE2, VS2 respectively. Starting position = 0.05. The learning time was 24 trials.

Fig. 21. Damage to consequents $= (-5, -1, 0, 5.5, 1, 0)$. Starting position $= -0.19$ (which is very close to failure). 136 trials were required.

Fig. 22. Major damage to consequents: PL +40.0, NL +5. Randomized starting positions. 15 trials were sufficient.

(LMOM) method in combining the conclusions of several firing control rules.
- Only monotonic membership functions are used in ARIC.

However, GARIC allows any type of differentiable membership function to be used in constructing a fuzzy logic controller.
Fig. 23. Max cart position = 0.5 (from 2.4). Randomized starts. Antecedent damage: ZE1 +0.3, ZE2 0.6, VS2 +0.2, PO3 -0.4, NE4 +0.5, PS4 +0.1, NS4 +0.3. Learned in 140 trials.

VIII. CONCLUSIONS

With the GARIC architecture, we have proposed a new way of designing and tuning a fuzzy logic controller. The knowledge used by an experienced operator in controlling a process can now be modeled using approximate linguistic terms and later refined through the process of learning from experience. GARIC provides a well-balanced method for combining the qualitative knowledge of human experts in terms of symbolic rules and learning strength of the artificial neural networks. Therefore, we believe that this architecture is general enough for use in other rule-based systems which perform fuzzy logic inference.

REFERENCES