

Robsut Wrod Reocginiton via semi-Character Recurrent Neural Network

center of excellence

Keisuke Sakaguchi, Kevin Duh, Matt Post, Benjamin Van Durme Johns Hopkins University

Hey, you made spelling errors in the title!

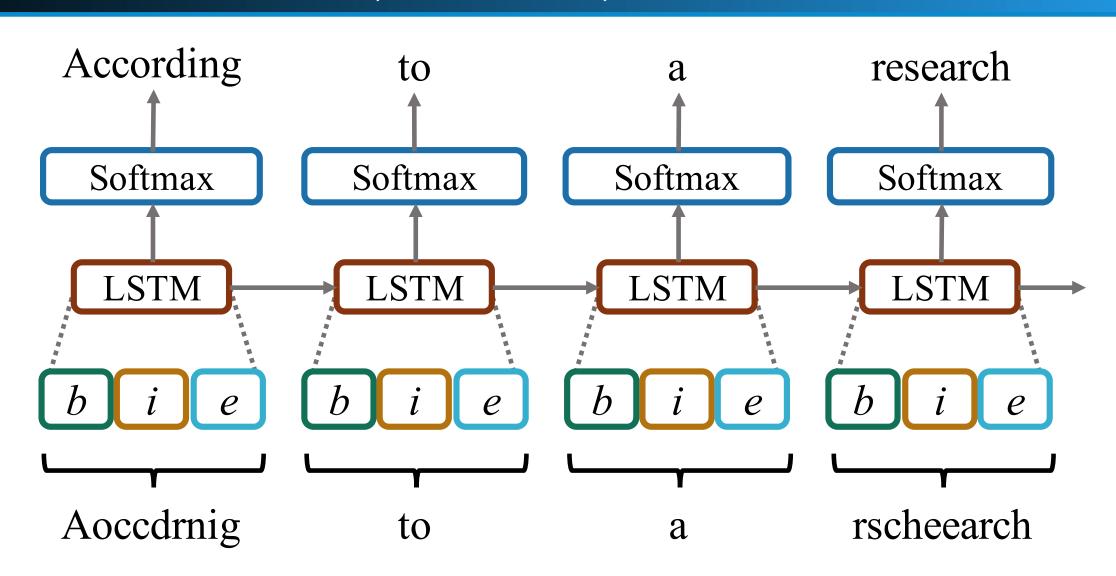
Good catch, but you can still read it smoothly!

Language processing mechanism by humans is generally more robust than computers. (e.g., *Cmabrigde Uinervtisy* [*Cambridge University*] effect)

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

Can we build a computational model which replicates this mechanism?

Model Overview (scRNN)



The input layer of our model consists of three sub-vectors: beginning (b), internal (i), and ending (e) character(s) of the input word.

Results (Spelling Correction Experiments)

	Jumble	Delete	Insert
scRNN (proposed)	99.44	85.56	97.04
CharCNN (Kim et al. 2016)	16.18	19.76	35.53
Enchant	57.59	35.37	89.63
Commercial A	54.81	60.19	93.52
Commercial B	54.26	71.67	73.52

Table 1: Spelling correction accuracy (%) with different error types. (e.g., Jumble: Cmbarigde, Delete: Camridge, Insert: Cambpridge)

Units	Acc (%)	SD	Size (KB)
5	24.65	2.59	236
10	48.43	3.26	435
15	73.32	3.65	632
20	84.82	2.39	830
30	94.15	1.54	1,255
40	96.90	1.26	1,670
50	98.48	0.94	2,092
60	98.39	0.81	2,514

Table 2: scRNN accuracy (%), and the size of model file (KB) on jumbled word recognition with respect to the number of units of LSTM.

Examples

Comm.B

According to a research at Cambridge University , it does n't matter in what order the letters in a word are , the only important thing is that the first and last letter be at the right place . The rest can be a total mess and you can still read it without problem . This is because the human mind does not read every letter by itself , but the word as a whole .

CharCNN According to a research at Cambridge Minority, it deck n't mother in wait or the letters in a wood are, the tony Vermont timing is taxi the tourist and sat letter be at the fruit pile. The reset can be a total uses and you can vital rake it worthy parallel. Mips is abuse the human trim deck not rake survey latter by leftist, but the wood as a whole.

Enchant Ecuadoran to a searcher at Brigade Nerviness, it does n't matter in what order the letters in a word are, the only omnipresent thing is that the freest and slat letter be at the right place. The rest can be a total mess and you can still read it outhit corbel. Tish is Ceausescu, the human mind does not read Hervey letter by leftist, but the word as a whole.

Occurring to a scholarch at Cambridge Inertias, it does n't matter in what order the letters in a word are, the only impotent thing is that the first and last letter be at the right place. The rest can be a total mess and you can still read it outhit problem. This is becase the human mind does not read every letter by istle, but the word as a whole.

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it does n't matter in what order the letters in a word are, the only iprmoetnt thing is that the first and last letter be at the right place. The rest can be a total mess and you can still read it wouthit problem. Tihs is bcuseae the human mind does not read every letter by itself, but the word as a whole.

Corroboration with psycholinguistic experiments

Cond.	Example	# of fixations	Regression(%)	Avg. Fixation (ms)
Normal	The boy could not solve the problem so he asked for help.	10.4	15.0	236
Internal	The boy cuold not slove the probelm so he aksed for help.	11.4^{*}	17.6*	244*
Ending	The boy coudl not solev the problme so he askde for help.	12.6^{\dagger}	17.5*	246*
Beginning	The boy oculd not oslve the rpoblem so he saked for help.	13.0^{\ddagger}	21.5^{\dagger}	259 [†]

Cond.	Example	Accuracy
INT	As a relust, the lnik beewetn the fureuts and sctok mretkas rpiped arapt.	98.96
END	As a rtelus, the lkni betwene the feturus and soctk msatrek rpepid atarp.	98.68*
BEG	As a lesurt, the lnik bweteen the utufers and tocsk makrtes pipred arpat.	98.12^{\dagger}
ALL	As a strule, the lnik eewtneb the eftusur and okcst msretak ipdepr prtaa.	96.79^{\ddagger}

Table 3: Example sentences and results for measures of fixation excerpt from Rayner et al., (2006) (Top) and results for spelling correction accuracy by scRNN variants depending on different jumble conditions (Bottom). Entries with * have statistically significant difference from the condition N (p < 0.01) and those with † and † differ from * and † with p < 0.01 respectively.

Error Analysis

Cond.	Examples of errors (con	rrect/wrong)			
INT	Under/under, there	e/three, form	/from,	fares/fears,	trail/trial,
	Broad/Board				
END	being/begin, quiet/qu	uite, bets/best,	stayed/ste	eady, heat/hat	e, lost/lots
	+INT				
BEG	Several/reveal, Gre	owth/worth,	host/sho	ot, creditors	s/directors,
	views/wives + same en	rrors in INT			
ALL	Under/trend, center/recent, licensed/declines, stop/tops + same errors in				
	INT, END, & BEG			<u>-</u>	

Conclusion

- We have presented a semi-character recurrent neural network model, scRNN, which is inspired by the robust word recognition mechanism known in psycholinguistics literature as the *Cmabrigde Uinervtisy* effect.
- We also have demonstrated a similarity between scRNN and human word recognition mechanisms, by showing that scRNN replicates a psycholinguistics experiment about word recognition difficulty in terms of the position of jumbled characters.